On harmonic numbers and Lucas sequences

By ZHI-WEI SUN (Nanjing)

Abstract

Harmonic numbers $H_{k}=\sum_{0<j \leqslant k} 1 / j(k=0,1,2, \ldots)$ arise naturally in many fields of mathematics. In this paper we initiate the study of congruences involving both harmonic numbers and Lucas sequences. One of our three theorems is as follows: Let $u_{0}=0, u_{1}=1$, and $u_{n+1}=u_{n}-4 u_{n-1}$ for $n=1,2,3, \ldots$ Then, for any prime $p>5$ we have $$
\sum_{k=0}^{p-1} \frac{H_{k}}{2^{k}} u_{k+\delta} \equiv 0 \quad(\bmod p)
$$

where $\delta=0$ if $p \equiv 1,2,4,8(\bmod 15)$, and $\delta=1$ otherwise.

1. Introduction

Harmonic numbers are those rational numbers given by

$$
H_{n}=\sum_{0<k \leqslant n} \frac{1}{k} \quad(n \in \mathbb{N}=\{0,1,2, \ldots\}) .
$$

They play important roles in mathematics; see, e.g., $[\mathrm{BPQ}]$ and $[\mathrm{BB}]$.
In 1862 J . Wolstenholme [W] (see also [HT]) discovered that for any prime $p>3$ we have

$$
H_{p-1}=\sum_{k=1}^{p-1} \frac{1}{k} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

In a previous paper $[\mathrm{Su}]$ the author developed the arithmetic theory of harmonic numbers by proving the following fundamental congruences for primes $p>3$:

$$
\sum_{k=1}^{p-1} H_{k}^{2} \equiv 2 p-2 \quad\left(\bmod p^{2}\right), \quad \sum_{k=1}^{p-1} H_{k}^{3} \equiv 6 \quad(\bmod p)
$$

and

$$
\sum_{k=1}^{p-1} \frac{H_{k}^{2}}{k^{2}} \equiv 0 \quad(\bmod p) \quad \text { provided } p>5
$$

In this paper we initiate the investigation of congruences involving both harmonic numbers and Lucas sequences.

For $A, B \in \mathbb{Z}$ the Lucas sequences $u_{n}=u_{n}(A, B)(n \in \mathbb{N})$ and $v_{n}=v_{n}(A, B)$ $(n \in \mathbb{N})$ are defined as follows:

$$
\begin{aligned}
& u_{0}=0, u_{1}=1, \quad \text { and } \quad u_{n+1}=A u_{n}-B u_{n-1} \quad(n=1,2,3, \ldots) \\
& v_{0}=2, v_{1}=A, \quad \text { and } \quad v_{n+1}=A v_{n}-B v_{n-1}(n=1,2,3, \ldots)
\end{aligned}
$$

The sequence $\left\{v_{n}\right\}_{n \geqslant 0}$ is called the companion sequence of $\left\{u_{n}\right\}_{n \geqslant 0}$. The characteristic equation $x^{2}-A x+B=0$ of the sequences $\left\{u_{n}\right\}_{n \geqslant 0}$ and $\left\{v_{n}\right\}_{n \geqslant 0}$ has two roots

$$
\alpha=\frac{A+\sqrt{\Delta}}{2} \quad \text { and } \quad \beta=\frac{A-\sqrt{\Delta}}{2}
$$

where $\Delta=A^{2}-4 B$. It is well known that for any $n \in \mathbb{N}$ we have

$$
A u_{n}+v_{n}=2 u_{n+1},(\alpha-\beta) u_{n}=\alpha^{n}-\beta^{n}, \quad \text { and } \quad v_{n}=\alpha^{n}+\beta^{n}
$$

(See, e.g., [R, pp. 41-44].) Note that those $F_{n}=u_{n}(1,-1)$ and $L_{n}=v_{n}(1,-1)$ are well-known Fibonacci numbers and Lucas numbers respectively.

Here is our first theorem.
Theorem 1.1. Let $p>3$ be a prime and let $A, B \in \mathbb{Z}$ with $p \nmid A$. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{v_{k}(A, B) H_{k}}{k A^{k}} \equiv 0 \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{u_{k}(A, B) H_{k}}{k A^{k}} \equiv \frac{2}{p} \sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}} \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

Since $v_{k}(2,1)=2$ for all $k \in \mathbb{N}$, Theorem 1.1 yields the following consequence.
Corolary 1.1 ([Su]). For any prime $p>3$ we have

$$
\sum_{k=1}^{p-1} \frac{H_{k}}{k 2^{k}} \equiv 0 \quad(\bmod p)
$$

Remark. In 1987 S. W. Coffman [C] proved that $\sum_{k=1}^{\infty} H_{k} /\left(k 2^{k}\right)=\pi^{2} / 12$.
Applying Theorem 1.1 with $A=1$ and $B=-1$ we get the following corollary.
Corolary 1.2. Let $p>3$ be a prime. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k} L_{k}}{k} \equiv 0 \quad(\bmod p) \quad \text { and } \sum_{k=1}^{p-1} \frac{F_{k} H_{k}}{k} \equiv \frac{2}{p} \sum_{k=1}^{p-1} \frac{F_{k}}{k} \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

Let ω denote the cubic root $(-1+\sqrt{-3}) / 2$. For $n \in \mathbb{N}$ we have

$$
u_{n}(-1,1)=u_{n}(\omega+\bar{\omega}, \omega \bar{\omega})=\frac{\omega^{n}-\bar{\omega}^{n}}{\sqrt{-3}}=\left(\frac{n}{3}\right)
$$

and

$$
u_{n}(1,1)=(-1)^{n-1} u_{n}(-1,1)=(-1)^{n-1}\left(\frac{n}{3}\right)
$$

where (-) denotes the Jacobi symbol. By induction, for any $k \in \mathbb{N}$ we have

$$
u_{4 k}(2,2)=0, u_{4 k+1}(2,2)=(-4)^{k} \quad \text { and } \quad u_{4 k+2}(2,2)=u_{4 k+3}(2,2)=2(-4)^{k}
$$

Now we state our second theorem.
Theorem 1.2. Let $p>3$ be a prime.
(i) Let $A, B \in \mathbb{Z}$ with $p \nmid B$ and $\left(\frac{A^{2}-4 B}{p}\right)=1$. Then, for any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1+B^{-k}\right) u_{k}(A, B) H_{k}^{n} \equiv 0 \quad(\bmod p) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1-B^{-k}\right) v_{k}(A, B) H_{k}^{n} \equiv 0 \quad(\bmod p) \tag{1.5}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) H_{k} \equiv 0 \quad(\bmod p) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(\frac{k}{3}\right) H_{k} \equiv \frac{\left(\frac{p}{3}\right)-1}{4} q_{p}(3) \quad(\bmod p) \tag{1.7}
\end{equation*}
$$

where $q_{p}(3)$ refers to the Fermat quotient $\left(3^{p-1}-1\right) / p$. Also,

$$
\begin{equation*}
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k H_{k} \equiv \frac{1-\left(\frac{p}{3}\right)}{2} \quad(\bmod p) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1+2^{-k}\right) u_{k}(2,2) H_{k} \equiv 0 \quad(\bmod p) \tag{1.9}
\end{equation*}
$$

Since $F_{2 k}=u_{k}(3,1), F_{k}=u_{k}(1,-1)$ and $L_{k}=v_{k}(1,-1)$ for all $k \in \mathbb{N}$, Theorem 1.2(i) implies the following result.

Corolary 1.3. Let p be a prime with $p \equiv \pm 1(\bmod 5)$. Then

$$
\begin{equation*}
\sum_{k=0}^{p-1} F_{2 k} H_{k}^{n} \equiv \sum_{\substack{k=0 \\ 2 \mid k}}^{p-1} F_{k} H_{k}^{n} \equiv \sum_{\substack{k=0 \\ 2 \nmid k}}^{p-1} L_{k} H_{k}^{n} \equiv 0 \quad(\bmod p) \tag{1.10}
\end{equation*}
$$

for every $n=0,1,2, \ldots$.
Our third theorem seems curious and unexpected.
Theorem 1.3. Let $p>5$ be a prime. If $\left(\frac{p}{15}\right)=1$, i.e., $p \equiv 1,2,4,8$ $(\bmod 15)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{u_{k}(1,4)}{2^{k}} H_{k} \equiv 0 \quad(\bmod p) \tag{1.11}
\end{equation*}
$$

If $\left(\frac{p}{15}\right)=-1$, i.e., $p \equiv 7,11,13,14(\bmod 15)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{u_{k+1}(1,4)}{2^{k}} H_{k} \equiv 0 \quad(\bmod p) \tag{1.12}
\end{equation*}
$$

In the next section we are going to prove Theorems 1.1 and 1.2. Section 3 is devoted to the proof of Theorem 1.3.

To conclude this section we pose three related conjectures.
Recall that harmonic numbers of the second order are given by

$$
H_{n}^{(2)}=\sum_{0<k \leqslant n} \frac{1}{k^{2}} \quad(n=0,1,2, \ldots)
$$

Conjecture 1.1. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1}(-2)^{k}\binom{2 k}{k} H_{k}^{(2)} \equiv \frac{2}{3} q_{p}(2)^{2} \quad(\bmod p)
$$

where $q_{p}(2)=\left(2^{p-1}-1\right) / p$. If $p>5$, then we have

$$
\sum_{k=0}^{p-1}(-1)^{k}\binom{2 k}{k} H_{k}^{(2)} \equiv \frac{5}{2}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}^{2}}{p^{2}}(\bmod p)
$$

Conjecture 1.2. Let p be an odd prime. Then

$$
\begin{aligned}
& \sum_{k=0}^{p-1} \frac{u_{k}(2,-1)}{(-8)^{k}}\binom{2 k}{k}^{2} \equiv 0 \quad(\bmod p) \quad \text { if } p \equiv 5 \quad(\bmod 8), \\
& \sum_{k=0}^{p-1} \frac{u_{k}(2,-1)}{32^{k}}\binom{2 k}{k}^{2} \equiv 0 \quad(\bmod p) \quad \text { if } p \equiv 7 \quad(\bmod 8), \\
& \sum_{k=0}^{p-1} \frac{v_{k}(2,-1)}{(-8)^{k}}\binom{2 k}{k}^{2} \equiv 0 \quad(\bmod p) \quad \text { if } p \equiv 5,7 \quad(\bmod 8), \\
& \sum_{k=0}^{p-1} \frac{v_{k}(2,-1)}{32^{k}}\binom{2 k}{k}^{2} \equiv 0 \quad(\bmod p) \quad \text { if } p \equiv 5 \quad(\bmod 8) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{u_{k}(4,1)}{4^{k}}\binom{2 k}{k}^{2} & \equiv 0 \quad(\bmod p) \\
& \text { if } p \equiv 2 \quad(\bmod 3) \\
\sum_{k=0}^{p-1} \frac{u_{k}(4,1)}{64^{k}}\binom{2 k}{k}^{2} \equiv 0 \quad(\bmod p) & \text { if } p \equiv 11 \quad(\bmod 12) \\
\sum_{k=0}^{p-1} \frac{v_{k}(4,1)}{4^{k}}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{p-1} \frac{v_{k}(4,1)}{64^{k}}\binom{2 k}{k}^{2} \equiv 0 & (\bmod p) \\
& \text { if } p \equiv 5 \quad(\bmod 12)
\end{aligned}
$$

Conjecture 1.3. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k}\left((-1)^{k}-(-3)^{-k}\right) \equiv\left(\frac{p}{3}\right)\left(3^{p-1}-1\right) \quad\left(\bmod p^{3}\right)
$$

If $p \equiv \pm 1(\bmod 12)$, then

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k}(-1)^{k} u_{k}(4,1) \equiv(-1)^{(p-1) / 2} u_{p-1}(4,1) \quad\left(\bmod p^{3}\right)
$$

If $p \equiv \pm 1(\bmod 8)$, then

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k} \frac{u_{k}(4,2)}{(-2)^{k}} \equiv(-1)^{(p-1) / 2} u_{p-1}(4,2) \quad\left(\bmod p^{3}\right)
$$

2. Proofs of Theorems 1.1 and 1.2

Let p be an odd prime. For $k=0,1, \ldots, p-1$ we obviously have

$$
\begin{equation*}
(-1)^{k}\binom{p-1}{k}=\prod_{0<j \leqslant k}\left(1-\frac{p}{j}\right) \equiv 1-p H_{k} \quad\left(\bmod p^{2}\right) \tag{2.1}
\end{equation*}
$$

This basic fact is useful in the study of congruences involving harmonic numbers.
Lemma 2.1. Let $n \geqslant j>0$ be integers. Then

$$
\sum_{k=j}^{n}\binom{k-1}{j-1}=\binom{n}{j}
$$

Proof. This is a known identity due to Shih-chieh Chu (cf. (5.26) of [GKP, p. 169]). By comparing the coefficients of x^{j-1} on both sides of the identity

$$
\sum_{k=1}^{n}(1+x)^{k-1}=\frac{(1+x)^{n}-1}{(1+x)-1}
$$

we get a simple proof of the desired identity.

Proof of Theorem 1.1. Let α and β be the two roots of the equation $x^{2}-A x+B=0$. In view of Lemma 2.1,

$$
\begin{aligned}
\sum_{j=1}^{p-1} & \frac{v_{j}(A, B)}{j A^{j}}(-1)^{j}\binom{p-1}{j}=\sum_{j=1}^{p-1} \frac{v_{j}(A, B)}{j A^{j}}(-1)^{j} \sum_{k=j}^{p-1}\binom{k-1}{j-1} \\
& =\sum_{k=1}^{p-1} \sum_{j=1}^{k}\binom{k-1}{j-1} \frac{(-1)^{j} v_{j}(A, B)}{j A^{j}}=\sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^{k}\binom{k}{j}\left(\left(-\frac{\alpha}{A}\right)^{j}+\left(-\frac{\beta}{A}\right)^{j}\right) \\
& =\sum_{k=1}^{p-1} \frac{(1-\alpha / A)^{k}+(1-\beta / A)^{k}-2}{k}=\sum_{k=1}^{p-1} \frac{\beta^{k}+\alpha^{k}}{k A^{k}}-2 \sum_{k=1}^{p-1} \frac{1}{k} \\
& \equiv \sum_{k=1}^{p-1} \frac{v_{k}(A, B)}{k A^{k}}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Since

$$
(-1)^{k}\binom{p-1}{k}-1 \equiv-p H_{k} \quad\left(\bmod p^{2}\right) \quad \text { for } k=1, \ldots, p-1
$$

(1.1) follows from the above.

Similarly,

$$
\begin{aligned}
(\alpha-\beta) & \left.\sum_{j=1}^{p-1} \frac{u_{j}(A, B)}{j A^{j}}(-1)^{j} \begin{array}{c}
p-1 \\
j
\end{array}\right)=\sum_{j=1}^{p-1} \frac{(\alpha-\beta) u_{j}(A, B)}{j A^{j}}(-1)^{j} \sum_{k=j}^{p-1}\binom{k-1}{j-1} \\
& =\sum_{k=1}^{p-1} \sum_{j=1}^{k}\binom{k-1}{j-1} \frac{(-1)^{j}(\alpha-\beta) u_{j}(A, B)}{j A^{j}} \\
& =\sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^{k}\binom{k}{j}\left(\left(-\frac{\alpha}{A}\right)^{j}-\left(-\frac{\beta}{A}\right)^{j}\right) \\
& =\sum_{k=1}^{p-1} \frac{(1-\alpha / A)^{k}-(1-\beta / A)^{k}}{k}=\sum_{k=1}^{p-1} \frac{\beta^{k}-\alpha^{k}}{k A^{k}} \\
& =(\beta-\alpha) \sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}} .
\end{aligned}
$$

Thus, if $\Delta=A^{2}-4 B \neq 0$ then

$$
\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}}\left(1-p H_{k}\right) \equiv-\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}} \quad\left(\bmod p^{2}\right)
$$

and hence (1.2) follows.
Now suppose that $\Delta=0$. By induction, $u_{k}=k(A / 2)^{k-1}$ for $k=0,1,2, \ldots$. Thus

$$
\begin{aligned}
\sum_{j=1}^{p-1} \frac{u_{j}(A, B)}{j A^{j}}(-1)^{j}\binom{p-1}{j} & =\sum_{j=1}^{p-1} \frac{(-1)^{j}}{2^{j-1} A}\binom{p-1}{j}=\frac{2}{A} \sum_{j=1}^{p-1}\binom{p-1}{j}\left(-\frac{1}{2}\right)^{j} \\
& =\frac{2}{A}\left(\left(1-\frac{1}{2}\right)^{p-1}-1\right)=\frac{2}{A} \cdot \frac{1-2^{p-1}}{2^{p-1}} \\
& =-\frac{2}{A} \sum_{j=0}^{p-2} \frac{2^{j}}{2^{p-1}}=-\frac{2}{A} \sum_{k=1}^{p-1} \frac{1}{2^{k}}=-\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}}
\end{aligned}
$$

This yields (1.2) with the help of (2.1).
So far we have completed the proof of Theorem 1.1.
Lemma 2.2. Let $A, B \in \mathbb{Z}$ and $\Delta=A^{2}-4 B$. Suppose that p is an odd prime with $p \nmid B \Delta$. Then we have the congruence

$$
\begin{equation*}
\left(\frac{A \pm \sqrt{\Delta}}{2}\right)^{p-\left(\frac{\Delta}{p}\right)} \equiv B^{\left(1-\left(\frac{\Delta}{p}\right)\right) / 2} \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

in the ring of algebraic integers.
Proof. Both $\alpha=(A+\sqrt{\Delta}) / 2$ and $\beta=(A-\sqrt{\Delta}) / 2$ are roots of the equation $x^{2}-A x+B=0$. Observe that

$$
2 \alpha^{p} \equiv 2^{p} \alpha^{p}=(A+\sqrt{\Delta})^{p} \equiv A^{p}+(\sqrt{\Delta})^{p} \equiv A+\left(\frac{\Delta}{p}\right) \sqrt{\Delta} \quad(\bmod p)
$$

Similarly,

$$
2 \beta^{p} \equiv A-\left(\frac{\Delta}{p}\right) \sqrt{\Delta} \quad(\bmod p)
$$

Thus, if $\left(\frac{\Delta}{p}\right)=1$, then

$$
\alpha^{p-1} B=\alpha^{p} \beta \equiv \alpha \beta=B \quad(\bmod p) \quad \text { and } \quad \beta^{p-1} B=\alpha \beta^{p} \equiv \alpha \beta=B \quad(\bmod p),
$$ hence $\alpha^{p-1} \equiv 1 \equiv \beta^{p-1}(\bmod p)$. When $\left(\frac{\Delta}{p}\right)=-1$, by the above we have

$$
\alpha^{p+1}=\alpha \alpha^{p} \equiv \alpha \beta=B \quad(\bmod p) \quad \text { and } \quad \beta^{p+1}=\beta^{p} \beta \equiv \alpha \beta=B \quad(\bmod p)
$$

This concludes the proof.

Proof of Theorem 1.2. (i) The equation $x^{2}-A x+B=0$ has two roots

$$
\alpha=\frac{A+\sqrt{\Delta}}{2} \quad \text { and } \quad \beta=\frac{A-\sqrt{\Delta}}{2}
$$

where $\Delta=A^{2}-4 B$. Also,

$$
H_{p-1-k}=H_{p-1}-\sum_{0<j \leqslant k} \frac{1}{p-j} \equiv H_{k} \quad(\bmod p) \quad \text { for } k=0,1, \ldots, p-1
$$

As $\left(\frac{\Delta}{p}\right)=1$, with the help of Lemma 2.2, for any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{k=0}^{p-1} v_{k}(A, B) H_{k}^{n} & =\sum_{k=0}^{p-1} v_{p-1-k}(A, B) H_{p-1-k}^{n} \equiv \sum_{k=0}^{p-1}\left(\alpha^{p-1-k}+\beta^{p-1-k}\right) H_{k}^{n} \\
& \equiv \sum_{k=0}^{p-1}\left(\frac{\beta^{k}}{B^{k}}+\frac{\alpha^{k}}{B^{k}}\right) H_{k}^{n}=\sum_{k=0}^{p-1} B^{-k} v_{k}(A, B) H_{k}^{n} \quad(\bmod p)
\end{aligned}
$$

This proves (1.5). Similarly,

$$
\begin{aligned}
& (\alpha-\beta) \sum_{k=0}^{p-1} u_{k}(A, B) H_{k}^{n}=\sum_{k=0}^{p-1}\left(\alpha^{p-1-k}-\beta^{p-1-k}\right) H_{p-1-k}^{n} \\
\equiv & \sum_{k=0}^{p-1}\left(\frac{\beta^{k}}{B^{k}}-\frac{\alpha^{k}}{B^{k}}\right) H_{k}^{n}=(\beta-\alpha) \sum_{k=0}^{p-1} B^{-k} u_{k}(A, B) H_{k}^{n} \quad(\bmod p) .
\end{aligned}
$$

As $(\alpha-\beta)^{2}=\Delta \not \equiv 0(\bmod p)$, (1.4) follows.
(ii) If $p \equiv 1(\bmod 3)$ (i.e., $\left.\left(\frac{-3}{p}\right)=1\right)$, then by putting $A= \pm 1$ and $B=1$ in (1.4) we get (1.6) and (1.7). Now we prove (1.6) and (1.7) in the case $p \equiv 2$ $(\bmod 3)$. Observe that

$$
\begin{aligned}
\sum_{k=0}^{p-1} & (-1)^{k}\left(\frac{k}{3}\right)\left(\binom{p-1}{k}(-1)^{k}-1\right)=\sum_{k=0}^{p-1}\binom{p-1}{k}\left(\frac{k}{3}\right)-\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) \\
& =\sum_{k=0}^{p-1}\binom{p-1}{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}}-\sum_{k=0}^{p-1}(-1)^{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}} \\
& =\frac{1}{\sqrt{-3}}\left((1+\omega)^{p-1}-(1+\bar{\omega})^{p-1}\right)-\frac{1}{\sqrt{-3}}\left(\frac{1+\omega^{p}}{1+\omega}-\frac{1+\bar{\omega}^{p}}{1+\bar{\omega}}\right) \\
& =\frac{1}{\sqrt{-3}}\left(\left(-\omega^{2}\right)^{p-1}-(-\omega)^{p-1}-\frac{-\omega^{2 p}}{-\omega^{2}}+\frac{-\omega^{p}}{-\omega}\right)=0
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{k=0}^{p-1} & \binom{k}{3}\left(\binom{p-1}{k}(-1)^{k}-1\right) \\
& =\sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}}-\sum_{j=1}^{(p-2) / 3} \sum_{d=0}^{2}\left(\frac{3 j-d}{3}\right)-\left(\frac{p-1}{3}\right) \\
& =\frac{1}{\sqrt{-3}}\left((1-\omega)^{p-1}-\left(1-\omega^{2}\right)^{p-1}\right)-\left(\frac{p-1}{3}\right) \\
& =\frac{1}{\sqrt{-3}}(1-\omega)^{p-1}\left(1-\left(-\omega^{2}\right)^{p-1}\right)-1
\end{aligned}
$$

and hence

$$
\begin{aligned}
\sum_{k=0}^{p-1} & \left(\frac{k}{3}\right)\left(\binom{p-1}{k}(-1)^{k}-1\right)=\frac{1-\omega^{2}}{\sqrt{-3}}(1-\omega)^{p-1}-1=\frac{-\omega^{2}}{\sqrt{-3}}(1-\omega)^{p}-1 \\
& =\frac{-\omega^{2}}{\sqrt{-3}}\left(\sqrt{-3} \omega^{2}\right)^{p}-1=-(-3)^{(p-1) / 2} \omega^{2+2 p}-1 \\
& =-\left((-3)^{(p-1) / 2}-\left(\frac{-3}{p}\right)\right) \\
& \equiv-\frac{\left(\frac{-3}{p}\right)}{2}\left((-3)^{p-1}-\left(\frac{-3}{p}\right)^{2}\right)=\frac{3^{p-1}-1}{2}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Combining these with (2.1) we immediately obtain (1.6) and (1.7).
Next we show (1.8). Observe that

$$
\begin{aligned}
& \sum_{k=0}^{p-\left(\frac{p}{3}\right)}(-1)^{k}\left(\frac{k}{3}\right) k=\sum_{q=1}^{\left(p-\left(\frac{p}{3}\right)\right) / 6} \sum_{r=0}^{5}(-1)^{6 q-r}\left(\frac{6 q-r}{3}\right)(6 q-r) \\
= & \sum_{q=1}^{\left(p-\left(\frac{p}{3}\right)\right) / 6}((6 q-1)+(6 q-2)-(6 q-4)-(6 q-5))=p-\left(\frac{p}{3}\right)
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k=\frac{1+\left(\frac{p}{3}\right)}{2} p-\left(\frac{p}{3}\right)
$$

Also,

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{k}{3} k=(p-1) \sum_{k=1}^{p-1}\binom{p-2}{k-1}\left(\frac{k}{3}\right)
$$

$$
\begin{aligned}
& =(p-1) \sum_{j=0}^{p-2}\binom{p-2}{j} \frac{\omega^{j+1}-\bar{\omega}^{j+1}}{\sqrt{-3}}=\frac{p-1}{\sqrt{-3}}\left(\omega(1+\omega)^{p-2}-\bar{\omega}(1+\bar{\omega})^{p-2}\right) \\
& =\frac{p-1}{\sqrt{-3}}\left(\omega\left(-\omega^{2}\right)^{p-2}-\omega^{2}(-\omega)^{p-2}\right)=\frac{p-1}{\sqrt{-3}}\left(\omega^{p}-\omega^{2 p}\right)=(p-1)\left(\frac{p}{3}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k\left(\binom{p-1}{k}\right. & \left.(-1)^{k}-1\right) \\
& =(p-1)\left(\frac{p}{3}\right)-\left(\frac{1+\left(\frac{p}{3}\right)}{2} p-\left(\frac{p}{3}\right)\right)=\frac{\left(\frac{p}{3}\right)-1}{2} p
\end{aligned}
$$

This implies (1.8) due to (2.1).
Finally we prove (1.9). If $p \equiv 1(\bmod 4)$ (i.e., $\left.\left(\frac{-4}{p}\right)=1\right)$, then (1.4) in the case $A=B=2$ yields (1.9). Below we assume that $p \equiv 3(\bmod 4)$. Note that

$$
u_{k}(2,2)=\frac{(1+i)^{k}-(1-i)^{k}}{2 i} \quad \text { for all } k \in \mathbb{N}
$$

Thus

$$
\begin{aligned}
& 2 i \sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k}\left(2^{-k}+1\right) u_{k}(2,2) \\
& \quad=\sum_{k=0}^{p-1}\binom{p-1}{k}\left((-2)^{-k}+(-1)^{k}\right)\left((1+i)^{k}-(1-i)^{k}\right) \\
& \quad=\left(1-\frac{1+i}{2}\right)^{p-1}-\left(1-\frac{1-i}{2}\right)^{p-1}+(1-(1+i))^{p-1}-(1-(1-i))^{p-1} \\
& \quad=\left(\frac{1-i}{2}\right)^{p-1}-\left(\frac{1+i}{2}\right)^{p-1}+(-i)^{p-1}-i^{p-1} \\
& \quad=\left(\frac{-2 i}{4}\right)^{(p-1) / 2}-\left(\frac{2 i}{4}\right)^{(p-1) / 2}=2 i \frac{i^{(p+1) / 2}}{2^{(p-1) / 2}}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k}\left(2^{-k}+1\right) u_{k}(2,2)=\frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}} \tag{2.3}
\end{equation*}
$$

Also,

$$
2 i \sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2)=\sum_{k=0}^{p-1}\left(2^{-k}+1\right)\left((1+i)^{k}-(1-i)^{k}\right)
$$

$$
\begin{aligned}
= & \frac{1-((1+i) / 2)^{p}}{1-(1+i) / 2}-\frac{1-((1-i) / 2)^{p}}{1-(1-i) / 2}+\frac{1-(1+i)^{p}}{1-(1+i)}-\frac{1-(1-i)^{p}}{1-(1-i)} \\
= & (1+i)-2\left(\frac{1+i}{2}\right)^{p+1}-\left((1-i)-2\left(\frac{1-i}{2}\right)^{p+1}\right) \\
& +i-i(1+i)(1+i)^{p-1}+i-i(1-i)(1-i)^{p-1} \\
= & 2 i-2\left(\frac{2 i}{4}\right)^{(p+1) / 2}+2\left(\frac{-2 i}{4}\right)^{(p+1) / 2} \\
& +2 i+(1-i)(2 i)^{(p-1) / 2}-(1+i)(-2 i)^{(p-1) / 2} \\
= & 4 i+2(2 i)^{(p-1) / 2}=2 i\left(2+i^{(p-3) / 2} 2^{(p-1) / 2}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2)=2-(-1)^{(p+1) / 4} 2^{(p-1) / 2} \tag{2.4}
\end{equation*}
$$

Combining (2.1), (2.3) and (2.4) we obtain

$$
\begin{gathered}
-p \sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2) H_{k} \equiv \frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}}-2+(-1)^{(p+1) / 4} 2^{(p-1) / 2} \\
\equiv \frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}}\left(2^{(p-1) / 2}-(-1)^{(p+1) / 4}\right)^{2} \equiv 0 \quad\left(\bmod p^{2}\right)
\end{gathered}
$$

since

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{(p+1) / 4 \times(p-1) / 2}=(-1)^{(p+1) / 4}
$$

Therefore (1.9) holds.
By the above, we have completed the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Lemma 3.1. Let $A, B \in \mathbb{Z}$. Let p be an odd prime with $\left(\frac{B}{p}\right)=1$. Suppose that $b^{2} \equiv B(\bmod p)$ where $b \in \mathbb{Z}$. Then

$$
u_{(p-1) / 2}(A, B) \equiv \begin{cases}0 \quad(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=1 \\ \frac{1}{b}\left(\frac{A-2 b}{p}\right) & (\bmod p)\end{cases}
$$

and

$$
u_{(p+1) / 2}(A, B) \equiv \begin{cases}\left(\frac{A-2 b}{p}\right) & (\bmod p) \\ \text { if }\left(\frac{A^{2}-4 B}{p}\right)=1 \\ 0 \quad(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=-1\end{cases}
$$

Proof. The congruences are known results, see, e.g., [S].
Lemma 3.2. Let $u_{n}=u_{n}(1,4)$ for $n \in \mathbb{N}$. Then, for any prime $p>5$ we have

$$
\begin{equation*}
u_{p}-2^{p-1}\left(\frac{p}{15}\right) \equiv 2^{\left(\frac{p}{15}\right)-2} u_{p-\left(\frac{p}{15}\right)} \quad\left(\bmod p^{2}\right) \tag{3.1}
\end{equation*}
$$

Proof. The two roots

$$
\alpha=\frac{1+\sqrt{-15}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{-15}}{2}
$$

of the equation $x^{2}-x+4=0$ are algebraic integers. Clearly
$-15 u_{p}=(\alpha-\beta)^{2} u_{p}=(\alpha-\beta)\left(\alpha^{p}-\beta^{p}\right) \equiv(\alpha-\beta)^{p+1}=(-15)^{(p+1) / 2} \quad(\bmod p)$
and hence

$$
u_{p} \equiv(-15)^{(p-1) / 2} \equiv\left(\frac{-15}{p}\right)=\left(\frac{p}{15}\right) \quad(\bmod p)
$$

Also,

$$
v_{p}=\alpha^{p}+\beta^{p} \equiv(\alpha+\beta)^{p}=1 \quad(\bmod p),
$$

where v_{n} refers to $v_{n}(1,4)$. (In fact, both $u_{p}(A, B)$ and $v_{p}(A, B)$ modulo p are known for any $A, B \in \mathbb{Z}$.) By induction, $u_{n}+v_{n}=2 u_{n+1}$ for any $n \in \mathbb{N}$.

Case 1. $\left(\frac{p}{15}\right)=1$. In this case,

$$
4 u_{p-1}=u_{p}-u_{p+1}=\frac{u_{p}-v_{p}}{2} \equiv \frac{1-1}{2}=0 \quad(\bmod p)
$$

and

$$
v_{p-1}=2 u_{p}-u_{p-1} \equiv 2 \equiv 2^{p} \quad(\bmod p)
$$

Since

$$
\begin{aligned}
\left(v_{p-1}-2^{p}\right)\left(v_{p-1}+2^{p}\right) & =\left(\alpha^{p-1}+\beta^{p-1}\right)^{2}-4(\alpha \beta)^{p-1} \\
& =\left(\alpha^{p-1}-\beta^{p-1}\right)^{2}=-15 u_{p-1}^{2} \equiv 0 \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

we must have $v_{p-1} \equiv 2^{p}\left(\bmod p^{2}\right)$ and hence

$$
2 u_{p}=u_{p-1}+v_{p-1} \equiv u_{p-1}+2^{p} \quad\left(\bmod p^{2}\right)
$$

Case 2. $\left(\frac{p}{15}\right)=-1$. In this case,

$$
2 u_{p+1}=u_{p}+v_{p} \equiv-1+1=0 \quad(\bmod p)
$$

and

$$
v_{p+1}=2 u_{p+2}-u_{p+1}=u_{p+1}-8 u_{p} \equiv 8 \equiv 2^{p+2} \quad(\bmod p)
$$

As

$$
\begin{aligned}
\left(v_{p+1}-2^{p+2}\right)\left(v_{p+1}+2^{p+2}\right) & =\left(\alpha^{p+1}+\beta^{p+1}\right)^{2}-4(\alpha \beta)^{p+1} \\
& =\left(\alpha^{p+1}-\beta^{p+1}\right)^{2}=-15 u_{p+1}^{2} \equiv 0 \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

we must have $v_{p+1} \equiv 2^{p+2}\left(\bmod p^{2}\right)$ and hence

$$
\begin{aligned}
8 u_{p} & =2\left(u_{p+1}-u_{p+2}\right)=2 u_{p+1}-\left(u_{p+1}+v_{p+1}\right) \\
& =u_{p+1}-v_{p+1} \equiv u_{p+1}-2^{p+2} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Combining the above, we immediately obtain the desired result.
Proof of Theorem 1.3. Set $\delta=\left(1-\left(\frac{p}{15}\right)\right) / 2$. Then

$$
\sum_{k=0}^{p-1} \frac{u_{k+\delta}}{2^{k}} H_{k} \equiv \sum_{k=0}^{p-1} \frac{u_{k+\delta}}{2^{k}} \cdot \frac{1-(-1)^{k}\binom{p-1}{k}}{p} \quad(\bmod p)
$$

So it suffices to show

$$
\begin{equation*}
\sum_{k=0}^{p-1} u_{k+\delta} 2^{p-1-k} \equiv \sum_{k=0}^{p-1}\binom{p-1}{k} u_{k+\delta}(-2)^{p-1-k} \quad\left(\bmod p^{2}\right) \tag{3.2}
\end{equation*}
$$

which implies (1.11) and (1.12) in the cases $\delta=0,1$ respectively. Recall that

$$
u_{k+\delta}=\frac{\alpha^{k+\delta}-\beta^{k+\delta}}{\alpha-\beta}
$$

where

$$
\alpha=\frac{1+\sqrt{-15}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{-15}}{2}
$$

are the two roots of the equation $x^{2}-x+4=0$. Since

$$
\sum_{k=0}^{p-1} x^{k} y^{p-1-k}=\frac{x^{p}-y^{p}}{x-y} \quad \text { and } \quad \sum_{k=0}^{p-1}\binom{p-1}{k} x^{k} y^{p-1-k}=(x+y)^{p-1}
$$

(3.2) can be rewritten as follows:

$$
\begin{align*}
& \frac{1}{\alpha-\beta}\left(\alpha^{\delta} \frac{\alpha^{p}-2^{p}}{\alpha-2}-\beta^{\delta} \frac{\beta^{p}-2^{p}}{\beta-2}\right) \\
& \equiv \frac{\alpha^{\delta}(\alpha-2)^{p-1}-\beta^{\delta}(\beta-2)^{p-1}}{\alpha-\beta} \tag{3.3}
\end{align*} \quad\left(\bmod p^{2}\right) .
$$

Note that $(\alpha-2)(\beta-2)=4+\alpha \beta-2(\alpha+\beta)=4+4-2=6$ and

$$
\begin{aligned}
& \alpha^{\delta}\left(\alpha^{p}-2^{p}\right)(\beta-2)-\beta^{\delta}(\alpha-2)\left(\beta^{p}-2^{p}\right) \\
& \quad=\left(2^{p}-\alpha^{p}\right)\left(\alpha^{\delta+1}+\alpha^{\delta}\right)+\left(\beta^{\delta+1}+\beta^{\delta}\right)\left(\beta^{p}-2^{p}\right) \\
& \quad=2^{p}\left(\alpha^{\delta+1}-\beta^{\delta+1}+\alpha^{\delta}-\beta^{\delta}\right)-\left(\alpha^{p+\delta+1}-\beta^{p+\delta+1}\right)-\left(\alpha^{p+\delta}-\beta^{\beta+\delta}\right) \\
& \quad=(\alpha-\beta)\left(2^{p}\left(u_{\delta+1}+u_{\delta}\right)-\left(u_{p+\delta+1}+u_{p+\delta}\right)\right) \\
& \quad=(\alpha-\beta)\left(2^{p+\delta}-2 u_{p+\delta}+4 u_{p+\delta-1}\right) .
\end{aligned}
$$

So the left-hand side of (3.3) coincides with

$$
\frac{2^{p+\delta}-2 u_{p+\delta}+4 u_{p+\delta-1}}{6}=\frac{2^{p+\delta-1}-u_{p+\delta}+2 u_{p+\delta-1}}{3} .
$$

Since $(\alpha-2)^{2}=-3 \alpha$ and $(\beta-2)^{2}=-3 \beta$, we have

$$
\begin{aligned}
& \frac{\alpha^{\delta}(\alpha-2)^{p-1}-\beta^{\delta}(\beta-2)^{p-1}}{\alpha-\beta}=\frac{\alpha^{\delta}(-3 \alpha)^{(p-1) / 2}-\beta^{\delta}(-3 \beta)^{(p-1) / 2}}{\alpha-\beta} \\
& =(-3)^{(p-1) / 2} \frac{\alpha^{(p-1) / 2+\delta}-\beta^{(p-1) / 2+\delta}}{\alpha-\beta}=(-3)^{(p-1) / 2} u_{\left(p-\left(\frac{p}{15}\right)\right) / 2}
\end{aligned}
$$

Applying Lemma 3.1 with $A=1$ and $B=4$, we get that

$$
\begin{equation*}
u_{\left(p-\left(\frac{p}{15}\right)\right) / 2} \equiv 0 \quad(\bmod p), \quad u_{\left(p+\left(\frac{p}{15}\right)\right) / 2} \equiv\left(\frac{-3}{p}\right) 2^{\left(\left(\frac{p}{15}\right)-1\right) / 2}(\bmod p) \tag{3.4}
\end{equation*}
$$

For any $n \in \mathbb{N}$ we have

$$
u_{2 n}=\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\left(\alpha^{n}+\beta^{n}\right)=u_{n} v_{n}
$$

If $\left(\frac{p}{15}\right)=1$, then by (3.4) we have $u_{(p-1) / 2} \equiv 0(\bmod p)$ and

$$
v_{(p-1) / 2}=2 u_{(p+1) / 2}-u_{(p-1) / 2} \equiv 2\left(\frac{-3}{p}\right) \quad(\bmod p)
$$

hence

$$
\begin{aligned}
u_{p-1} & =u_{(p-1) / 2} v_{(p-1) / 2} \equiv 2\left(\frac{-3}{p}\right) u_{(p-1) / 2} \\
& \equiv 2(-3)^{(p-1) / 2} u_{(p-1) / 2} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

If $\left(\frac{p}{15}\right)=-1$, then by (3.4) we have $u_{(p+1) / 2} \equiv 0(\bmod p)$ and

$$
\begin{aligned}
v_{(p+1) / 2} & =2 u_{(p+3) / 2}-u_{(p+1) / 2}=u_{(p+1) / 2}-8 u_{(p-1) / 2} \\
& \equiv-8\left(\frac{-3}{p}\right) 2^{-1}=-4\left(\frac{-3}{p}\right) \quad(\bmod p)
\end{aligned}
$$

hence

$$
\begin{aligned}
u_{p+1} & =u_{(p+1) / 2} v_{(p+1) / 2} \equiv-4\left(\frac{-3}{p}\right) u_{(p+1) / 2} \\
& \equiv-4(-3)^{(p-1) / 2} u_{(p+1) / 2} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Thus the right-hand side of (3.3) is congruent to $u_{p-\left(\frac{p}{15}\right)} /\left(2(-2)^{\delta}\right) \bmod p^{2}$.
By the above, (3.3) is equivalent to the following congruence

$$
\begin{equation*}
\frac{2^{p+\delta-1}-u_{p+\delta}+2 u_{p+\delta-1}}{3} \equiv \frac{u_{p-\left(\frac{p}{15}\right)}}{2(-2)^{\delta}} \quad\left(\bmod p^{2}\right) \tag{3.5}
\end{equation*}
$$

If $\left(\frac{p}{15}\right)=1$, then $\delta=0$, and hence (3.5) reduces to the congruence

$$
2\left(2^{p-1}-u_{p}+2 u_{p-1}\right) \equiv 3 u_{p-1} \quad\left(\bmod p^{2}\right)
$$

which is equivalent to (3.1) since $\left(\frac{p}{15}\right)=1$. When $\left(\frac{p}{15}\right)=-1$, we have $\delta=1$ and hence (3.5) can be rewritten as

$$
-4\left(2^{p}-u_{p+1}+2 u_{p}\right) \equiv 3 u_{p+1} \quad\left(\bmod p^{2}\right)
$$

which follows from (3.1) since $\left(\frac{p}{15}\right)=-1$. This concludes the proof.
Acknowledgments. The author is grateful to the two referees for their helpful comments.

References

[BPQ] A. T. Benjamin, G. O. Preston and J. J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag. 75 (2002), 95-103.
[BB] D. Borwein and J. M. Borwein, On an intriguing integral and some series related to $\zeta(4)$, Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
[C] S. W. Coffman, Problem 1240 and Solution: An infinite series with harmonic numbers, Math. Mag. 60 (1987), 118-119.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994.
[HT] C. Helou and G. Terjanian, On Wolstenholme's theorem and its converse, J. Number Theory 128 (2008), 475-499.
[R] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
[S] Z. H. Sun, Values of Lucas sequences modulo primes, Rocky Mount. J. Math. 33 (2003), 1123-1145.
[Su] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415-428.
[W] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math. 5 (1862), 35-39.

ZHI-WEI SUN
DEPARTMENT OF MATHEMATICS
NANJING UNIVERSITY
NANJING 210093
PEOPLE'S REPUBLIC OF CHINA
E-mail: zwsun@nju.edu.cn
(Received January 8, 2010; revised March 24, 2011)

