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Abstract. This survey presents an overview and a comparative analysis of the

state of art in post-quantum identification schemes based on lattices. Furthermore, we

propose an adaptation of the HB family of identification in a lattice context. The aspects

taken into account in such comparison are performance, security, communication costs,

underlying hard-problem, completeness, soundness, and key sizes.

1. Introduction

One of the most common security goals consists in assuring identity authenti-

cation. This kind of operation can be used, for example, to provide access control.

One can accomplish this security goal by means of the application of interactive

zero-knowledge identification schemes. There are several constructions that rely

on number theoretic problems as security basis, like discrete logarithm problems

[17] or factoring of integers [5]. In the advent of quantum computers, these identifi-

cation schemes will be broken with Shor’s algorithm [22] for integer factorization,

which was published in 1994. In particular, all constructions whose security relies

on number theory (such as variants of the discrete logarithm problem or integer

factorization) are vulnerable to this algorithm. If quantum computers will at one

point exist, such schemes can be broken in polynomial time, whereas no quantum
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attacks are known for lattice-based, code-based, and multivariate cryptographic

systems. On the other hand, even should such number-theoretic assumptions re-

main hard, it is not wise to rely on a single type of hard problems. Furthermore,

as the capacity of current adversaries increases, so does the key size for classi-

cal constructions; it is possible that alternative post-quantum constructions may

provide a better alternative in that sense.

1.1. Our contribution. We present the state of the art in post-quantum iden-

tification schemes based on lattices, focusing in performance, security, communi-

cation costs, underlying hard problem, completeness, soundness, and key sizes. In

addition, we propose to adapt HB and Véron’s to obtain lattice-based schemes.

We further discuss the suitability of signature schemes derived from such schemes

through the application of Fiat–Shamir heuristics.

1.2. Organization of the document. This paper is divided as follows. In Sec-

tion 2, we give general definitions regarding lattices, and identification schemes.

Then, we describe and compare the lattice-based schemes in Section 3, both from

security and performance perspectives. We give a summary of such schemes in

Section 4. After that, an overall appreciation of the schemes is given in Section 5.

2. Preliminaries

In this section, we present some definitions that are employed to describe the

identification schemes analyzed in this article.

2.1. Zero-knowledge proof of knowledge. In cryptography, a zero-knowl-

edge protocol is an interactive proof is a method by means of which one party

(Prover) convinces another (Verifier) that a given statement is true, without re-

vealing anything other than the veracity of the statement. The parties are cons-

idered honest if they follow the protocol. Otherwise, they are considered cheaters.

This kind of proof satisfies three properties:

– Completeness: an honest Prover is always able to convince an honest Verifier

about the veracity of a true statement.

– Soundness: no cheating Prover is able to convince an honest Verifier that a

false statement is true, except with some ”small” probability.

– Zero-Knowledge: nothing but the truthfulness of the statement being proved

is learned from the protocol execution.
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There is a standard construction, proposed by Fiat and Shamir in [5], that

converts identification schemes into signature schemes. In such construction, the

entity Verifier is replaced by a source of pseudo-random bits extracted from both

the message being signed and the commitment values computed by the signing

entity, which corresponds to the Prover. Verifying the correctness of the signature

consists in checking if it corresponds to a valid transcript of an execution of the

identification protocol.

2.2. Lattices.

Definition 1. A lattice is a discrete subgroup of Rm with dimension n≤m.

In general, for cryptographic applications, it is restricted to Zm. It can be repre-

sented by a basis comprising n linear independent vectors of Rm.

Definition 2 (Ideal lattices). Let f be some monic polynomial of degree n.

Then, L is an ideal lattice if it corresponds to an ideal I in the ring Z[x] /〈f〉.
The polynomial f(x) = xn−1 defines a particular class of ideal lattices known

as cyclic lattices, whereas f(x) = xn + 1 defines the anticyclic lattices. We also

have the class of cyclotomic lattices resulting from all cyclotomic polynomials f .

Currently, such class is the only one relevant for practical applications.

Definition 3 (Short Integer Solution - SIS). Given A ∈ Zn×m
q , a prime num-

ber q and L ∈ R find a vector x ∈ Zm that satisfies the equation Ax = 0 modq

and has length restricted by ‖x‖ ≤ L.

2.3. Learning problems. The computational problems described in this sub-

section are related to error correcting codes and lattices [11]. Their hardness

results from the noise added to the outcome of the dot product of a secret vector

and a collection of randomly chosen vectors. Such noise is known to follow a

specified distribution.

Definition 4 (Learning Parity with Noise (LPN)). For an integer n ≥ 1

and a real number ε ≥ 0, consider “learning parity with noise” the problem

defined as follows: find an unknown s ∈ Zn
2 given a list of “equations with errors”

〈s,ai〉 ≈ε bi mod 2 where the ai’s are independently chosen from the uniform

distribution on Zn
2 , 〈s,ai〉 =

∑
j sj(ai)j is the inner product modulo 2 of s and

ai, and each equation is correct with probability 1− ε. The goal is to find s.

Definition 5 (Learning With Errors (LWE)). Let p be a prime number and

χ a probability distribution on Zp. Given a secret s ∈ Zn
p , we denote by As,χ

the probability distribution on Zn
p × Zp obtained by choosing a vector a ∈ Zn

p
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uniformly at random, choosing e ∈ Zp according to χ, and outputting (a, 〈a, s〉+e

mod p). The problem of recovering s from this system of equations is named

“learning with errors” and denoted by LWEp,χ. We say that an algorithm solves

LWEp,χ if, for any s ∈ Zn
p , given samples from As,χ it outputs s with probability

exponentially close to 1. We say that the algorithm is efficient if it runs in time

polynomial in n.

3. Identification schemes

By making use of the concepts defined in the previous section, we now list a

number of lattice-based identification schemes. They involve two entities, namely

a prover and a verifier. The first has the goal of convincing the second about the

authenticity of his identity by showing that he knows a secret value.

The algorithms that are used in the realization of the several security schemes

described in this work rely upon a ”Commitment function”. This function can

receive a variable number of input arguments, which are then concatenated and

treated as a single string of bytes. The image obtained by such function follows

a distribution close to uniform in Zq, where q is an integer given as parameter in

the realization of the ”Commitment function”.

3.1. Lyubashevsky’s identification scheme. This is a 3-pass identification

scheme whose security is based on the worst-case hardness of the shortest vector

problem in all lattices, as initially presented at [15]. Its author also indicates

that a more efficient version based on the hardness of the same problem in ideal

lattices can be obtained. Such construction was later detailed in [16].

On the low end, this identification scheme has communication complexity of

around 65000 bits and the length of the signatures produced by the correspond-

ing signature scheme, obtained via Fiat–Shamir heuristic, is about 50000 bits,

according to Table 1, reproduced from [16].

Algorithm. The algorithm depicted below corresponds to the identification scheme

version described in [16], using ideal lattices. Differently from the scheme intro-

duced in [15], the challenges sent by the verifier are not a single bit, but rather

an element of a ring. This helps to obtain shorter signatures via Fiat–Shamir

construction. Each step indicates the actor (either the prover or the verifier). For

a list of concrete parameters and domain definition, one should refer to Tables 1

and 2, respectively.

– Private key: ŝ
$←Dm

s
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– Public key: h
$←H(R,D,m), S ← h(ŝ)

1. Prover: compute ŷ
$←Dm

y , Y ← h(ŷ) and send Y to the verifier.

2. Verifier: compute c
$←Dc and send c to the prover.

3. Prover: compute ẑ ← ŝc+ ŷ. If ẑ /∈ Gm, then ẑ ← ⊥. Send ẑ to the verifier

4. Verifier: accept the prover if ẑ ∈ Gm and h(ẑ) = Sc+Y

Interactive Proof Properties. In spite of not being zero-knowledge, this identifica-

tion scheme satisfies the witness indistinguishability property. That is, given two

distinct private keys ŝ1 and ŝ2 associated with the same public key, h(ŝ1) = h(ŝ2),

it is not information-theoretically possible for the verifier to tell which private key

was actually used in the algorithm execution. By a suitable choice of parame-

ters, we can have all public keys associated with more than one private key, with

overwhelming probability, as stated by the following lemma.

Lemma 1. If ŝ is chosen uniformly at random from Dm
s , then, with proba-

bility 1− 2−Ω(n logn), there will be another ŝ′ satisfying h(ŝ′) = h(ŝ).

For the parameters listed in Table 1, this probability is above 1−2−128. Bes-

ides, the witness-indistinguishability property is kept under parallel composition,

and this fact enables to parallelize this scheme. The same cannot be done, in

general, with zero-knowledge schemes.

As far as the completeness property is concerned, this scheme has a non-

negligible error of 1− 1/e, as consequence of the lemma below.

Lemma 2. Given that ŷ ∈ Dm
y , for any ŝ such that ‖ŝ‖∞ ≤ n,

Pr
ŷ

$←Dm
y

[ŝ+ ŷ ∈ Gm] =
1

e
− o(1).

Therefore, in a given round of execution, an honest prover may be rejected for

refusing to reveal ŝc+ ŷ when such value does not fall in a safe region. Otherwise,

he would reveal information about the private key.

Concerning the soundness property, this identification scheme has very small

error, when compared to zero-knowledge constructions like Kawachi’s. For the

parameters listed in Table 1, the error is less than 2−80. It is determined by the

size of the set Dc from which the challenges are chosen.

Cost. The communication costs imposed by this scheme are determined by the

three messages: commitment, challenge and answer. The first corresponds to an

element in the ring R and takes n log p bits. The challenge also occupies n log p

bits, because it is given by an element belonging toDc, which is a subset of R. The
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answer is represented by a vector in the Gm space, and can have up to mn log p

bits. The cost per round of execution, thus, equal to (m+ 2)n log p.

In terms of computational complexity, the most demanding operations in

each round are the multiplications involving elements of the ring R, which take

Õ(n). Besides, due to the completeness error value, w(log n) rounds are necessary

in order to assure that the prover is indeed accepted.

Security. This identification scheme is secure against active attacks, i.e., an ad-

versary is allowed to interact with the prover prior to impersonation. Breaking

this identification scheme also implies in solving the approximate SVPγ problem,

with approximation factor given by Õ(n3) for every lattice corresponding to an

ideal ring Z [x] / 〈f(x)〉. Unfortunately, such choice makes the system parameters

too large for practical use, as stated by its own author.

The theorem below applies the witness-indistinguishability property to est-

ablish the scheme security in the active attack model

Theorem 1. If h is any function in H(R,D,m) for the parameters defined

in Table 1 and there exists a polynomial-time adversary who can break the iden-

tification scheme with probability q′ in the active attack model, then there exists

a polynomial-time algorithm that finds collisions in the hash function h in the

domain D with probability at least q′

4

(
q′ − 1

|Dc|
)− 2−Ω(n logn).

Memory Requirements. The algorithm that describes the scheme makes references

to public and private keys, as well as hash function computations. These values

are listed in Table 2 for a set of different instances, and represent the memory

needed from prover and verifier in order to execute the scheme.

Parameters. In this section we list a set of safe parameters, showing the vector

lengths that can be obtained with the state of art the algorithms and the length

necessary to break this identification scheme. Tables 1 and 2 lists the values

suggested by the author in [16].

3.2. Kawachi, Tanaka and Xagawa’s identification scheme. This scheme

has a 3-pass structure, is provably safe against concurrent attacks, and takes the

hardness of the SIS lattice problem as security assumption. It follows a similar

construction to Stern’s code-based scheme [24], which is based on the hardness of

the syndrome decoding problem on its turn. Its milder security assumption, when

compared to Lyubashevksy’s scheme, enables the use of smaller parameters. As

consequence, it can reach a better performance in terms of communication costs,

as shown in [12].
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Parameter Definition Instances

n integer that is a power of 2 512 512 512 1024
m any integer 4 5 8 8
σ any integer 127 2047 2047 2047
κ integer such that 2κ

(n
k

) ≥ 2160 24 24 24 21

p integer ≈ (2σ + 1)m2−
128
n 231.7 259.8 295.8 295.8

Signature Size ≈ mn log(2mnσκ) bits 49000 72000 119000 246000
Public Key Size ≈ n log p bits 16000 31000 49000 98000
Secret Key Size ≈ mn log(2σ + 1) bits 16000 31000 49000 98000
Hash Function Size ≈ mn log p bits 65000 153000 392000 786000

Length of vector needed to break signature 223.5 227.9 228.6 229.5

Length of the shortest vector that can be found 225.5 236.7 247.6 269.4

Table 1. Lyubashevsky’s system parameters

Domain Definition

R ring Zp [x] / 〈xn + 1〉
D {g ∈ R : ‖g‖∞ ≤ mnσκ}
Ds {g ∈ R : ‖g‖∞ ≤ σ}
Dc {g ∈ R : ‖g‖1 ≤ κ}
Dy {g ∈ R : ‖g‖∞ ≤ mnσκ}
G {g ∈ R : ‖g‖∞ ≤ mnσκ− σκ}
Table 2. Lyubashevsky’s domain definitions

– Private key: x
$←Fm2 , with Hamming weight m/2

– Public key: y = Ax, where A
$←Zn×n

q is public.

Algorithm.

1. Prover: choose a random permutation π over {1, . . . ,m} and r
$←Zm

q .

2. Prover: compute commitments c1, c2 and c3 as

2.1 c1 ← Commitment function(π,Ar)

2.2 c2 ← Commitment function(π(r))

2.3 c3 ← Commitment function(π(x+ r))

3. Verifier: compute c
$←{1, 2, 3} and send c to the prover.

4. Prover: reveal information to allow the verifier to check the commitment

correctness

4.1 If c = 1, send π(x) and π(r) to the verifier.

4.2 If c = 2, send π and r+ x to the verifier.

4.3 If c = 3, send π and r to the verifier.



736 Rosemberg Silva, Pierre-Louis Cayrel and Johannes Buchmann

5. Verifier: check commitment correctness from information revealed by the

prover, and accept prover in case of success.

5.1 If c = 1, verify that c2 and c3 can be computed, and that π(x) is binary

with Hamming weight m/2.

5.2 If c = 2, verify that c1 and c3 can be computed.

5.3 If c = 3, verify that c1 and c2 can be computed.

Interactive Proof Properties. Kawachi’s identification scheme constitutes an in-

teractive proof of knowledge that a prover possesses a private key that represents

a solution to an inhomogeneous SIS problem. Its statistically zero-knowledge

property follows from the fact that the commitment function used is statistically-

hiding and computationally binding string commitment scheme. Such scheme is

built upon a hash function h. The binding characteristic follows from the collision-

resistance property of h, whereas the hiding characteristic is a consequence of the

ε-regularity of h.

The statistically hiding property is essential to assure that any computatio-

nally unbounded adversarial receiver cannot distinguish two commitment strings

generated from two distinct strings. On its turn, the computationally binding

implies that no polynomial-time adversarial sender can successfully change the

committed string after sending the commitment and keep it consistent.

It has perfect completeness, which means that an honest prover will always

be accepted by an honest verifier, regardless of the level of security desired.

Concerning its soundness property, on the other hand, there is an error of 2/3.

Hence, in any given round, a cheating prover can make a successful impersonation

with probability of up to 2/3. To circumvent this error, the scheme must be run

a minimum number of times r, so that the overall probability of cheating success

(2/3)r be lower than the level required by the specified application.

Cost. In spite of requiring a higher number of repetitions when compared to

Lyubashevsky’s scheme, as consequence of the soundness error, the scheme of

Kawachi et al. still possesses lower communication costs. Its parameters are

smaller due to the milder security assumptions, and so are the permutations and

vectors exchanged between prover and verifier during the algorithm execution.

Kawachi did not provide concrete parameters. Instead, he only gave an

asymptotic behavior. The numbers listed in Table 3 were extracted from Cayrel

et al. [2] in order to establish a comparison with the CLRS scheme.
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Parameter Value

n 512

m 2048

q 257

Commitment length 256 bits

Secret key length 0.25 kBytes

Public key length 0.06 kBytes

Rounds 150

Communication costs 314.3 kBytes

Table 3. Kawachi et al. system parameters

Security. This identification scheme is secure against concurrent attacks, i.e., an

adversary is allowed to interact with a number of prover instances prior to im-

personation. Each of those instances has the same secret key, but their random

coins are independent and their own state is individually kept. As pointed out

in subsection 3.1, the security assumptions used in Lyubashevky’s identification

scheme lead to parameters too big to be considered practical. Kawachi’s con-

struction addresses this issue by applying weaker security assumptions, i.e., the

approximation factors used on the lattice problems upon which the system se-

curity relies are smaller. The scheme S+
GL is based on Stern’s scheme and the

GapSVP on general lattices with approximation factor Õ(n) and euclidean norm.

The S+
C/IL, in its turn, is based on Stern’s scheme and the SVP for ideal lattices

with approximation factor Õ(n) and infinite-norm.

Memory Requirements. The keys associated with this scheme are shorter than

those required by Lyubashevsky’s due to the milder security assumptions discus-

sed above.

3.3. CLRS identification scheme. Cayrel et al. [2] proposed this lattice

zero-knowledge identification scheme as an adaptation of a code-based construc-

tion due to Cayrel, Véron and El Yousfi [4]. It is concurrently secure under

the hardness assumption of the SIS problem and the collision resistance of string

commitment schemes.

Table 4 lists a set of parameters for a security level of 80 bits.
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Parameter Value

n 512

m 2048

q 257

Commitment length 256 bits

Secret key length 0.25 kBytes

Public key length 0.06 kBytes

Rounds 81

Communication costs 178.9 kBytes

Table 4. CLRS system parameters

Algorithm. Figures 1 and 2 describe, respectively, the key pair generation pro-

cess and the identification protocol for the CLRS scheme, as detailed in [2]. The

private keys correspond to binary vectors whose Hamming weight is exactly half

of their length. Deriving such values from the respective private key corresponds

to solving worst-case instances of the SIS problem. The identification protocol

corresponds to a zero-knowledge proof of knowledge that the prover possesses a

private key associated with a given public key. The soundness error of approxi-

mately 1/2 allows performance gains when compared to other schemes directly

derived from Stern’s, like that described in Section 3.2. This gain is kept when

the Fiat–Shamir transform is used in order to derive signature schemes, such as

the lattice-based TRSS [3].

KeyGen:

x
$←− {0, 1}m, s.t. wt(x) = m/2

A
$←− Zn×m

q

y ←− Ax mod q

Com
$←− F , suitable family of commitment functions

Output (sk,pk) = (x, (y,A,Com))

Figure 1. Key generation algorithm, parameters n,m, q are public.
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Prover P(sk,pk) Verifier V(pk)
(sk, pk) = (x, (y,A,Com)) ←− KeyGen

u
$←− Zm

q , σ
$←− Sm, z ←− Pσx

r0
$←− {0, 1}n, r1 $←− {0, 1}n

c0 ←− Com(σ || Au; r0)

c1 ←− Com(z || Pσu; r1)
c0, c1−−−−−−−−−→

α←−−−−−−−−− α
$←− Zq

β ←− Pσ(u + αx)
β−−−−−−−−−→

Challenge b←−−−−−−−−− b
$←− {0, 1}

If b = 0:
σ, r0−−−−−−−−−→ Check c0

?
= Com(σ ||AP−1

σ β − αy; r0)

σ
?∈ Sm

Else:
z, r1−−−−−−−−−→ Check c1

?
= Com(z || β − αz; r1)

z
?∈ {0, 1}m,wt(z)

?
= m/2

Figure 2. Identification protocol

Interactive Proof Properties. The algorithm shown above constitutes a zero-

knowledge interactive proof that the party called prover knows the secret key x

that satisfies the relation Ax = y mod q with the public key y. The proofs for

the zero-knowledge, completeness and soundness properties are given in [2]. The

scheme is shown to have perfect completeness, but soundness error of 1/2, app-

roximately. This implies that in order to reach an overall soundness error L, r

rounds are necessary, so that the relation (1/2)r ≤ L is satisfied. Thus, such sche-

mes need a fewer number of rounds to reach the soundness goal, when compared

to those of Kawachi et al. [12] and Xagawa et al. [26].

Cost. The smaller soundness error per round of approximately 1/2 also implies

in a reduction in the communication costs, when compared to the scheme of

Kawachi et al. [12], which has soundness error of 2/3. For a security level of 80

bits, the costs are also smaller than those of Lyubashvsky’s scheme, which has

even smaller soundness error, but bigger parameters.

Security. This identification scheme has its security based on the existence of a

string commitment scheme and the intractability of the SIS problem. Therefore,

the existence of an adversary that breaks the identification scheme implies that

breaks at least one of the security assumptions: finding collisions in the commit-

ment scheme, or solving the SIS problem. In particular, the problem of obtaining
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a private key associated with a given public key corresponds to some of the worst

cases of SIS. The private keys can be seen as lattice vectors with very small norm.

Memory Requirements. For a security level of 80 bits and the parameter set listed

above, the space required to store the public and private keys are 0.25 kBytes and

0.06 Kbytes, respectively. For generic lattices, the space needed to store the basis

is given by n×m× dlog qe = 9MBytes.

3.4. Xagawa and Tanaka’s identification scheme. Xagawa and Tanaka

[26] proposed zero-knowledge and proof-of-knowledge protocols for NTRU (short

for N-th degree truncated polynomial ring) cryptosystem, using a statistically

hiding and computationally binding commitment scheme. This protocol consti-

tutes the first identification scheme based on NTRU and Stern’s scheme [24]. It

is passively secure under the assumption that it is hard to find two elements xh

and xt of enumeration sets that satisfy the relation ah ⊗ xh + at ⊗ xt ≡ y, given

that the triple (ah,at,y) ∈ R3
q is public, with Rq = Zq [α] / 〈αn − 1〉.

The set of parameters originally proposed for a security level of 80 bits is

summarized in Tables 5 and 6.

Algorithm.

– Private key: xh and xt such that ah ⊗ xh + at ⊗ xt ≡ y

– Public key: (ah,at,y) ∈ R3
q .

1. Prover: choose random permutations πh and πt over {1, . . . , n}, and random

vectors rh and rh ∈ Rq.

2. Prover: compute commitments c1, c2 and c3 as

2.1 c1 ← Commitment function(πh, πt,ah ⊗ rh + at ⊗ rt)

2.2 c2 ← Commitment function(πh(rh), πt(rt))

2.3 c3 ← Commitment function(πh(rh + xh), πt(rt + xt))

3. Verifier: compute c
$←{1, 2, 3} and send c to the prover.

4. Prover: reveal information to allow the verifier to check the commitment

correctness

4.1 If c = 1, send πh(xh), πt(xt), πh(rh) and πt(rt) to the verifier.

4.2 If c = 2, send πh, πt, rh + xh and rt + xt to the verifier.

4.3 If c = 3, send πh, πt, rh and rt to the verifier.

5. Verifier: check commitment correctness from information revealed by the

prover, and accept prover in case of success.
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5.1 If c = 1, verify that c2 and c3 can be computed, and that π(xh) and

π(xh) belong to enumeration sets.

5.2 If c = 2, verify that c1 and c3 can be computed.

5.3 If c = 3, verify that c1 and c2 can be computed.

Interactive Proof Properties. The algorithm shown above constitutes zero-knowl-

edge interactive proof that the party called prover knows the secret values xh

and xt that satisfy the relation ah ⊗ xh + at ⊗ xt ≡ y. A sketch of proof for

the zero-knowledge, completeness and soundness properties is given in [26]. The

scheme is shown to have perfect completeness, but soundness error of 2/3. This

implies that in order to reach a security level L, r rounds are necessary, so that

the relation (2/3)r ≤ L is satisfied.

Cost. Assuming the parameter set used by this scheme is NTRU-2008 ees677ep1

[8] and that the commitment scheme Halevi–Micali scheme [7] is applied in the

construction, for a security level of 80 bits, the communication cost of this iden-

tification scheme is approximately 716.5 kB.

Parameter Value

Security 80 bits

Rounds 150

Queries allowed 260

Commitment scheme Halevi-Micali [7]

Communication costs 716.5 kBytes

NTRU Set ees677ep1

Table 5. Xagawa et al. system parameters

Parameter Value(bits)

Security level 192

Public key length 7447

Secret key length 1354

Table 6. NTRU ees677ep1 set
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Security. This identification scheme has its security based on the existence of a

string commitment scheme and the intractability of the NTRU decomposition

problem. Therefore, the existence of an adversary that breaks the identification

scheme implies that he is also able to break at least one of the security assumpt-

ions. One must recall that the security proofs and arguments for NTRU have

been under dispute, including the hardness of the decomposition problem.

Memory Requirements. For a security level of 80 bits and the parameter set listed

above, the space required to store the public and private keys are 7447 bits and

1354 bits, respectively.

3.5. LWE-based identification scheme. Silva, Campello and Dahab [23]

proposed an LWE-based zero-knowledge identification scheme. It constitutes the

first identification scheme based on LWE and Véron’s construction [25]. It is

passively secure under the assumptions that (1) it is hard to find collisions in the

underlying commitment function and (2) that it is computationally difficult to

solve the LWE problem.

This scheme is comprised by two algorithms. The first one establishes a pair

of keys, one private and one public, such that the private key corresponds to

a solution to an instance of LWE problem which uses the public key as input

parameter.

The second algorithm describes a sequence of message exchanges between

the Prover and the Verifier. It serves as a proof of the fact that the Prover knows

the solution to the LWE problem relating the public and private keys to which

his identity is linked.

Algorithms. In order to obtain the pair of keys to be used in the proof of know-

ledge, the sequence of steps is followed in the first algorithm:

1. Choose the parameters A
$←− Fn×m

q , s
$←− Fmq , e

χ←− Fnq .
2. b ← As+ e

3. Determine the Hamming weight p ← wt(e)

4. Set (A,b, p) is the public key

5. Set (s, e) is the private key

The mapping defined below is used in the interactive proof of knowledge as

an isometry

Definition 6 (Hamming isometry Πγ,Σ). Let Σ be a permutation of {1, . . . , n}
and γ = (γ1, . . . , γn) ∈ Fnq such that γi 6= 0, ∀i. We define the transformation

Πγ,Σ as the mapping Fnq → Fnq , taking v to γΣ(1)vΣ(1), . . . , γΣ(n)vΣ(n).
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The second algorithm, which corresponds to the actual proof of knowledge,

is shown below.

1. Obtain the key pair {(A,b, p), (s, e)} with the previous algorithm.

2. Prover:

2.1 u
$←− Fmq , γ

$←− Fmq with γi 6= 0, ∀i ∈ {1, . . . ,m}
2.2 Σ

$←− Sn

2.3 Compute the commitments as

2.4 c1 ← com(Πγ,Σ; r1)

2.5 c2 ← com(Πγ,Σ(A(u+ s)); r2)

2.6 c3 ← com(Πγ,Σ(Au+ b); r3)

2.7 Send the commitments to the Verifier

3. Verifier:

3.1 ch
$←− {1, 2, 3}.

3.2 Send the challenge ch to the Prover.

4. Prover:

4.1 Open the commitments to the Verifier

4.2 If ch = 1

4.3 send r1, r2,u+ s and Πγ,Σ

4.4 else if ch = 2

4.5 send r2, r3,Πγ,Σ(A(u+ s)) and Πγ,Σ(e)

4.6 else if ch = 3

4.7 send r1, r3,Πγ,Σ and u

5. Verifier:

5.1 Check the commitments

5.2 If ch = 1

5.3 check that c1 and c2 are correct.

5.4 else if ch = 2

5.5 check that c2 and c3 are correct;

5.6 check that wt(Πγ,Σ(e)) = p.

5.7 else if ch = 3

5.8 check that c1 and c3 are correct.
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Interactive Proof Properties. The algorithm shown above constitutes a zero-

knowledge interactive proof that the party called Prover knows the secret key

(s, e) that constitutes the solution to an LWE instance associated with the public

key (A,b, p). The instance is given by b ← As+e, where p is the Hamming weight

of e. The proofs for the zero-knowledge, completeness and soundness properties

are given in [23]. The scheme is shown to have perfect completeness. Two diffe-

rent algorithms for the interactive proof are available in that work, with soundness

errors of 2/3 and 1/2.

Cost. No parameters were given in the description of this identification scheme

in [23]. However, taking into account recent surveys on LWE, such as [14] and

[21], it is fair to assume that the communication costs will be considerably higher

than those seen in the SIS-based schemes listed in the previous sections, when

considering similar levels of security.

Security. This identification scheme has its security based on the existence of a

string commitment scheme and the intractability of the LWE problem. Therefore,

the existence of an adversary that breaks the identification scheme implies that

he is also able to break at least one of the security assumptions.

3.6. HB+ identification scheme. The HB shared-key identification protocol

was proposed by Hopper and Blum [9], with proven security against passive

attackers. Besides, this protocol has low computational costs that make it suitable

for low-cost devices like RFID tags. An improvement made by Juels and Weis

[10] named HB+ achieved security against active attackers, provided that the

protocol execution is sequential. They added a blinding factor in order to defend

the prover from dishonest verifiers, which could adaptively choose challenges in

order to extract the values of the shared keys. Katz, Shin and Smith [11]

extended HB+ security proofs to encompass concurrent execution as well. The

LPN hardness is the security assumption on which both protocols are based.

On its turn, LPN can be seen as a particular case of the hard lattice problem

LWE [20].

Algorithm.

HB+ Identification. In this improved version of HB identification protocol, the

prover and the verifier share two keys: s1 ∈ {0, 1}k and s2 ∈ {0, 1}τ , where k

determines the hardness of the underlying LPN problem and τ represents a sta-

tistical security parameter. Besides, the interactions are not required to be sequ-

ential. As proved in [11], security is preserved under concurrent executions of the

basic step.
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– Security parameters: k for LPN hardness, τ for statistical security.

– Shared-keys: s1 ∈ {0, 1}k and s2 ∈ {0, 1}τ
– Berε: 1 with probability ε; 0 with probability 1− ε

1. Prover: choose a blinding factor b
$←{0, 1}k and send it to the verifier.

2. Verifier: choose a random challenge a
$←{0, 1}τ and send it to the prover.

3. Prover: compute the answer z

3.1 ν
$←{0, 1} according to the Bernoulli distribution Berε

3.2 z ← 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν

4. Prover: send the answer z to the verifier

5. Verifier: accept, if z matches 〈s1,b〉 ⊕ 〈s2,a〉.
Proposal of an LWE-Extension for HB and HB+. Li, Gong and Qin [13] exp-

lored connections between LPN and error-correcting codes in their proposal of the

HB-CM identification protocol. Contrary to HB and HB+, it is resilient to the

man-in-the-middle attack devised by Ouafi, Overbeck and Vaudenay [18].

Conversely, in the algorithm below, we propose a straightforward extension

of the HB/HB+ protocols to use the hardness of the LWE problem as security

assumption, instead of LPN. Given that reductions from worst-case lattice prob-

lems to solving LWE were demonstrated both in quantum form by Regev [20]

and classical form by Peikert [19], and that an adversary that breaks the pro-

posed algorithm can be used as a way of solving LWE, this gives us confidence

that random instances of this protocol are hard to break.

For a fixed length of the shared keys, the communication costs of this algo-

rithm increase by a factor of log p when compared to those of HB+. On the other

hand, we have a security gain as consequence of the discussion in the paragraph

above, and also from the fact that the best algorithm know to solve LWE (BKW

[1]) has higher computational cost than that from the best one which solves LPN

(Fossorier et al. Algorithm [6]).

LWE-based HB+ Identification.

– Security parameters: k for LWE hardness, τ for statistical security.

– Shared-keys: s1 ∈ Zk
p and s2 ∈ Zτ

p .

– Tolerance: indicates the threshold below which errors are accepted.

– χ: error distribution.

1. Prover: choose a blinding factor b
$←Zk

p and send it to the verifier.

2. Verifier: choose a random challenge a
$←Zτ

p and send it to the prover.

3. Prover: compute the answer z
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3.1 ν
$←χ

3.2 z ← 〈s1,b〉+ 〈s2,a〉+ ν mod p

4. Prover: send the answer z to the verifier

5. Verifier: accept, if |z − 〈s1,b〉 − 〈s2,a〉 mod p| ≤ Tolerance.

4. Consolidation

In this section we summarize the strengths, weaknesses and characteristics

of the lattice-based identification schemes described in Section 3.

Scheme Lyubashevsky Kawachi CLRS [2] Xagawa HB+ [11]
[16] et al. [12] et al. [26]

Strength FS heuristic Parameters Soundness Parameters Comm. Cost

Weakness Parameters FS heuristic FS heuristic Security Security

ZK/WI WI ZK ZK ZK -

Completeness 1− 1/e None None None Depends
Error on ε

Soundness < 2−80 2/3 ≈ 1/2 2/3 1/2
Error

Comm. Õ(n) Õ(n) Õ(n) Õ(n) O(n)
Cost
per round

Security Active Concurrent Concurrent Active Concurrent

Table 7. ID Schemes Comparison

5. Conclusions

This article showed post-quantum identification schemes based on lattices.

Some constructions were zero-knowledge interactive proofs, with perfect comp-

leteness, but non-negligible soundness error. Therefore, in order to reach some

security level, a minimum number of rounds of execution is necessary. When

applying Fiat–Shamir heuristic to derive signature schemes, this implies in huge

signatures.
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