On computing non-Galois cubic global function fields of prescribed discriminant in characteristic >3

By MICHAEL E. POHST (Berlin)

Dedicated to Professors Kálmán Győry and Attila Pethő

Abstract

We describe how to compute non Galois global cubic function fields of given discriminant. Our method involves ideas from class field theory which help to transfer the task to computations in quadratic extensions. This also leads to an easy method for calculating the number of such fields. Thus we can avoid more complicated computations in case no such fields exist.

1. Introduction

Let \mathbb{F}_{q} be a finite field with $q=p^{\ell}$ elements, p a prime bigger than 3 We denote by F the rational function field $\mathbb{F}_{q}(t)$ and by o_{F} its maximal order $\mathbb{F}_{q}[t]$. For given non-zero $\Delta \in o_{F}$ we want to determine all cubic extensions E of F of discriminant Δ. We note that the extension E / F is Galois - and in that case cyclic - precisely if Δ is a square in o_{F}. Since this case is straightforward it is treated separately in a different context [3]. Here, we restrict ourselves to non-Galois extensions E / F.

We denote the maximal order of E by o_{E} and by $\omega_{1}, \omega_{2}, \omega_{3}$ an integral basis of E. Because of $p>3$ the extension E / F is separable and the trace bilinear form on E non-degenerate. Then the discriminant of E / F is defined as the determinant Δ of the matrix with entries $\operatorname{Tr}\left(\omega_{i} \omega_{j}\right)$ modulo the square of a unit of o_{F}, i.e. as
$\Delta\left(\mathbb{F}_{q}^{\times}\right)^{2}$. In our case Δ is not a square and we can split it in the form

$$
\begin{equation*}
\Delta=d f^{2} \tag{1}
\end{equation*}
$$

with a square-free element d representing the discriminant of a quadratic exten$\operatorname{sion} \Omega=F(\sqrt{d})$ of F. We note that d, f must be coprime. This will be a consequence of the results of the next section. Let Γ denote the splitting field of E / F. It is a Galois sixth degree extension of F. The corresponding Galois group is isomorphic to the symmetric group \mathcal{S}_{3}. The following diagram illustrates this situation.

Following the precedent of HASSE [4] in the number field case we shall analyze the relations between the arithmetic invariants of the fields E, Ω, Γ by means of class field theory. We note that the function field case is somewhat simpler since our premises guarantee that there is no wild ramification.

2. Prime ideal decomposition and discriminants

According to our assumptions the field Γ is Galois over F, hence it is also Galois over Ω, i.e. Γ is a cyclic extension of Ω. The conductor of that relative extension is an ideal \mathbf{f} in Ω and we shall see in this section that $\mathbf{f}=f o_{\Omega}$.

Given a prime element $\pi \in o_{F}$ we deduce its decomposition into prime ideals in E, Ω, Γ from the corresponding Hilbert series. We only need to study the decomposition group G_{D} and the inertia group G_{0}. Since we do not have wild ramification the higher ramification groups G_{i} are trivial for $i \geq 1$. As non-trivial subgroups of the Galois group \mathcal{S}_{3} we have the alternating group \mathcal{A}_{3} and three
subgroups of order 2 , say $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}$. We assume that $\mathcal{T}=\mathcal{T}_{1}$ fixes the field E. There are two cases according to (i) $G_{0}=\mathcal{E}:=\{i d\}$ and (ii) $G_{0} \supset G_{1}=\mathcal{E}$. We use the notation

- \mathbf{p} for prime ideals of Ω containing π with ramification index $e(\mathbf{p})$ and degree of inertia $f(\mathbf{p})$;
- \mathbf{P} for prime ideals of E containing π with ramification index $e(\mathbf{P})$ and degree of inertia $f(\mathbf{P})$;
- $\overline{\mathbf{P}}$ for prime ideals of Γ containing π with (absolute) ramification index $e(\overline{\mathbf{P}})$ and degree of inertia $f(\overline{\mathbf{P}})$. We note that πo_{Γ} decomposes into $g_{\Gamma}=\left(\mathcal{S}_{3}: G_{D}\right)$ prime ideals $\overline{\mathbf{P}}$, each of degree of inertia $f(\overline{\mathbf{P}})=\left(G_{D}: G_{0}\right)$ and of ramification index $e(\overline{\mathbf{P}})=\left(G_{0}: \mathcal{E}\right)$.
We list the possible decompositions in a table followed by all necessary explanations.

Hilbert series	decomposition of π in			contribution of π to		
$G G_{D} G_{0} G_{1}$	Γ	Ω	E	f	$N(\mathbf{f})$	$d \quad \Delta$
$\begin{array}{llll}\mathcal{S} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{S} & \mathcal{A} & \mathcal{E} & \mathcal{E} \\ \mathcal{S} & \mathcal{T} & \mathcal{E} & \mathcal{E}\end{array}$	$\begin{gathered} \overline{\mathbf{P}}_{1} \ldots \overline{\mathbf{P}}_{6} \\ \overline{\mathbf{P}}_{1} \overline{\mathbf{P}}_{2} \\ \overline{\mathbf{P}}_{1} \overline{\mathbf{P}}_{2} \overline{\mathbf{P}}_{3} \end{gathered}$	$\begin{gathered} \mathbf{p}_{1} \mathbf{p}_{2} \\ \mathbf{p}_{1} \mathbf{p}_{2} \\ \mathbf{p} \end{gathered}$	$\begin{gathered} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3} \\ \mathbf{P} \\ \mathbf{P}_{1} \mathbf{P}_{2} \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		-
$\begin{array}{llll}\mathcal{S} & \mathcal{A} & \mathcal{A} & \mathcal{E} \\ \mathcal{S} & \mathcal{S} & \mathcal{A} & \mathcal{E} \\ \mathcal{S} & \mathcal{T} & \mathcal{T} & \mathcal{E}\end{array}$	$\left(\overline{\mathbf{P}}_{1} \overline{\mathbf{P}}_{2}\right)^{3}$ $\overline{\mathbf{P}}^{3}$ $\left(\overline{\mathbf{P}}_{1} \overline{\mathbf{P}}_{2} \overline{\mathbf{P}}_{3}\right)^{2}$	$\mathbf{p}_{1} \mathbf{p}_{2}$ \mathbf{p} \mathbf{p}^{2}	\mathbf{P}^{3} \mathbf{P}^{3} $\mathbf{P}_{1} \mathbf{P}_{2}^{2}$	$\mathbf{p}_{1} \mathbf{p}_{2}$ \mathbf{p} 1	π^{2} π^{2} 1	$\begin{array}{ll}1 & \pi^{2} \\ 1 & \pi^{2} \\ \pi & \pi\end{array}$

The entries in the first 3 lines concern non discriminant divisors (case (i)) those in the last 3 lines regular discriminant divisors (case (ii)). The first column contains the pertinent Hilbert series. There are the following possibilities:

1. $G_{D}=\mathcal{E}$ is tantamount with $g_{\Gamma}=6$ and corresponds to line 1 .
2. $G_{D}=\mathcal{S}_{3}$ is tantamount with $g_{\Gamma}=1$. Since G_{0} is a normal subgroup of G_{D} with cyclic factor group and G_{0} / G_{1} is also cyclic we must have $G_{0}=\mathcal{A}_{3}$. This yields $f(\overline{\mathbf{P}})=\left(G_{D}: G_{0}\right)=2$ and consequently $e(\overline{\mathbf{P}})=3$ (see line 5).
3. $G_{D}=\mathcal{A}_{3}$ is tantamount with $g_{\Gamma}=2$. We get \mathcal{E} and \mathcal{A}_{3} as candidates for G_{0}. In the first subcase we have $e(\overline{\mathbf{P}})=1$, hence $f(\overline{\mathbf{P}})=3$, corresponding to line 2. In the second case we have $e(\overline{\mathbf{P}})=3$, hence $f(\overline{\mathbf{P}})=1$, corresponding to line 4.
4. $G_{D}=\mathcal{T}$ is tantamount with $g_{\Gamma}=3$. Candidates for G_{0} are \mathcal{E} and \mathcal{T}. In the first subcase we have $e(\overline{\mathbf{P}})=1$, hence $f(\overline{\mathbf{P}})=2$, corresponding to line 3. In the second subcase we have $e(\overline{\mathbf{P}})=2$ and $f(\overline{\mathbf{P}})=1$ (see line 6).
Next we discuss the ideal decompositions of π in E. Those in Ω are an immediate consequence.

Case (i) (lines 1 to 3)
The prime π is non-ramified and decomposes into g_{Γ} prime ideals in $\Gamma . g_{\Gamma}=1$ cannot occur since $f(\overline{\mathbf{P}})=6$ yields G_{D} / G_{0} cyclic of degree 6 . We must therefore have $g_{\Gamma} \in\{6,2,3\}$ (corresponding to lines one to three of the table). $g_{\Gamma}=6$ necessarily yields $g_{E}=3$ with $f\left(\mathbf{P}_{i}\right)=1$ for each prime ideal \mathbf{P}_{i} of E dividing π $(1 \leq i \leq 3)$. Also, we conclude that for $g_{\Gamma}=2$ we must have $g_{E}=1, f(\mathbf{P})=3$. (Namely, for $g_{E}=2$ one of the prime ideals $\mathbf{P}_{1}, \mathbf{P}_{2}$ of E dividing π would have $f\left(\mathbf{P}_{i}\right)=2$ contradicting $f\left(\overline{\mathbf{P}}_{i}\right)=3$.) Eventually, for $g_{\Gamma}=3$ we could in principal have $g_{E} \in\{1,2,3\} . g_{E}=1$ cannot occur since $f(\mathbf{P})=3$ is in contradiction with $f\left(\overline{\mathbf{P}}_{i}\right)=2$. $g_{E}=2$ yields $\pi o_{E}=\mathbf{P}_{1} \mathbf{P}_{2}$ with degrees $f\left(\mathbf{P}_{i}\right)=i(i=1,2)$. The exclusion of $g_{E}=3$ is more difficult. (We remark that the reasoning of Hasse in this case is not accurate.) A generating element σ of $\mathcal{T}=\langle\sigma\rangle$ must permute two of the prime ideals $\overline{\mathbf{P}}_{i}$ lying above π, say $\sigma\left(\overline{\mathbf{P}}_{2}\right)=\overline{\mathbf{P}}_{3}$ and vice versa. Since σ leaves E invariant the intersections $\overline{\mathbf{P}}_{j} \cap E$ necessarily coincide for $j=2,3$.

Case (ii) (lines 4 to 6)
The prime π is ramified in Γ and decomposes into $g_{\Gamma} \in\{1,2,3\}$ prime ideals. For $g_{\Gamma}=2$, hence $e\left(\overline{\mathbf{P}}_{i}\right)=3$, we get $g_{E}=1$ and $e(\mathbf{P})=3$. (In case $g_{E}=2$ one ramification index would be 2 contradicting $e\left(\overline{\mathbf{P}}_{i}\right)=3$.) In case $g_{\Gamma}=1$ we cannot have $e(\overline{\mathbf{P}})=6$; namely, this would imply $\left(G_{0}: G_{1}\right)=6$, hence a cyclic Galois group for Γ / F. Therefore we must have $e(\overline{\mathbf{P}})=e(\mathbf{P})=3$. It remains the possibility $g_{\Gamma}=3$ with $e\left(\overline{\mathbf{P}}_{i}\right)=2$. Then we obtain $g_{E}=2$ prime ideals above π in E, one with ramification index 1 the other one with 2 . ($g_{E}=1$ is clearly impossible. For $g_{E}=3$ we had no ramification of π in E, but necessarily in Ω. Since the discriminant of Ω divides the discriminant of E this case is also impossible.)

Next we consider the contributions of primes π to the various occuring discriminants. From class field theory we recall that Γ is the class field for an ideal group H of index 3 in the ray class group of Ω of conductor \mathbf{f}. The discriminant Δ
of E is the product of the discriminant d of Ω and f^{2} (see (1)). The discriminant \bar{D} of Γ satisfies

$$
\begin{equation*}
\bar{D}=d^{3} N(\mathbf{f})^{2} \tag{2}
\end{equation*}
$$

since \mathbf{f}^{2} is the relative discriminant of Γ / Ω. The contribution of a ramified prime π to \bar{D} is

$$
\nu_{\pi}(\bar{D})=g_{\Gamma} f(\overline{\mathbf{P}})(e(\overline{\mathbf{P}})-1) \in\{4,4,3\}
$$

corresponding to lines $4,5,6$. Analogously, the contribution of π to \mathbf{f} is found. We remark that \mathbf{f} is the product of those prime ideals of Ω which are contained in ramified prime ideals of Γ. Finally, from (2) we get the contribution of π to Δ.

3. Characterisation by invariants, arithmetic properties

According to Hasse we call the discriminant d of Ω and the ideal group H of index 3 in the ray class group $C l_{f}$ of conductor \mathbf{f} the invariants of the cubic field E.

The following two lemmata are easily transfered from Hasse's paper [4] to the function field case. For this we denote the non-trivial automorphism of Ω (which maps \sqrt{d} onto $-\sqrt{d}$) by τ.

Lemma 3.1. For $d, H, \mathbf{f}, \Omega, \tau$ as above the following statements are equivalent:

1. d, H are the invariants of a cubic field E.
2. $\tau(H)=H$ and for $H \neq \tilde{H} \in C l_{f} / H$ we have $\tau(\tilde{H})=\tilde{H}^{-1}$.
3. H contains all elements of F which are coprime to \mathbf{f}.

Lemma 3.2. The discriminants Δ, d and the conductor \mathbf{f} satisfy

$$
\Delta=d N_{\Omega / F}(\mathbf{f})=d f^{2} \quad \text { and } \mathbf{f}=f o_{\Omega} .
$$

In the number field case the prime numbers dividing f must additionally satisfy certain congruence conditions (see [4]). Most of them are meaningless for the function fields under consideration. However, for prime elements π of o_{F} dividing the conductor f the multiplicative group $G_{\pi}=\left(o_{\Omega} / \pi o_{\Omega}\right)^{\times}$contains the subgroup $U_{\pi}:=\left\langle r(t)+\pi o_{\Omega} \mid 0 \neq r(t) \in \mathbb{F}_{q}[t], \operatorname{deg}(r)<\operatorname{deg}(\pi)\right\rangle$. Let H be the invariant subgroup of index 3 in the ray class group $C l_{f}$ of Ω. Then we obtain an injective homomorphism

$$
\varphi: C l_{f} / H=\langle A H\rangle \rightarrow G_{\pi} / U_{\pi}:\left\{\begin{array}{rlr}
H & \mapsto & U \\
A H & \mapsto & \sqrt{d} U \\
(A H)^{-1} & \mapsto & -\sqrt{d} U
\end{array}\right\} .
$$

It shows that the order of G_{π} / U_{π} is divisible by 3 . If π is decomposed in Ω the order of G_{π} equals $\left(q^{\operatorname{deg}(\pi)}-1\right)^{2}$ that of U_{π} equals $q^{\operatorname{deg}(\pi)}-1$. If π is inert, however, we get $\left(G_{\pi}: 1\right)=q^{2 \operatorname{deg}(\pi)}-1$ and $\left(G_{\pi}: U_{\pi}\right)=q^{\operatorname{deg}(\pi)}+1$. The next lemma is immediate.

Lemma 3.3. For $q \equiv 1 \bmod 3$ the conductor f is a product of distinct primes of o_{F} all of which are decomposed in Ω.
For $q \equiv 2 \bmod 3$ a prime π of o_{F} can divide f if and only if in Ω either π is decomposed with $\operatorname{deg}(\pi)$ even or π is inert with $\operatorname{deg}(\pi)$ odd.

4. Number of cubic fields

As already observed by Hasse [4] it is much easier to determine the number $N(\Delta)$ of cubic fields E with prescribed discriminant $\Delta=d f^{2}$, where d is the discriminant of a quadratic field Ω and f the conductor of the cubic extension Γ / Ω (see Section 1). We recall that d is square-free and f a product of distinct primes of F not dividing d and satisfying the conditions of the last lemma. The invariants of E are d and a subgroup H of the ray class group $C l_{f}$ of Ω of conductor f. Let I_{f} denote the group of all fractional ideals of Ω which are coprime to f. Since H is of index 3 in $C l_{f}$ the third power of every ideal a $\in I_{f}$ belongs to H. We must determine the number of candidates for H, i.e. of those subgroups of index 3 in $C l_{f}$ which have the exact conductor f.

Remark 4.1. There are two special cases with $N(\Delta)=0$:
(i) $f \neq 1$ contains a prime divisor π which does not meet the conditions of the previous lemma.
(ii) f equals 1 and the class number of Ω is not divisible by 3 .

In general, we know that H is a union of residue classes of $C l_{f} / J_{f}$ for

$$
\begin{equation*}
J_{f}:=\left\{\mathbf{b} \in I_{f} \mid \mathbf{b}=\mathbf{a}^{3} r \gamma, \mathbf{a} \in I_{f}, r \in F \text { coprime to } f, \gamma \equiv 1 \bmod f o_{\Omega}\right\} . \tag{3}
\end{equation*}
$$

(See also the definition of Z_{f} below.) In order to obtain a suitable basis of $C l_{f} / J_{f}$ we start to discuss potential generators of principal ideals.

The elements of Ω which are coprime to f form a multiplicative group, say G_{f}. It contains the subgroup

$$
\begin{equation*}
Z_{f}:=\left\{\alpha^{3} r \gamma \mid \alpha, \gamma \in G_{f}, r \in F \text { coprime to } f, \gamma \equiv 1 \bmod f o_{\Omega}\right\} \tag{4}
\end{equation*}
$$

(We remark that the occuring congruences are multiplicative.) Following Hasse we determine a basis of the factor group G_{f} / Z_{f}. Let $f=\pi_{1} \ldots \pi_{w}$. For each prime element π dividing f we fix a prime ideal \mathbf{p} containing π. We compute $\delta \in o_{\Omega}$ subject to $\left(o_{\Omega} / \mathbf{p}\right)^{\times}=\langle\delta \mathbf{p}\rangle$ By the Chinese Remainder Theorem we calculate an element $\rho \in o_{\Omega}$ satisfying

$$
\begin{equation*}
\rho \equiv \delta \bmod \mathbf{p} \quad \text { and } \quad \rho \equiv 1 \bmod f o_{\Omega} / \mathbf{p} \tag{5}
\end{equation*}
$$

We obtain elements $\rho_{1}, \ldots, \rho_{w}$ which form the desired basis \mathcal{B}, i.e. for given $\beta \in G_{f}$ there exist unique exponents $y_{i} \in\{0,1,2\}$ such that

$$
\begin{equation*}
\tilde{\beta}:=\prod_{i=1}^{w} \rho_{i}^{y_{i}} \tag{6}
\end{equation*}
$$

satisfies $\beta \tilde{\beta}^{-1} \in Z_{f}$. It is important that the pertinent exponents are easy to compute.

For this we consider the canonical epimorphism

$$
\varphi_{f}: G_{f} \rightarrow\left(o_{\Omega} / f o_{\Omega}\right)^{\times}=: o_{f}^{\times} .
$$

The following lemma is immediate.
Lemma 4.1. For $\beta \in G_{f}$ there exist modulo 3 unique exponents y_{1}, \ldots, y_{w} such that

$$
x:=\varphi_{f}\left(\beta^{-1} \prod_{j=1}^{w} \rho_{j}^{y_{j}}\right) \in \varphi_{f}\left(Z_{f}\right)
$$

We therefore need to test for a potential exponent tuple $\left(y_{1}, \ldots, y_{w}\right)$ whether $x \in o_{F}^{\times}$is of the form $\alpha^{3} r$ for some $r \in o_{F}$. This can be done for each prime π dividing f separately using the Chinese Remainder Theorem. Further speed-ups can be obtained from the observation that $r \alpha^{3}$ equals $(-r)(-\alpha)^{3}$ thus reducing the number of candidates for r.

Now we are in a situation in which we can easily establish a suitable basis for $C l_{f} / J_{f}$ (compare (3)). We represent the class group $C l$ in canonical form as a product of cyclic subgroups. For this let I denote the group of fractional ideals of Ω and I_{p} the subgroup of principal ideals. Then we write $C l=I / I_{p}=\prod_{i=1}^{s} U_{i}$ with cyclic subgroups $U_{i}=\left\langle\mathbf{b}_{i} I_{p}\right\rangle$ of order $\# U_{i}=n_{i}$ with $n_{1}\left|n_{2}\right| \cdots \mid n_{s}$. We assume that exactly the last e subgroups U_{i} have orders n_{i} which are divisible by 3 . Then we choose ideals $\mathbf{a}_{1}, \ldots, \mathbf{a}_{e} \in I_{f}$ satisfying

$$
\begin{equation*}
\left\langle\mathbf{a}_{i} I_{p}\right\rangle=\left\langle\mathbf{b}_{s-e+i} I_{p}\right\rangle \quad(1 \leq i \leq e) \tag{7}
\end{equation*}
$$

Each ideal $\mathbf{b} \in I_{f}$ can now be written as

$$
\begin{equation*}
\mathbf{b} \equiv \prod_{i=1}^{e} \mathbf{a}_{i}^{x_{i}} \prod_{j=1}^{w} \rho_{j}^{y_{j}} \bmod J_{f} \tag{8}
\end{equation*}
$$

with modulo 3 uniquely determined exponents x_{i}, y_{j}. The exponents y_{j}, however, must satisfy additional conditions. Those may come from two sources. For each ideal \mathbf{a}_{k} there exists an exponent m_{k} such that $\mathbf{a}_{k}^{m_{k}}$ is a principal ideal, say $\alpha_{k} o_{\Omega}$. We therefore obtain e additional conditions via (compare (6))

$$
\begin{equation*}
\alpha_{k} \equiv \prod_{i=1}^{w} \rho_{i}^{y_{k i}} \bmod Z_{f} \quad(1 \leq k \leq e) \tag{9}
\end{equation*}
$$

Also, additional conditions can come from units in $o_{\Omega} \backslash o_{F}$. We note that there is at most one additional generator for the full unit group U of Ω, e.g. a fundamental unit ε of Ω. In that case we obtain

$$
\begin{equation*}
\varepsilon \equiv \prod_{i=1}^{w} \rho_{i}^{y_{e+1, i}} \bmod Z_{f} \tag{10}
\end{equation*}
$$

In both cases we end up with $\tilde{e} \geq 0$ side conditions $(\tilde{e} \in\{e, e+1\})$.
As generators for $C l_{f} / J_{f}$ we choose the ideals $\mathbf{a}_{1}, \ldots, \mathbf{a}_{e}$ and the elements $\rho_{1}, \ldots, \rho_{w}$. They are not independent in case $\tilde{e}>0$. Every subgroup H we are looking for is defined by a congruence for a linear form

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{y}):=\sum_{i=1}^{e} x_{i} X_{i}+\sum_{j=1}^{w} y_{j} Y_{j} \equiv 0 \bmod 3 \tag{11}
\end{equation*}
$$

i.e. H consists of all ideals coprime to f whose presentations (8) satisfy that congruence. In order that H has conductor f the coefficients Y_{j} must not vanish. Clearly, the set of different subgroups H is in 1-1-correspondence to modulo 3 non-proportional linear forms in (11) which satisfy the side conditions (13) (see below). We can therefore choose the coefficients according to

$$
\begin{equation*}
Y_{1}=1, Y_{j} \in\{1,2\}(j=2, \ldots, w), \quad X_{j} \in\{0,1,2\}(j=1, \ldots, e) \tag{12}
\end{equation*}
$$

subject to

$$
\begin{equation*}
L\left(\mathbf{0}, y_{k 1}, \ldots, y_{k w}\right) \equiv 0 \bmod 3 \quad(1 \leq k \leq \tilde{e}) \tag{13}
\end{equation*}
$$

In practise, we generate all linear forms L of (11), (12) whose coefficients satisfy (13). Their number equals $N(\Delta)$.

Remark 4.2. There are two easy cases:
(i) For $f=1$ there are no additional conditions (13) and we get $N(\Delta)=\left(3^{e}-1\right) / 2$.
(ii) For $\tilde{e}=0$ there are no additional conditions and we obtain $N(\Delta)=2^{w-1}$.

We transfer these ideas into an algorithm for computing $N(\Delta)$.
Algorithm 4.1 (Number of non-isomorphic cubic fields of discriminant Δ). Input A function field $F=\mathbb{F}_{q}(t)$ and a non-square discriminant $\Delta=d f^{2} \in o_{F}$, d quare-free.
Output The number $N:=N(\Delta)$ of non-isomorphic cubic extensions E of F of discriminant Δ.
Step 1 For $\operatorname{gcd}(d, f) \neq 1$ or $d=1$ return $N=0$.
Else calculate all prime divisors $\pi \in\left\{\pi_{1}, \ldots, \pi_{w}\right\}$ of f in F. Then compute the quadratic extension $\Omega=F(\sqrt{d})$. If one prime divisor π of f does not satisfy the conditions of Lemma 3.3 return $N=0$.
Step 2 In Ω compute the class number h, the class group $C l$, and ideals $\mathbf{a}_{1}, \ldots, \mathbf{a}_{e}$ which are coprime to f and satisfy (7). Also, calculate the unit group U of Ω.
Step 3 (Easy cases) For $f=1$ return $N=\left(3^{e}-1\right) / 2$.
For $f>1, e=0, U=\mathbb{F}_{q}$ return $N=2^{w-1}$.
Step $4(f>1) \quad$ Compute the elements $\rho_{i} \in o_{\Omega}$ according to (5) for $i=1, \ldots, w$. Compute \tilde{e} and the exponents $y_{k j}$ of conditions (9) and (10) $(1 \leq k \leq \tilde{e}, 1 \leq j \leq w)$. Step 5 Set $N=0$. For each potential linear form $L(\mathbf{x}, \mathbf{y})$ of (11), (12) check whether conditions (13) are violated. Each time they are satisfied increase N by 1 . Output N.

Remark 4.3. The performance of the last algorithm can be speeded up by several observations. Usually, the computation of the class number of Ω will be faster than that of the class group. The latter will not be needed if the class number is not divisible by 3. The unit group is listed in Step 2 for a better presentation of the algorithm. Actually, it is only needed later.

5. Examples

In the last section we illustrate our methods by two examples.
5.1. Example 1. We want to determine all cubic extensions of $F=\mathbb{F}_{7}(t)$ of discriminant $\Delta=t^{2}(1-t)$. We immediately get $d=1-t, f=t$, and $\Omega=$ $F(\sqrt{1-t})$. We calculate $o_{\Omega}=o_{F}+\sqrt{1-t} o_{F}$. The class number of Ω is 1 . The
prime element f of o_{F} decomposes: $t=(1+\sqrt{1-t})(1-\sqrt{1-t})=: \alpha \tau(\alpha)$. Since the unit group of o_{Ω} coincides with \mathbb{F}_{7}^{\times}we have $N(\Delta)=1$ according to Remark 4.2. From the theory we know that Γ is a cyclic cubic Kummer extension of Ω of relative discriminant f^{2}. By the Dedekind criterion (see [3]) we conclude that

$$
\Gamma=\Omega\left(\sqrt[3]{\alpha^{2} \tau(\alpha)}\right)=\Omega(\sqrt[3]{f \alpha})
$$

Let $\rho \in \Gamma$ with $\rho^{3}=f \alpha$. The element $\lambda:=\rho+\tau(\rho)$ is invariant under τ and must therefore generate E. The minimal polynomial $m_{\lambda}(T)$ of λ is easily calculated from the conjugates of λ. If ζ denotes a third root of unity in \mathbb{F}_{7} those conjugates are: $\rho+\tau(\rho), \zeta \rho+\zeta^{2} \tau(\rho), \zeta^{2} \rho+\zeta \tau(\rho)$. We obtain

$$
m_{\lambda}(T)=T^{3}-3 \rho \tau(\rho) T+f(\alpha+\tau(\alpha))=T^{3}-3 f T+2 f
$$

of discriminant $-108 t^{2}(1-t)$. (We note that -3 is a square in \mathbb{F}_{7}.)
5.2. Example 2. We want to determine all cubic extensions of $F=\mathbb{F}_{11}(t)$ of discriminant $\Delta=6 t^{4}+4 t$. We immediately get $d=\Delta, f=1$, and $\Omega=F(\sqrt{\Delta})$. We calculate $o_{\Omega}=o_{F}+\sqrt{\Delta} o_{F}$. The class number of Ω is 12 , the class group is cyclic. According to Remark 4.2 there exists exactly one cubic extension E.

The class field theoretical computations yield the following polynomial a root of which generates E :

$$
\begin{aligned}
y^{3} & +\left(8 t^{11}+9 t^{8}+5 t^{5}+7 t^{2}\right) y^{2} \\
& +\left(3 t^{22}+6 t^{16}+2 t^{13}+6 t^{10}+3 t^{7}+4 t^{4}\right) y \\
& +10 t^{33}+3 t^{30}+2 t^{27}+7 t^{24}+7 t^{21}+9 t^{18}+5 t^{15}+5 t^{12}+8 t^{9}
\end{aligned}
$$

Fot these calculations we used KANT [2] and Magma [1] in an interactive way.

References

[1] W. Bosma and J. Cannon, Discovering mathematics with Magma. Reducing the abstract to the concrete, Algorithms and Computation in Mathematics, Vol. 19, Berlin, Springer, 2006.
[2] M. Daberkow, C.Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283, http://www.math.tu-berlin.de/~kant/.
[3] C. Fieker, I. GaÁL and M. Pohst, On computing integral points of a Mordell curve over rational function fields in characteristic >3 (to appear).
[4] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582.
[5] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London - New York, 1969.
[6] M.Pohst and H.Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, Vol. 30, Cambridge University Press, 1989.

MICHAEL E. POHST
TECHNISCHE UNIVERSTÄT BERLIN
INSTITUT FÜR MATHEMATIK
STRASSE DES 17. JUNI 136
10623 BERLIN
GERMANY
E-mail: pohst@math.tu-berlin.de
(Received February 8, 2011; revised April 8, 2011)

