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Resolution of a nontrivial diophantine equation without
reduction methods
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birthdays and Professors Attila Pethő and János Pintz on their 60th birthdays

Abstract. In this note a non-separable Runge-type diophantine equation related

to the equal values of certain combinatorial numbers is solved. The novelty of our

approach is avoiding the use of reduction methods, although as a first step we have a

huge bound (≈ 1050000) for the solutions.

1. Introduction

One of the most important methods of the modern Diophantine Analysis

is Baker’s theory, see [4]. Using this approach several upper bounds were pro-

ved for the solutions of certain large classes of diophantine equations including

unit equations, Thue-equations, superelliptic equations and some multi-variables

equations, see e.g. [9], [13]. However, these estimates are too large for the re-

solution of these problems thus we have to apply so-called reduction algorithms
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like Baker–Davenport Lemma [3] or LLL-algorithm [12] for reducing the original

bounds.

In this note we solve a diophantine conjecture by Brindza, Pintér and

Turjányi [7] without using the above mentioned reduction methods. Before

stating our theorem we introduce the concepts of polygonal and pyramidal num-

bers. Let

Polmx =
x

2
((m− 2)x+ 4−m)

and

Pyrny =
y(y + 1)

6
((n− 2)y + 5− n)

be the polygonal and pyramidal numbers with integral parameters x > m ≥ 3 and

y > n ≥ 3, respectively. In [7], the authors proved that apart from an effectively

computable set of m and n, the equation

Polmx = Pyrny (1)

possesses only finitely many solutions and max(x, y) < C, where C is an effectively

computable constant depending only on m and n. They conjectured that the

cardinality of this exceptional set is one, namely it consists of the pair (m,n) =

(4, 5). Their proof is based on Runge-method and Baker’s theory. The geometric

interpretation of these combinatorial numbers is well-known and several special

cases of (1) are solved, see [13]. For small values of the parameters m and n one

can solve the corresponding elliptic equations by MAGMA [5].

We obtain the following

Theorem. Apart from the pair (m,n) = (4, 5) all the solutions x and y to (1)

satisfy max(x, y) < C where C is an effectively computable constant depending

only on m and n.

One can transform (1) into an elliptic equation and using Baker’s classical

result concerning the solutions of elliptic equations (see Lemma 2) it is enough to

guarantee that the discriminant of the corresponding cubic polynomial is nonzero

except for the unique pair (m,n) = (4, 5). We remark that in [11] our theorem is

also stated without proof.
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2. Auxiliary results

First we give a special case of a Runge-type result due to Grytczuk and

Schinzel [10] (cf. [14]). Let

F (x, y) =

k∑

i=0

l∑

j=0

ai,jx
iyj

be a polynomial with rational integer coefficients of degree k > 0 in x and l > 0

in y which is irreducible in Q[x, y].

Lemma 1. Let x and y be solutions of the equation

F (x, y) = 0

and suppose that ak,j 6= 0 for some nonzero j. Then we have

|x| ≤
(
(k + 1)(l + 1)(kl + 1)2/lh

)2l(kl+1)3

and

|y| ≤
(
(k + 1)(l + 1)(kl + 1)2/lh

)2(kl+1)3

,

where h = maxi,j |ai,j |.
Proof. See [10].

Our second lemma is a result by Baker [2]. For generalizations we refer the

reader to [1], [6] and [8].

Lemma 2. Let f(x) be a cubic polynomial with rational integer coefficients

and nonzero discriminant. The equation f(x) = y2 implies max(|x|, |y|) < C1,

where C1 is an effectively computable constant depending only on the coefficients

of f .

Proof. See [2].

3. Proof of the Theorem

From (1) we get

fm,n = z3+6(m−2)z2−4(n−5)(n−2)(m−2)2z+6(n−2)2(m−2)2(m−4)2 = 6t2,
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where

z = 2(n− 2)(m− 2)y

and

t = (n− 2)(m− 2) (2(m− 2)x− (m− 4)) .

This equation has only finitely many solutions in z and t if and only if the discri-

minant disc(fm,n) is nonzero, i.e. fm,n has only simple zero. We obtain that

disc(fm,n) = −4(m− 2)4(n− 2)2
[
243m4(n2 − 4n+ 4)− 648m3(5n2 − 17n+ 12)

− 16m2(4n4 − 68n3 − 624n2 + 1807n+ 253)

+ 64m(4n4 − 68n3 − 219n2 + 430n+ 1225)

− 64(4n4 − 68n3 − 219n2 + 430n+ 1225)
]
. (2)

One can check by the program package MAPLE that the polynomial in square

brackets, denoted by F (m,n) is irreducible in Q[m,n]. By the linear transforma-

tions m 7→ m + 4 and n 7→ n + 4 we can reduce the height of the polynomial F

from 78400 to 1344 and finally Lemma 1 yields that all the solutions m and n of

the equation F (m,n) = 0 satisfy

m ≤ 1.05 · 10202084 (3)

and

n ≤ 1.013 · 1050521. (4)

Of course, it is hopeless to check all the pairs (m,n) in the intervals above.

Our argument is based on the fact that the solutions of a Pellian equation grow

exponentially. If fm,n has a multiple zero α, say, then we have to distinguish two

cases. If α is a triple zero of fm,n then

(z−α)3 = z3+6(m−2)z2−4(n−5)(n−2)(m−2)2z+6(n−2)2(m−2)2(m−4)2,

and

α = 2(2−m) and n2 − 7n+ 13 = 0,

which is impossible for integer n. In the remaining case fm,n(z) = (z−α)2(z−β),

where α and β are rational integers and

3α2 + 12(m− 2)α− 4(n− 5)(n− 2)(m− 2)2 = 0. (5)

Since α is a rational integer, we have that

3(n− 5)(n− 2) + 9 = A2,
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where A is a rational integer. From this equation we get

(2A1)
2 − 3B2 = 1,

where A = 3A1 and 2n− 7 = 3B. By a straightforward application of the theory

of Pellian equation we obtain

A1 =
(2 +

√
3)k + (2−√

3)k

4
, k odd,

and

B =
(2 +

√
3)k − (2−√

3 )k

2
√
3

.

From estimate (4) we have k ≤ 88382 and k is odd.

One can solve the quadratic equation (5) for α and this yields

α1,2 =
2

3
(m− 2)(−2±A).

Substituting α1 and α2 into fm,n(z) and dividing by (m−2)2 we have a quadratic

equation for m with discriminant

16(A− 3)(−3n+12+A)(3n− 9+A)(A2 +3nA− 3A+45n− 108)(−3n+3+A)

and

16(A+ 3)(3n− 12 +A)(−3n+ 9 +A)(A2 − 3nA+ 3A+ 45n− 108(3n− 3 +A),

respectively. Since m is a rational integer, A and n depend on k, for all possible

values of k we check whether these numbers are squares or not. We implemented

a short and simple MAPLE program to verify this property using the built-up

function issqr. The CPU time is under 4 hours in a PC with quad-core processor.

The computation shows that the first discriminant is square when n = 5 and the

second one is square when n = 26. In the second case the corresponding quadratic

polynomial is reducible over Q, however, its zeros are not integers, while in the

first case m = 4.
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