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Functional equations in the spectral
theory of random fields I.

By K. LAJKÓ (Debrecen)

1. Introduction

Let H denote a separable Hilbert space and let G denote the group of
motions in H, that is the family of one-to-one isometric transformations
of H into itself.

By a one-dimensional random field defined on H we mean

X = {X(t), t ∈ H},
(i.e., X is a family of real random variables).

A random field X is called homogeneous isotropic in H if, for any
t1 ∈ H, t2 ∈ H, g ∈ G,

M X(g(t1)) X(g(t2)) = M X(t1) X(t2).

A random field X on H is called Markov if, for any sphere S in H and any
two points t1, t2 separated by the sphere S, the random variables X(t1),
and X(t2) are conditionally independent given X(t) on S.

Professor M.I. Yadrenko (Kiew) proved the following

Theorem (see [3]). The correlation function of a Gaussian homoge-
neous isotropic random field X of the Markov type in H is given by

(1) B(r) = exp(−c r2), r ∈ R,

where c is a nonnegative constant, R is the set of real numbers.

The proof of this theorem based on the fact that, in this case, the
correlation function B satisfies the functional equation

(2) B(R
√

2)B(R2) = B(R)B(
√

R2 + R2
2) (R2 > R > 0),
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and the correlation function of any homogeneous isotropic random fields
on H is differentiable infinitely many times.

The purpose of this paper is to present the general solution of func-
tional equation (2). From the general solution it follows that, under certain
regularity conditions (e.g., B is differentiable, continuous or measurable),
B has the from (1).

2. The general solution of functional equation (2).

Let R+ = {x | x ∈ R, x > 0} and R0 = R\{0}.
Lemma 1. If the function B : R+ → R satisfies the functional equa-

tion (2), then the function

(3) f : R+ → R, f(x) = B(
√

x),

satisfies the functional equation

(4) f(x) f(y) = f
(x

2

)
f

(x

2
+ y

)
, (x, y) ∈ D = {(x, y) | y >

x

2
> 0}.

Proof. By the transformation

(5) R =
√

x

2
, R2 =

√
y; (x, y) ∈ D,

it follows from (2) that

B(
√

x) B(
√

y) = B

(√
x

2

)
B

(√
x

2
+ y

)
, (x, y) ∈ D,

which, together with (3), implies the functional equation (4) for the func-
tion f .

Lemma 2. If the function f : R+ ∈ R satisfies the functional equation
(4) and there exists a subset E ⊂ R+ of positive Lebesgue-measure, such
that f(x) 6= 0 for all x ∈ E, then f(x) 6= 0 for all x ∈ R+.

Proof. Suppose f(x) 6= 0 for x ∈ E, where E has positive measure.
Then there exists a compact subset E1 ⊂ E0 positive measure such that
E1 ⊂ [a, b] ⊂ R+ for some closed interval [a, b]. Further there exists
a natural number n such that 2na > b. It is obvious that one of the
intervals (a, 2a), . . . , (2n−2a, 2n−1a), (2n−1a, b) contains a subset E2 ⊂ E1

of positive measure with the property E2×E2 ⊂ D and then f(x) f(y) 6= 0
for (x, y) ∈ E2 × E2.

Thus, by equation (4), f(x
2 ) f(x

2 + y) 6= 0, whenever x, y ∈ E2. It
follows that

f(u) 6= 0 if u ∈ E2

2
+ E2.



Functional equations in the spectral . . . 397

Since E2
2 and E2 have positive Lebesgue measure, by a theorem of

Steinhaus (see [2]), the set E2
2 + E2 contains an interval [c, d] ⊂ R+ of

positive length and thus

f(u) 6= 0, u ∈ [c, d].

By the substitution y = x = t ∈ [c, d], we get from (4) that 0 6= f2(t) =
f( t

2 ) f( 3
2 t), which implies f( t

2 ) 6= 0, f( 3
2 t) 6= 0 for all t ∈ [c, d]. Thus

f(t) 6= 0 if t ∈ [ c
2 , 3

2d].
It follows by induction that f(x) 6= 0 for all x ∈ R+.

Lemma 3. If the function f satisfies the functional equation (4) and
f(x) 6= 0 for all x ∈ R+ then the function

(6) h : (−1,∞) → R, h(x) = ln
f(x + 1)

f(1)
,

satisfies the functional equation

(7) h(x + y) = h(x) + h(y) (x ∈ (0, 1), y > x− 1),

i.e., h is additive on the open connected domain {(x, y) | x ∈ (0, 1), y >
x− 1}

Proof. Let us replace x by x
2 in (4), then we get the equation

(8) f(2x) f(x) = f(x) f(x + y) (y > x > 0).

Since f(x) 6= 0, (8) shows that the function g : R+ → R defined by

g(x) =
f(2x)
f(x)

(x ∈ R+),

satisfies the Pexider type functional equation

(9) f(x + y) = g(x) f(y) (y > x > 0).

Putting y = 1 in (9), we obtain that

g(x) =
f(x + 1)

f(1)
, x ∈ (0, 1),

which, together with (9), implies

f(x + y) =
f(x + 1)

f(1)
f(y) (x ∈ (0, 1), y > x).

Replacing y + 1 by y and dividing this equation by f(1), we obtain

(10)
f(x + y + 1)

f(1)
=

f(x + 1)
f(1)

f(y + 1)
f(1)

(x ∈ (0, 1), y > x− 1).
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Substitute here x = y = t
2 , then we get

f(t + 1)
f(1)

=
f2( t

2 + 1)
f2(1)

> 0.

Thus (10) shows that the function h defined by (6) satisfies the functional
equation (7).

Lemma 4. If the function h : (−1,∞) → R satisfies the functional
equation (7), then there exists an additive function A : R→ R such that

(11) h(x) = A(x), x ∈ (−1,∞).

Proof. Using a theorem on the extension of additive functions due
to of Daróczy and Losonczi (see [1]), it follows that there exists an
additive function A : R→ R and constants C1, C2, C3 ∈ R such that

h(x) =





A(x) + C1, x ∈ Dx = (0, 1),
A(x) + C2, x ∈ Dy = (−1,∞),
A(x) + C3, x ∈ Dx+y = (−1,∞).

Since Dx ⊂ Dy = Dx+y and h satisfies (7), hence C1 = C2 = C3 = 0 and
h has the form (11).

Theorem. If the function B : R+ → R satisfies the functional equa-
tion (2) and there exists a set E ⊂ R+ of positive measure such that
B(R) 6= 0 if R ∈ E, then

(12) B(x) = α exp[A(x2)] (x ∈ R+),

where α ∈ R0 is an arbitrary constant, A : R→ R is an additive function
on R2.

Proof. The condition of theorem and Lemma 1 imply that the func-
tion f defined by (3) satisfies the functional equation (4) and f(x) 6= 0 for
x ∈ E1 = E2 = {x ∈ R+,

√
x ∈ E}, where E1 has positive Lebesgue-

measure, too. Then, by Lemma 2, it follows that f(x) 6= 0 for all x ∈ R+.
Thus the conditions of Lemma 3 and 4 are satisfied, too.
From (3), (6) and (11) we obtain the form

(13) B(x) = f(1) exp[A(x2 − 1)] (x ∈ R+),

for the function B, where f(1) 6= 0 is an arbitrary real constant. Finally,
we get from (13) the form (12) for B, where α = f(1) exp[−A(1)] ∈ R0 is
an arbitrary constant.
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3. The continuous and measurable solutions of (2)

Theorem 2. A function B : R+ → R is a continuous solution of
equation (2) if and only if

(14) B(x) = α exp(ax2) (x ∈ R+),

where α, a ∈ R are arbitrary constants.

Proof. If B is continuous and there exists an R0 ∈ R+, such that
B(R0) 6= 0, then because of (3) f(x0) 6= 0 for x0 = R2

0 and so there exists
an interval I = [x0 − δ, x0 + δ] ⊂ R+, such that f(x) 6= 0 for all x ∈ I and
I×I ⊂ D. Thus the last part of the proof of Lemma 2 gives that f(x) 6= 0
for all x ∈ R+.

Using again the continuity of B, we get that the functions f, h in
Lemma 3 and function A in Lemma 4 are continuous. But A is an additive
function on R2, thus A(x) = ax(x ∈ R) with some a ∈ R. Formula (14)
results from (12) for α ∈ R0.

B ≡ 0 is also a solution of (2).
This completes the proof of Theorem 2.

Theorem 3. If the measurable function B : R+ → R satisfies the
functional equation (2) and there exists a set E ⊂ R+ of positive measure
such that B(R) 6= 0 if R ∈ E, then B has the form (14), where α ∈ R0

and a ∈ R arbitrary constants.

Proof. The statements of Lemma 1,2,3 and 4 are true for measurable
functions B, f, h, A, thus A(x) = ax (x ∈ R) with some a ∈ R, and hence
(14) follows from (12).

Remark. The characteristic function of the rationals satisfies the func-
tional equation (4) in Lemma 1. Thus there is measurable solution of (2)
which is almost everywhere zero, but not identically zero. This shows that
there is a measurable solution of equation (2) which is not continuous.
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