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Abstract. We establish the first nontrivial deterministic discrepancy bounds for

sequences that are obtained by “mixing” either Halton sequences or Kronecker sequences

with sequences of matrix-method pseudorandom vectors.

1. Introduction

In recent years, a series of papers (see [9], [10], [11], [13]) has been written on

so-called hybrid sequences. These papers established the first nontrivial determi-

nistic discrepancy bounds for various types of hybrid sequences. Previously, only

probabilistic results on the discrepancy of hybrid sequences were known (see [3],

[14], [15]). We recall that a hybrid sequence is a sequence of points in a (usually

high-dimensional) unit cube that is obtained by “mixing” a low-discrepancy se-

quence and a sequence of pseudorandom numbers (or vectors), in the sense that

certain coordinates of the points stem from the low-discrepancy sequence and the

remaining coordinates stem from the sequence of pseudorandom numbers (or vec-

tors). Hybrid sequences go back to a proposal of Spanier [17] in the context of

multidimensional numerical integration by Monte Carlo and quasi-Monte Carlo
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methods (see [12] for a recent survey of these methods). In practice, the “pseu-

dorandom” constituent of a hybrid sequence should be of high dimension, and an

efficient way to achieve this is to consider methods that generate pseudorandom

vectors directly. The most popular method for this purpose is the matrix method

(see [8, Section 10.1]). In the present paper, we consider hybrid sequences that

are obtained by “mixing” either Halton sequences or Kronecker sequences with

sequences of matrix-method pseudorandom vectors.

We review some basic facts on the discrepancy. For an integer m ≥ 1, let

λm denote the m-dimensional Lebesgue measure. For arbitrary points y0,y1, . . . ,

yN−1 ∈ [0, 1)m, their discrepancy DN is defined by

DN = sup
J

∣∣∣∣
A(J ;N)

N
− λm(J)

∣∣∣∣ ,

where the supremum is extended over all half-open subintervals J of [0, 1)m and

the counting function A(J ;N) is given by

A(J ;N) = #{0 ≤ n ≤ N − 1 : yn ∈ J}. (1)

Note that we always have NDN ≥ 1 (see [4, p. 93]) and DN ≤ 1. Next we

recall the Erdős–Turán–Koksma inequality (see [2, Theorem 1.21]). For any h =

(h1, . . . , hm) ∈ Zm, we put

M(h) := max
1≤i≤m

|hi|, r(h) :=

m∏

i=1

max(|hi|, 1). (2)

We use · to denote the standard inner product in Rm and we write e(u) = e2πiu

for u ∈ R. We adopt the convention that the parameters on which the implied

constant in a Landau symbol O depends are written in the subscript of O. A

symbol O without a subscript indicates an absolute implied constant.

Lemma 1. The discrepancy DN of the points y0,y1, . . . ,yN−1 ∈ [0, 1)m

satisfies

DN = Om

( 1

H
+

1

N

∑

h∈Zm
0<M(h)≤H

1

r(h)

∣∣∣
N−1∑
n=0

e (h · yn)
∣∣∣
)

for any integer H ≥ 1, where M(h) and r(h) are as in (2).

In Section 2, respectively Section 3, we provide background and auxiliary

results on matrix-method pseudorandom vectors, respectively Halton sequen-

ces. Sections 4 and 5 contain discrepancy bounds for hybrid sequences obtained

by “mixing” Halton sequences, respectively Kronecker sequences, and matrix-

method pseudorandom vectors.
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2. Matrix-method pseudorandom vectors

The matrix method is a standard technique for the generation of uniform

pseudorandom vectors. We refer to [8, Section 10.1] for background on the matrix

method. Let t ≥ 1 be a given dimension and choose a (large) prime p. We identify

the finite prime field Fp = Z/pZ with the set {0, 1, . . . , p− 1} of integers. Choose

a nonsingular t × t matrix A over Fp, called the generating matrix. Now select

an initial row vector z0 ∈ Ftp with z0 6= 0 and generate further row vectors

z1, z2, . . . ∈ Ftp by the recursion

zn+1 = znA for n = 0, 1, . . . . (3)

The sequence z0, z1, . . . is called a matrix-method generator. Finally, we get

matrix-method pseudorandom vectors by the normalization

un =
1

p
zn ∈ [0, 1)t for n = 0, 1, . . . . (4)

It is trivial that the sequences z0, z1, . . . and u0,u1, . . . are purely periodic with

the same least period ≤ pt − 1. We get the maximum period pt − 1 if and only if

the characteristic polynomial g ∈ Fp[x] of the matrix A is primitive over Fp (see

[8, Theorem 10.2]). Recall that g is said to be primitive over Fp if each root of g

is a primitive element of the finite field Fq with q = pt elements, i.e., each root

of g generates the cyclic group F∗q . We need the following discrepancy bound.

Proposition 1. Let p ≥ 19 be a prime and let t ≥ 1 be an integer. Let

u0,u1, . . . be a sequence of t-dimensional matrix-method pseudorandom vectors

with maximum period pt − 1. Then the discrepancy DN of u0,u1, . . . ,uN−1 sa-

tisfies

DN = O
(
tp−1 +N−1pt/2(log p)t+1

)
for 1 ≤ N ≤ pt − 1

with an absolute implied constant.

Proof. For fixed h ∈ Ftp with h 6= 0, we consider the exponential sum

N−1∑
n=0

e(h · un) =

N−1∑
n=0

e

(
1

p
h · zn

)
.

Let yn ∈ Fp be given by yn ≡ h · zn (mod p) for n = 0, 1, . . . , then

N−1∑
n=0

e(h · un) =

N−1∑
n=0

e

(
1

p
yn

)
. (5)
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If g(x) = xt − at−1x
t−1 − . . . − a0 ∈ Fp[x] is the characteristic polynomial of A,

then g(A) = 0 by the Cayley–Hamilton theorem. Left multiplying by zn and

using (3), we obtain

zn+t = at−1zn+t−1 + · · ·+ a0zn for n = 0, 1, . . . .

Form the inner product with h, then in Fp we have

yn+t = at−1yn+t−1 + · · ·+ a0yn for n = 0, 1, . . . .

Hence y0, y1, . . . is a linear recurring sequence in Fp with characteristic polyno-

mial g.

We claim that y0, y1, . . . is not the zero sequence. Since h 6≡ 0 (mod p), there

exists a nonzero vector b ∈ Ftp with h · b 6≡ 0 (mod p). Furthermore, z0, z1, . . .

run through all nonzero vectors in Ftp (see [8, p. 207]), and so there exists an

integer k ≥ 0 with zk = b. Then

yk ≡ h · zk ≡ h · b 6≡ 0 (mod p),

and so y0, y1, . . . is not the zero sequence.

Let α be a fixed root of g in the finite field Fq with q = pt elements. Then

by [5, Theorem 6.24] there exists β ∈ Fq such that

yn = Tr(βαn) for n = 0, 1, . . . ,

where Tr is the trace function from Fq to Fp. We observe that β 6= 0 since

y0, y1, . . . is not the zero sequence. Using (5), we can write

N−1∑
n=0

e(h · un) =

N−1∑
n=0

e

(
1

p
Tr(βαn)

)
=

N−1∑
n=0

χ(βαn), (6)

where χ is the canonical additive character of Fq (see [5, p. 170]). Note that α

is an element of order q − 1 in the group F∗q since the polynomial g is primitive.

Hence (6) and [7, Lemma 3] show that for 1 ≤ N ≤ q − 1 we have
∣∣∣∣∣
N−1∑
n=0

e(h · un)

∣∣∣∣∣ < q1/2
(

4

π2
log q + 0.41 +

0.61

q − 1

)
+

N

q − 1
= O

(
q1/2 log q

)
. (7)

We remark that [7, Lemma 3] has the condition N < q − 1, but (7) is trivial for

N = q − 1 since then the character sum in (6) has the value −1. Now we apply

[8, Corollary 3.11] to obtain

DN = O

(
t

p
+

q1/2 log q

N

(
4

π2
log p+ 1.72

)t
)
.
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Since p ≥ 19 by assumption, we have

1.72 ≤
(
1− 4

π2
− c

)
log p

for some c > 0, and so we arrive at the desired result. ¤

3. Halton sequences

For an integer b ≥ 2, let Zb = {0, 1, . . . , b−1} denote the least residue system

modulo b. Let

n =

∞∑

j=1

aj(n)b
j−1

with all aj(n) ∈ Zb and aj(n) = 0 for all sufficiently large j be the digit expansion

of the integer n ≥ 0 in base b. The radical-inverse function φb in base b is

defined by

φb(n) =

∞∑

j=1

aj(n)b
−j .

For pairwise coprime integers b1, . . . , bs ≥ 2, the Halton sequence (in the bases

b1, . . . , bs) is given by

xn = (φb1(n), . . . , φbs(n)) ∈ [0, 1)s for n = 0, 1, . . . .

It is a classical low-discrepancy sequence (see [8, Section 3.1]).

Lemma 2. Let b ≥ 2 be an integer and let v and f be positive integers with

v ≤ bf . Then for any integer n ≥ 0, we have φb(n) ∈ [0, vb−f ) if and only if

n ∈ tm
k=1Qk, where 1 ≤ m ≤ bf , each Qk is a residue class in Z, and Q1, . . . , Qm

are disjoint. The moduli of the residue classes are powers bj with 1 ≤ j ≤ f . The

sets Q1, . . . , Qm depend only on b, v, and f .

Proof. We write

(v − 1)b−f =

f∑

j=1

djb
−j

with dj ∈ Zb for 1 ≤ j ≤ f . Then φb(n) ∈ [0, vb−f ) if and only if

f∑

j=1

aj(n)b
−j ≤

f∑

j=1

djb
−j .
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This condition holds if and only if one of the following f mutually exclusive con-

ditions is satisfied: (C1) a1(n) ≤ d1−1; (C2) a1(n) = d1 and a2(n) ≤ d2−1; (C3)

a1(n) = d1, a2(n) = d2, and a3(n) ≤ d3 − 1;. . . ; (Cf ) a1(n) = d1, . . . , af−1(n) =

df−1, and af (n) ≤ df . These conditions can be translated into the following

congruence conditions on n: (C′
1) n ≡ r1 (mod b) for some 0 ≤ r1 ≤ d1 − 1;

(C′
2) n ≡ d1 + r2b (mod b2) for some 0 ≤ r2 ≤ d2 − 1; (C′

3) n ≡ d1 + d2b + r3b
2

(mod b3) for some 0 ≤ r3 ≤ d3−1;. . . ; (C′
f ) n ≡ d1+d2b+ · · ·+df−1b

f−2+rf b
f−1

(mod bf ) for some 0 ≤ rf ≤ df . This yields disjoint residue classes Q1, . . . , Qm

in which n must lie. The number m of residue classes satisfies

m =

f−1∑

j=1

dj + df + 1 ≤ (b− 1)f + 1 ≤ bf,

whence the result. ¤

The following multidimensional version of Lemma 2 is obtained by combining

the Chinese remainder theorem with Lemma 2.

Lemma 3. Let b1, . . . , bs ≥ 2 be pairwise coprime integers and let v1, . . . , vs
and f1, . . . , fs be positive integers with vi ≤ bfii for 1 ≤ i ≤ s. Then for any

integer n ≥ 0, we have

(φb1(n), . . . , φbs(n)) ∈
s∏

i=1

[0, vib
−fi
i )

if and only if n ∈ tM
k=1Rk, where 1 ≤ M ≤ b1 · · · bsf1 · · · fs, each Rk is a residue

class in Z, and R1, . . . , RM are disjoint. The moduli of the residue classes are of

the form bj11 · · · bjss with 1 ≤ ji ≤ fi for 1 ≤ i ≤ s. The sets R1, . . . , RM depend

only on b1, . . . , bs, v1, . . . , vs, f1, . . . , fs.

4. Mixing Halton sequences and matrix-method

pseudorandom vectors

We consider hybrid sequences that are obtained by “mixing” Halton sequ-

ences and matrix-method pseudorandom vectors. We choose dimensions s ≥ 1

and t ≥ 1. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Furthermore, let

u0,u1, . . . be a sequence of t-dimensional matrix-method pseudorandom vectors

generated by (3) and (4). Then we define the hybrid sequence

xn = (φb1(n), . . . , φbs(n),un) ∈ [0, 1)s+t, n = 0, 1, . . . . (8)
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Under suitable conditions, we show the following discrepancy bound for this

hybrid sequence. We write Log u := max(1, log u) for u ∈ R, u > 0.

Theorem 1. Let p ≥ 19 be a prime and let s ≥ 1 and t ≥ 1 be given

dimensions. Let b1, . . . , bs ≥ 2 be pairwise coprime integers with gcd(bi, p
t−1) = 1

for 1 ≤ i ≤ s. Let u0,u1, . . . be a sequence of t-dimensional matrix-method

pseudorandom vectors of maximum period pt − 1. Then for 1 ≤ N ≤ pt − 1 the

discrepancy DN of the first N terms of the sequence (8) satisfies

DN = O

(
2st

p

)
+Ob1,...,bs

(
pt/2(log p)t+1

N

(
Log

N

pt/2(log p)t+1

)s)
, (9)

where the first implied constant is absolute and the second implied constant de-

pends only on b1, . . . , bs.

Proof. Fix N with 1 ≤ N ≤ pt − 1. We introduce the positive integers

fi :=

⌈
1

log bi
Log

N

pt/2(log p)t+1

⌉
for 1 ≤ i ≤ s. (10)

We first consider an interval J ⊆ [0, 1)s+t of the form

J =

s∏

i=1

[
0, vib

−fi
i

)×
t∏

j=1

[
w

(1)
j , w

(2)
j

)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 ≤ w
(1)
j < w

(2)
j ≤ 1 for

1 ≤ j ≤ t. We apply Lemma 3 to a point xn in (8). Then we have xn ∈ J if and

only if

n ∈
M⊔

k=1

Rk and un ∈
t∏

j=1

[
w

(1)
j , w

(2)
j

)
,

where M and R1, . . . , RM are as in Lemma 3. With A(J ;N) as in (1), but relative

to the points x0,x1, . . . ,xN−1, we obtain

A(J ;N) =

M∑

k=1

Tk, (11)

where

Tk := #

{
0 ≤ n ≤ N − 1 : n ≡ rk (mod mk) and un ∈

t∏

j=1

[
w

(1)
j , w

(2)
j

)}

with suitable moduli m1, . . . ,mM and 0 ≤ rk < mk for 1 ≤ k ≤ M .

We consider Tk for a fixed k with 1 ≤ k ≤ M . For an n counted by Tk,
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we have n = mkl + rk for some integer l, and the condition 0 ≤ n ≤ N − 1 is

equivalent to 0 ≤ l ≤ b(N − rk − 1)/mkc. Assume first that N ≥ rk + 1. Then

Tk = #

{
0 ≤ l ≤

⌊
N − rk − 1

mk

⌋
: umkl+rk ∈

t∏

j=1

[
w

(1)
j , w

(2)
j

)}

=

⌊
N − rk − 1 +mk

mk

⌋ t∏

j=1

(
w

(2)
j − w

(1)
j

)

+O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
,

where D
(k)
L denotes the discrepancy of the L points umkl+rk , l = 0, 1, . . . , L − 1.

Since

⌊
N − rk − 1 +mk

mk

⌋ t∏

j=1

(w
(2)
j − w

(1)
j ) =

N

mk

t∏

j=1

(w
(2)
j − w

(1)
j ) +O(1),

it follows that

Tk =
N

mk

t∏

j=1

(w
(2)
j −w

(1)
j )+O

(⌊
N − rk − 1 +mk

mk

⌋
D

(k)
b(N−rk−1+mk)/mkc

)
. (12)

To bound D
(k)
L , we note that by Section 2 we have umkl+rk = p−1zmkl+rk

and

zmkl+rk = z0A
mkl+rk = (z0A

rk) (Amk)
l

for l = 0, 1, . . . .

This is a matrix-method generator with initial vector z0A
rk 6= 0 (since A is

nonsingular) and generating matrix Amk . We can thus bound D
(k)
L by Proposit-

ion 1 if we can show that the characteristic polynomial of Amk is primitive over

Fp. Let

g(x) =

t∏

j=1

(
x− αpj−1

)
∈ Fp[x]

be the characteristic polynomial of A, with α a primitive element of Fpt by hy-

pothesis. The characteristic polynomial of Amk is given by

gmk
(x) =

t∏

j=1

(
x− αmkp

j−1
)
.
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Note that mk is of the form bj11 · · · bjss by Lemma 3, and so a hypothesis in the

theorem implies that gcd(mk, p
t − 1) = 1. It follows that αmk is a primitive

element of Fpt , and so the characteristic polynomial gmk
of Amk is indeed primitive

over Fp. Thus, Proposition 1 yields

LD
(k)
L = O

(
Ltp−1 + pt/2(log p)t+1

)
for 1 ≤ L ≤ pt − 1.

This bound is now used in (12) to obtain

Tk =
N

mk

t∏

j=1

(w
(2)
j − w

(1)
j ) +O

(
tN

pmk
+ pt/2(log p)t+1

)
. (13)

Note that if N ≤ rk, then Tk = 0 and N < mk, and so the bound (13) is trivial.

Thus, (13) holds in all cases.

By inserting (13) in (11) and recalling thatM ≤ b1 · · · bsf1 · · · fs by Lemma 3,

we get

A(J ;N) = N




t∏

j=1

(w
(2)
j − w

(1)
j )




M∑

k=1

1

mk
+O

(
tN

p

M∑

k=1

1

mk

)

+Ob1,...,bs

(
f1 · · · fspt/2(log p)t+1

)
.

Since the Halton sequence in the bases b1, . . . , bs is uniformly distributed in [0, 1]s

(see [8, Theorem 3.6]), we obtain in conjunction with Lemma 3 that

s∏

i=1

vib
−fi
i = lim

N→∞
1

N
#

{
0 ≤ n ≤ N − 1 : (φb1(n), . . . , φbs(n)) ∈

s∏

i=1

[0, vib
−fi
i )

}

= lim
N→∞

1

N
#

{
0 ≤ n ≤ N − 1 : n ∈

M⊔

k=1

Rk

}

=

M∑

k=1

lim
N→∞

1

N
#{0 ≤ n ≤ N − 1 : n ≡ rk (mod mk)} =

M∑

k=1

1

mk
.

Therefore

A(J ;N) = Nλs+t(J) +O
(
tNp−1

)
+Ob1,...,bs

(
f1 · · · fspt/2(log p)t+1

)
,

and so
∣∣∣∣
A(J ;N)

N
− λs+t(J)

∣∣∣∣ = O
(
tp−1

)
+Ob1,...,bs

(
f1 · · · fsN−1pt/2(log p)t+1

)
(14)
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with implied constants independent of J .

Next we consider an interval J ⊆ [0, 1)s+t of the form

J =

s∏

i=1

[0, wi)×
t∏

j=1

[
w

(1)
j , w

(2)
j

)
(15)

with 0 < wi ≤ 1 for 1 ≤ i ≤ s and 0 ≤ w
(1)
j < w

(2)
j ≤ 1 for 1 ≤ j ≤ t. By

approximating the wi from below and above by the nearest fractions of the form

vi/b
fi
i with vi ∈ Z, we deduce from (14) that

∣∣∣∣
A(J ;N)

N
− λs+t(J)

∣∣∣∣ ≤
s∑

i=1

b−fi
i +O(tp−1)+Ob1,...,bs

(
f1 · · · fsN−1pt/2(log p)t+1

)
.

Using the expression for the fi in (10), this yields
∣∣∣∣
A(J ;N)

N
− λs+t(J)

∣∣∣∣ = O

(
t

p

)
+Ob1,...,bs

(
pt/2(log p)t+1

N

(
Log

N

pt/2(log p)t+1

)s)

with implied constants still independent of J . The standard method of moving

from intervals of the form (15) to arbitrary half-open subintervals of [0, 1)s+t

(see [4, p. 93, Example 1.2]) produces an additional factor 2s in the discrepancy

bound. ¤
Remark 1. A term of the order of magnitude p−1, like the first term on the

right-hand side of (9), is needed in the bound on DN . Consider the interval

Jδ = [0, 1)s × [0, 1− p−1 + δ)t ⊆ [0, 1)s+t

with 0 < δ ≤ p−1. Then all points x0,x1, . . . ,xN−1 in (8) belong to Jδ, and so

DN ≥
∣∣∣∣
A(Jδ;N)

N
− λs+t(Jδ)

∣∣∣∣ = 1− (1− p−1 + δ)t.

Letting δ → 0+ we get DN ≥ 1 − (1 − p−1)t ≥ ctp
−1 with a constant ct > 0

depending only on t.

Remark 2. The special case t = 1 of Theorem 1, in which the matrix method

reduces to the classical linear congruential method for pseudorandom number

generation, was already treated in [9, Theorem 3]. The result there, for the case

where the multiplier is a primitive root modulo p, says that

DN = Ob1,...,bs

((
N−1p1/2(log p)2

)1/(s+1)
)

for 1 ≤ N ≤ p− 1.

It is clear that Theorem 1 provides a substantial improvement on the discrepancy

bound above. This improvement is due to the refined method in the present paper

based on Lemma 3. Further improved discrepancy bounds for hybrid sequences

that are based on Lemma 3 will be established in future work of the author.
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5. Mixing Kronecker sequences and matrix-method

pseudorandom vectors

A Kronecker sequence is a sequence ({nα}), n = 0, 1, . . . , of fractional parts,

where α ∈ Rs for an arbitrary dimension s ≥ 1. The discrepancy of this sequence

depends on the (simultaneous) diophantine approximation character of α. The

following definition is relevant here (see e.g. [6, Definition 6.1]). We write ‖u‖ =

min({u}, 1− {u}) for the distance from u ∈ R to the nearest integer.

Definition 1. Let τ be a real number. Then α ∈ Rs is of finite type τ if τ is

the infimum of all real numbers σ for which there exists a constant c = c(σ,α) > 0

such that

r(h)σ‖h ·α‖ ≥ c for all h ∈ Zs \ {0},
where r(h) is as in (2).

It is well known that we always have τ ≥ 1 and that there are interesting

examples of points α ∈ Rs with τ = 1 (see Remark 3 below). The following

auxiliary result was shown in [9, Lemma 3].

Lemma 4. Let α ∈ Rs be such that there exist real numbers σ ≥ 1 and

c > 0 with

r(h)σ‖h ·α‖ ≥ c for all h ∈ Zs \ {0}.
Then for any integers H ≥ 1 and N ≥ 1 we have

∑

h∈Zs
0<M(h)≤H

1

r(h)

∣∣∣∣∣
N−1∑
n=0

e(n(h ·α))

∣∣∣∣∣ = Oα,ε

(
H(σ−1)s+ε

)
for all ε > 0,

where M(h) and r(h) are as in (2).

We now choose a dimension t ≥ 1 and let u0,u1, . . . be a sequence of t-

dimensional matrix-method pseudorandom vectors generated by (3) and (4) of

maximum period pt − 1. Then for α ∈ Rs with s ≥ 1 arbitrary, we define the

hybrid sequence

xn = ({nα},un) ∈ [0, 1)s+t, n = 0, 1, . . . . (16)

For h1 ∈ Zs and h2 ∈ Zt, we introduce the exponential sum

EN (h1,h2) :=

N−1∑
n=0

e(n(h1 ·α) + h2 · un). (17)
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Lemma 5. Let p be a prime, let h1 ∈ Zs, and let h2 ∈ Zt with h2 6≡ 0

(mod p). Then for the exponential sum EN (h1,h2) in (17) we have

|EN (h1,h2)| = O
(
t1/2N1/2pt/4(log p)1/2

)
for 1 ≤ N ≤ pt − 1.

Proof. For 1 ≤ N ≤ pt − 1 we have

|EN (h1,h2)|2 =

N−1∑

k,n=0

e((k − n)(h1 ·α) + h2 · (uk − un))

≤ N + 2

∣∣∣∣∣∣∣

N−1∑

k,n=0
k>n

e((k − n)(h1 ·α) + h2 · (uk − un))

∣∣∣∣∣∣∣

= N + 2

∣∣∣∣∣
N−1∑

d=1

N−1−d∑
n=0

e(d(h1 ·α) + h2 · (un+d − un))

∣∣∣∣∣

≤ N + 2

N−1∑

d=1

∣∣∣∣∣
N−1−d∑
n=0

e(h2 · (un+d − un))

∣∣∣∣∣ .

For fixed d with 1 ≤ d ≤ N − 1 < pt − 1, we consider

N−1−d∑
n=0

e(h2 · (un+d − un)) =

N−1−d∑
n=0

e

(
1

p
h2 · (zn+d − zn)

)
.

In view of (3) we have zn+d−zn = zn(A
d−I), where I is the t× t identity matrix

over Fp. Thus,
h2 · (zn+d − zn) = [h2(A

d − I)T] · zn,
and so

N−1−d∑
n=0

e(h2 · (un+d − un)) =

N−1−d∑
n=0

e
(
[h2(A

d − I)T] · un

)
. (18)

The eigenvalues of A are the conjugates α, αp, . . . , αpt−1

over Fp of a primitive

element α ∈ Fq with q = pt. Then the eigenvalues of Ad are αd, αdp, . . . , αdpt−1

.

Since 1 ≤ d < pt − 1, it follows that 1 ∈ Fq is not an eigenvalue of Ad, and so

the matrix Ad − I is nonsingular. For h2 6≡ 0 (mod p) we can thus apply the

bound (7) to the exponential sum in (18) to obtain

∣∣∣∣∣
N−1−d∑
n=0

e(h2 · (un+d − un))

∣∣∣∣∣ = O
(
q1/2 log q

)
.
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Finally, we get

|EN (h1,h2)|2 ≤ N +O
(
tNpt/2 log p

)
= O

(
tNpt/2 log p

)
,

which yields the desired result. ¤

In the following discrepancy bound, we use the notion of finite type introdu-

ced in Definition 1.

Theorem 2. Let α ∈ Rs be of finite type τ and let u0,u1, . . . be a sequ-

ence of t-dimensional matrix-method pseudorandom vectors of maximum period

pt−1. Then for 1 ≤ N ≤ pt − 1 the discrepancy DN of the first N terms of the

sequence (16) satisfies

DN = Oα,t,ε

(
max

(
p−1, N−1/((τ−1)s+1)+ε, N−1/2pt/4(log p)1/2(logN)s+t

))

for all ε > 0, where the implied constant depends only on α, t, and ε.

Proof. Since the discrepancy bound is trivial if either N = 1 or p = 2, we

can assume that 2 ≤ N ≤ pt − 1 and p ≥ 3. We apply Lemma 1 with

H = min
(⌈

N1/((τ−1)s+1)
⌉
, p− 1

)
. (19)

Then 2 ≤ H ≤ N and

DN = Os,t

(
1

H
+

1

N

∑

h∈Zs+t

0<M(h)≤H

1

r(h)

∣∣∣∣
N−1∑
n=0

e(h · xn)

∣∣∣∣
)
. (20)

We write h = (h1,h2) with h1 ∈ Zs and h2 ∈ Zt. If h2 = 0, then the contribution

to the sum over h in (20) is

∑

h1∈Zs
0<M(h1)≤H

1

r(h1)

∣∣∣∣∣
N−1∑
n=0

e(n(h1 ·α))

∣∣∣∣∣ = Oα,ε

(
H(τ−1)s+ε

)
(21)

for any fixed ε > 0 by Lemma 4. For the remaining h we have h2 6= 0 and

M(h2) ≤ H < p, hence h2 6≡ 0 (mod p). Now by Lemma 5,

∣∣∣∣∣
N−1∑
n=0

e(h · xn)

∣∣∣∣∣ = |EN (h1,h2)| = Ot

(
N1/2pt/4(log p)1/2

)
,



602 Harald Niederreiter

and so

∑

h∈Zs+t,h2 6=0
0<M(h)≤H

1

r(h)

∣∣∣∣∣
N−1∑
n=0

e(h · xn)

∣∣∣∣∣ = Ot

(
N1/2pt/4(log p)1/2

∑

h∈Zs+t,h2 6=0
0<M(h)≤H

1

r(h)

)

= Os,t

(
N1/2pt/4(log p)1/2(logH)s+t

)
.

By combining this bound with (20) and (21) and using the expression for H

in (19), we complete the proof. ¤

Corollary 1. Consider the special case of Theorem 2 where α ∈ Rs is of

finite type τ = 1. Then for 2 ≤ N ≤ pt − 1 the discrepancy DN of the first N

terms of the sequence (16) satisfies

DN = Oα,t

(
max

(
p−1, N−1/2pt/4(log p)1/2(logN)s+t

))

with an implied constant depending only on α and t.

Remark 3. Well-known examples of points α ∈ Rs of finite type τ = 1 are

the following: (i) α = (α1, . . . , αs) with real algebraic numbers α1, . . . , αs such

that 1, α1, . . . , αs are linearly independent over Q (see [16]); (ii) α = (eq1 , . . . , eqs)

with distinct nonzero rational numbers q1, . . . , qs (see [1]).

Remark 4. It is obvious that Remark 1 applies also to Theorem 2, and so

the term of order of magnitude p−1 is needed in the bounds on DN in Theorem 2

and Corollary 1.
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[15] G. Ökten, B. Tuffin and V. Burago, A central limit theorem and improved error bo-
unds for a hybrid-Monte Carlo sequence with applications in computational finance, J.
Complexity 22 (2006), 435–458.

[16] W. M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta
Math. 125 (1970), 189–201.

[17] J. Spanier, Quasi-Monte Carlo methods for particle transport problems, Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, Vol. 106, Lecture Notes in Statistics,
(H. Niederreiter and P. J.-S. Shiue, eds.), Springer, New York, 1995, 121–148.

HARALD NIEDERREITER

JOHANN RADON INSTITUTE FOR COMPUTATIONAL

AND APPLIED MATHEMATICS

AUSTRIAN ACADEMY OF SCIENCES

ALTENBERGERSTR. 69, A-4040 LINZ

AUSTRIA

AND

DEPARTMENT OF MATHEMATICS AND STATISTICS

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

P.O. BOX 5046, DHAHRAN 31261

SAUDI ARABIA

E-mail: ghnied@gmail.com

(Received January 10, 2011)


