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Schur power convexity of Stolarsky means

By ZHEN-HANG YANG (Hangzhou)

Abstract. In this paper, the Schur convexity is generalized to Schur f-convexity,
which contains the Schur geometrical convexity, Schur harmonic convexity and so on.
When f : Ry — R is defined by f(z) = (2™ — 1)/m if m # 0 and f(z) = Inz if
m = 0, the necessary and sufficient conditions for f-convexity (is called Schur m-power
convexity) of Stolarsky means are given, which generalized and unified certain known
results.

1. Introduction and main results

Let p,g € R and a,b € Ry := (0,00) with a # b. The so-called Stolarsky
means S, 4(a,b) are defined by

(M)piq if pe(p—q) #0,

<1m>p if p#0, ¢=0,
et — ' 1.1
o (q(lzqab;b)) if ¢#0, p=0, (L1)

eXp(W‘;) if p=q#0,

Vab if p=¢q=0.
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Also, Spq4(a,a) = a. It is known that the Stolarsky means S, ,(a,b) are C'™°
function on the domain {(p,q,a,b) : p,g € R, a,b € Ry} (see [19, Lemma 1]),
and obviously symmetric with respect to a, b and p, q.

Most of the classical two variable means are special cases of S, 4(a,b), for
example, S7 9 = A is the arithmetic means, Sy = G is the geometric mean,
S_1,_2 = H is the harmonic mean, 519 = L is the logarithmic mean, S;; = I
is the identric mean (exponential mean), and more generally, the r-th power
mean is equal to S, 2.. The basic properties of Stolarsky means, as well as their
comparison theorems, log-convexity, and inequalities were studied in papers [3],
8], [12], [15], [16], [18], [19], [20], 28], [24], [25], [26], [27], [28], [36], [37), [42],
[43], [44], [46], [47].

Schur convexity was introduced by Schur in 1923 [21], and it has many im-
portant applications in analytic inequalities [2], [11], [49], linear regression [35],
graphs and matrices [7], combinatorial optimization [14], information-theoretic
topics [9], Gamma functions [22], stochastic orderings [32], reliability [13], and
other related fields.

In recent years, the Schur convexity and Schur geometrical convexity of
Spq(a,b) have attracted the attention of a considerable number of mathemati-
cians [4], [5, 17], [29], [30], [31], [33]. QI [30] first proved that the Stolarsky
means S, 4(a,b) are Schur convex on (—o0,0] x (—o0,0] and Schur concave on
[0,00) x [0,00) with respect to (p,q) for fixed a,b > 0 with a # b. YANG [45]
improved Qi’s result and proved that Stolarsky means S, ,(a, b) are Schur convex
with respect to (p,q) for fixed a,b > 0 with a # b if and only if p + ¢ < 0 and
Schur concave if and only if p+ ¢ > 0.

QI et al. [29] tried to obtain the Schur convexity of S, 4(a, b) with respect to
(a, b) for fixed (p, q) and declared an incorrect conclusion. SHI et al. [33] observed
that the above conclusion is wrong and obtained a sufficient condition for the
Schur convexity of S, 4(a, b) with respect to (a,b). CHU and ZHANG [5] improved
Shi’s results and gave a necessary and sufficient condition. This perfectly solved
the Schur convexity of Stolarsky means with respect to (a, b).

The Schur geometrical convexity was introduced by ZHANG [50], and there
has many interesting results [10], [34], [39], [40]. For the Schur geometrical con-
vexity of Stolarsky means S, 4(a,b), CHU and ZHANG [4] proved that they are
Schur geometrically convex with respect to (a,b) € Ri if p+ g > 0 and Schur
geometrically concave if p+ ¢ < 0. LI et al. [17] also investigated the Schur
geometrical convexity of generalized exponent mean I, (a, b). In 2010, a necessary
and sufficient condition for Schur geometrical convexity of the four-parameter
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means with respeto to a pair of parameters was given in [48]. This give a unified
treatment for Schur geometrical convexity of Stolarsky and Gini means.

Recently, ANDERSON et al. [1] discussed an attractive class of inequalities,
which arise from the notation of harmonic convexity. And then it was started
to research for Schur harmonic convezity. CHU et al. [6] showed that the Hamy
symmetric function is Schur harmonic convex and obtained some analytic inequ-
alities including the well-known Weierstrass inequalities. X1A0 [41] proved that
the Lehmer mean values L,(a,b) are Schur harmonic convex (Schur harmonic
concave) with respect to (a,b) € R% if and only if p > (<)0.

The purpose of this paper is to generalize the notion of Schur convexity and
investigated the so-called Schur power convezity of Stolarsky means S, ,(a,b).
Our main results are as follows.

Theorem 1. For m > 0 and fixed (p,q) € R?, Stolarsky mean S, ,(a,b) is
Schur m-power convex with respect to (a,b) € R3 if and only if p+ ¢ > 3m and
min(p, q) > m.

Theorem 2. For m > 0 and fixed (p,q) € R?, Stolarsky mean S, ,(a,b) is
Schur m-power concave with respect to (a,b) € Rf_ if and only if p+ q < 3m and
min(p, ¢) < m.

Theorem 3. For m < 0 and fixed (p,q) € R?, Stolarsky mean S, 4(a,b) is
Schur m-power convex with respect to (a,b) € Ri if and only if p4+ q > 3m and
max(p, g) > m.

Theorem 4. For m < 0 and fixed (p,q) € R?, Stolarsky mean S, ,(a,b) is
Schur m-power concave with respect to (a,b) € Rf_ if and only if p+ q < 3m and
max(p, q) < m.

Theorem 5. For m = 0 and fixed (p,q) € R?, Stolarsky mean S, ,(a,b) is
Schur m-power convex (Schur m-power concave) with respect to (a,b) € R2 if
and only if p+ q > (<)0.

The organization of the paper is as follows. In Section 2, based on the notion
and lemmas of Schur convexity, we introduce the definition of Schur f-convex and
Schur f-concave function, and prove decision theorem for Schur f-convexity. As
a special case, the definition and decision theorem of Schur power convexity are
deduced. In Section 3, some lemmas are given. In Section 4, our main results are
proved.
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2. Schur f-convexity and Schur power convexity

For convenience of readers, we recall some definitions as follows.
Definition 1 ([21], [38]). Let x = (z1,22,...,2n) and y = (y1,¥Y2,...,Yn) €
R™(n > 2).
(i) x is said to by majorized by y (in symbol x < y) if

k k n n
ZLCM < Zy[i] for1<k<n-1, me = Zy[i], (2.1)
i=1 i=1 i=1 i=1
where T[] 2 T 2 T and Y[1] = Y[2] - = Y[n] are rearrangements of x
and y in a decreasing order.

(ii) x > y means a; > y; foralli =1,2,...,n. Let Q C R"(n > 2). The function
¢ : Q@ — R is said to be increasing if x >y implies that ¢(x) > ¢(y). ¢ is
said to be decreasing if and only if —¢ is increasing.

(iii) 2 C R™ is called a convex set if (ax1 + By1,...,az, + By,) € Q for all x, y
and all a, 8 € [0,1] with o+ 8 = 1.

(iv) Let © C R™(n > 2) be a set with nonempty interior. Then ¢ : Q@ — R is said
to be Schur convex if x < y on  implies that ¢(x) < ¢(y). ¢ is said to be
Schur concave if —¢ is Schur convex.

Definition 2 ([21]). (i) @ C R™(n > 2) is called symmetric set, if x € Q
implies that xP €  for every n x n permutation matrix P.

(ii) The function ¢ :  — R™ is called symmetric if for every permutation
matrix P, ¢(xP) = ¢(x) for all x € Q.

For the Schur convexity, there is the following well-known result.

Lemma 1 ([21], [38]). Let & C R™ be a symmetric set with nonempty
interior QY and ¢ : Q — R be continuous on Q and differentiable in Q°. Then ¢
is Schur convex (Schur concave) on ) if and only if ¢ is symmetric on Q and

(o1 -a2) (2= 52 2 (=)0 (2.2

Next let us define the Schur f-convexity as follows.

Definition 3. Let Q@ = U™(U C R) and f be a strictly monotone function
defined on U. Denote by

fFx) = (f(@1), f(2), -, [(wn)) and  f(y) = (f(y1), f(y2); - F(yn))-
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(i) Q is called a f-convex set if (f~'(af(x1) + Bf(y1)),..., f Haf(z,)+
Bf(yn))) € Q for all x,y € Q and all o, 8 € [0,1] with a + 8= 1.

(ii) Let £ be a set with nonempty interior. Then function ¢ :  — R is said to
be Schur f-convex on Q if f(x) < f(y) on 2 implies that ¢(x) < ¢(y).

¢ is said to be Schur f-concave if —¢ is Schur f-convex.

Remark 1. Let @ = U™(U C R) and f be a strictly monotone function defined
on U and f(Q) = {f(x) : x € Q}. Then function ¢ : & — R is Schur f-convex
(Schur f-concave) if and only if ¢o f~1 is Schur convex (Schur concave) on f().

Indeed, if function ¢ :  — R is Schur f-convex, then Vx',y’ € f(Q), there
are x,y € Q such that x’ = f(x),y = f(y). If f(x) < f(y), that is, X' <y,
then ¢(x) < ¢(y), that is, ¢((f~'(x')) < &((f~'(y')). This shows that ¢ o f~*
is Schur convex on f(£2). Conversely, if ¢ o f~! is Schur convex on f(2), then
Vx,y € Q such that f(x) < f(y), we have ¢((f~'(f(x))) < &((f~'(f(y))), that
is, ¢(x) < ¢(y). This indicates ¢ is Schur f-convex on Q.

In the same way, we can show that ¢ is Schur f-concave on Q if and only if
¢o f~1is Schur concave on f().

Remark 2. Let Q C R™(n > 2) be a symmetric set and the function ¢ : Q — R
be Schur f-convex (Schur f-concave). Then ¢ is symmetric on €.

In fact, for any x € © and every permutation matrix P, we have xP € €.
Note xP is another permutation of x, hence f(x) < f(xP) < f(x). Since ¢ is
Schur f-convex (Schur f-concave), we have ¢(x) < (>)¢p(xP) < (>)p(x), that is,
d(xP) = ¢(x) for all x € Q. This shows that ¢ is symmetric on €.

By Lemma 1 and Remark 1, 2, we have the following

Theorem 6. Assume that Q) = U"(U C R) is a symmetric set with nonempty
interior Q°, f is a strictly monotone and derivable function defined on U, and
¢ : Q1 = R is continuous on Q and differentiable in Q°. Then ¢ is Schur f-convex
(Schur f-concave) on ) if and only if ¢ is symmetric on € and

1 9 1 9
(f(z1) = f(22)) (f’(:ﬂ1)3x1 - f’(xz)axz) > (£)0 (2.3)
holds for any x = (21, %2, ...,2,) € Q¥ with 11 # x.

PROOF. We easily check that ¢ o f~1 is symmetric on f(Q) if and only if ¢
is symmetric on 2.
By Remark 1 and Lemma 1, ¢ o f~! is Schur convex (Schur concave) if and
only if ¢ o f~1 is symmetric on f(2) and
-1 -1
_— (awao FY 0o
(7 Y2

) > ()0
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holds for any y € f(Q)" with y; # y». Substituting f~1(y) = z yields (2.3),
where x = (21, 79,...,2,) € Q0 with z1 # 5.
This proof is finished. O

Putting f(x) = 1,Inz,2~! in Definition 3 yield the Schur convexity, Schur
geometrical convexity and Schur harmonic convexity. It is clear that the Schur f-
convexity is a generalization of the Schur convexity mentioned above. In general,
we have

Definition 4. Let f : Ry — R be defined by f(z) = (™ —1)/m if m # 0
and f(z) = Inxz if m = 0. Then function ¢ : Q(C R}) — R is said to be Schur
m-power convex on  if f(x) < f(y) on Q implies that ¢(x) < ¢(y).

¢ is said to be Schur m-power concave if —¢ is Schur m-power convex.

For Schur power convexity, by Theorem 6 we have

Corollary 1. Let Q@ C R? be a symmetric set with nonempty interior Q0
and ¢ : Q — R be continuous on € and differentiable in Q°. Then ¢ is Schur
m-power convex (Schur m-power concave) on Q if and only if ¢ is symmetric on
Q and

1,7171 — 1,7271 1-m 8¢ 1-m 8¢ .
_ — > (L f 2.4
G EE P S CY)
0 0 .
(Inz; —Inz,y) <x18i - mga;i) >(<)0 if m=0 (2.5)
holds for any x = (21, %2, ...,2,) € Q¥ with 11 # x.

3. Lemmas

Lemma 2. For fixed (p,q) € R?, Stolarsky mean S, ,(a,b) is Schur m-
power convex (Schur m-power concave) with respect to (a,b) € R% if and only if
g(t) > (L)0 for all t > 0, where

— q) sinh At — psinh Bt — gsinh Ct .
(p—9) P g if pg(p —q) # 0,
pa(p— q)
sinh(p—m)t+ sinh(p_—}—pr;z)t—?pt cosh(p—m)t i p£0, g=0,
_ _ ) sinh(g—m)t+ sinh(g+m)t—2qt cosh(¢—m)t .
g(t) = gp.a(t) (g—m) (q_qQ) q (g=m)t .. g£0, p=0, (31
inh(2p — inh -2 h
sinh(2p m)t—i-SIII;J2 mt — 2pt coshmt if p=q£0,
—2t2 sinh mt if p=q=0,
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and
A=p+q-m, B=p—q-m C=p—q+m, (32)
PROOF. Let m # 0 and S = S, 4 := Sp 4(a,b) defined by (1.1).
In the case of pg(p — q) # 0. We have

OdlnS 105 1 paP~! B ga?!
da  S0da p—gq ’

aP — bp ad — be
dlnS 195 1 —pbP~L bl
o  Sob p—gq ’

aP — bp ad — ba

hence,

1-m0S 1,08 S aP™™ 4 pp—m ad™m 4 pamm

a M — - m_— = P —q .
da b p—q ap — bp al — bl

Substituting In y/a/b = ¢ and using sinhz = 3(e® — e *),cosha = 1(e% + e77),

the right hand side above can be written as

108 108 | S(a) " ( cosh(p—m)t __coshl — m)t
da db p—q sinh pt sinh gt
__ 5 p q
2(ab)™/2 sinh pt sinh gt
5P cosh(p — m)tsinh gt — g cosh(q — m)t sinh pt
pa(p —q) '

a

Using the “product into sum” formula for hyperbolic functions and (3.2), we have

a™ —pm oS oS
A = 1-m P9 blf'm p,q
m (a Oa 0b >
_ad"=b0" (a—b)Spq P g (p— q)sinh At — psinh Bt — ¢sinh Ct
~ m(a—b) 2(gh)™/? sinhpt sinhgt pa(p —q)
=dpq(t) - gp,q(t),
where

_a" =" (a—b)Se p q
dp#l(t) - m(a o b) 9 (ab)m/2 Sinhpt sinh qt (pQ(p Q) 7é 0) (33)

and g, 4(t) is defined by (3.1).
In the case of p # ¢ = 0. Since S, 4(a,b) € C*° we have

0Sp0 . 0S,.  0Spo .. 08y,
3 :1 3y ) :1 3y
da 450 da =
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aSpAp . aSP q 3Sp 4 . 6Sp q
i) :1 El El :1 E)
o asp Oa b aop Ob
050,0 . 0Spp 050,0 . 0Spp
0 ’ 0 P
da  pad Oa =]

It follows that

_ a0 w090 p1-mO5p0
A= m <a Oa b 0b

i (" (-m PSpa 1m0
_5%( m (a da - b

= (}g% (dp,q(t)gp,g(t)) = gp,o(t) ;ig(l) dp,q(t)-
Likewise, in the case of ¢ # p = 0, we have

A @ <a1m6507(1 _ blm%) = goq(t) lim dyq(t).

m da ob —0

In the case of p = ¢ # 0, we have

am - bm 7maS , 7maS ’ 1
8= DI (o O 0o O] = a0l )

In the case of p = ¢ = 0, we have

B a™ — pm —m 85070 1—m 350,0 . .
A = T <a W - b W - g0,0(t) ;E}%} dpap(t)’

Summarizing all cases above yield

_ a™ —om 1*777,875 17m87S
A= (“ ga " 8b> (34)
Ip.a(t) - dpq(t) if pg(p—q)#0,

gp,o(t) limg_yodp 4(t) if p#0,g=0,
=4 90,q(t)limpy o dpq(t) if ¢#0,p=0, (3.5)

Ipp(t)limgp dy 4(t) if p=q#0,

g0,0(t) limp_m dp70 (t) if pP=qg= 0.
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Since A is symmetric with respect to a and b, without loss of generality

we assume that a > b. It is easy to verify that % > 0, % > 0,

st smigr > 0 if pag(p — @) # 0 for ¢ = Iny/a/b > 0, which implies that
dp q(t) and its limits at (p,q) € {(p,q) : pg(p — ¢) = 0} are all positive. Thus by
Corollary 1 Stolarsky mean S, 4(a,b) is Schur m-power convex (Schur m-power
concave) with respect to (a,b) € R% if and only if A > (<)0 if and only if
g(t) = gpq(t) > ()0 for all ¢ > 0.

It is easy to check that for m = 0 this lemma is also true.

This Lemma is proved. ([l

Lemma 3. Both the g(t) = gp 4(t) defined by (3.1) and ¢'(t) := 0gp 4(t)/0t
are symmetric with respect to p and q, and continuous with respect to (p,q)
on R2.

PRrROOF. Firstly, it is easy to check g, 4(¢) is symmetric with respect to p an q.
Hence, 9gq,,(t)/0t = dg, 4(t)/0t, which implies that dg, 4(t)/0t is also symmetric
with respect to p and q.

Secondly, by the proof of Lemma 2, it is easy to see that g(t) = gpq(t) is
continuous with respect to (p,q) on R2.

Lastly, we prove ¢'(t) = 0g, 4(t)/0t is also continuous with respect to (p, q)
on R2,

A simple calculation yields

‘(t) = 9gp,q(t)

(p — q)A cosh At — pB cosh Bt — qC fésh Ct
pite =4 if pg(p—q) #0,
(p+m) cosh(p+m)t—(p+m) cosh(p—m)t—2p(p—m)t sinh(p—m)t
Ea it p£0,q=0,
= 4 (g+m) cosh(g+m)t—(qg+m) cosh(q—m)t—2q(q—m)t sinh(qg—m)t (3.6)
aa it g+£0,p=0,
(2p — m) cosh(2p — m)t — (2p — m) coshmt — 2pmi sinh mt
v if p=q#0,
—4t sinh mt — 2mt? cosh mt if p=¢g=0.

It is obvious that dg, 4(t)/0t is continuous with respect to (p,q) € {(p,q) : p,¢ €R,
pq(p — q) # 0}. We have also to verify that Jg, 4(t)/0t is continuous on (p,q) €
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{(p,0):peR, p#0},{(0,q) : g € R, ¢ # 0}, {(n,p) : p €R, p # 0}, {(0,0)}.
In fact, some simple calculations yield

99p.4(1) _ dgp,o(t) i 0Gp.q(t) _ 9g0,4(1)

= = a0 M e T o
. 0gp4(1) _ 9gp.p(1) . O0gpp(t) _ Jgo,0(t)
I = = e T e T o

which completes this proof. [

Lemma 4. We have

3g(t)

o g Pt S

PROOF. It is easy to check that g(0) = ¢’(0) = ¢”(0) = 0.
In the case of pg(p — q) # 0. Applying L’Hospital’s rule (three times) we
have

B() _ g0 _

lim = lim =
t—0,t>0 23 t—0,t>0 22
(p—q)A® — pB® — qC?

— = p + q — 3m. 3.8

4pa(p — q) (38)

In the case of pg(p — q) = 0. Likewise, some simple calculations also lead

to (3.7).

This completes the proof. ([l

Lemma 5. Let m > 0 and 8 = max(|4|, |B|,|C|) where A, B, C are defined
by (3.2). Then

(i) Ifpq(p —q) # 0 and p > q, then

ptag=m if p>qg>morq<p<0,
rq
. 2Bg(t) p—qg—m .
={— fp>qg=m, .
A = s T (39)
—q+m .
_B—d4vw if p>0, ¢g<m, p>q.
p(p—q)

(ii) If p # g = 0, then

t—oo bt

- if p<O,
lim 2290 _ ) =0 np (3.10)
—(p+m)p=2 if p>0.
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(iii) If p=q # 0, then

i 2P9() (2p—m)p~? if p>morp<0,
1m =
t—oo  eft —00 if 0<p<m.

(iv) If p=q =0, then

lim 289(t)

t—oo Pt

PROOF. (3.9)—(3.12) easily follow from the following limit relations:

lim

t—00 ebt

2coshat |1 if B=]al,
0 if 8> |al;

1m
t—00 eBt

2atsinhat  Joo if B =|a,
0 if 8> |al

53

(3.11)

(3.12)

(3.13)

(3.14)

(i) If pg(p — q) # 0 and p > ¢, then 8 = max(|4|,|B|,|C|) = max(|A|,|C|)

because |C|?> — |B|?> = 4m(p — q¢) > 0. By (3.6) and (3.13) we have
. 2Bg(t) _24(t)
palp = q) lim =57 =palp =) im =5

. (p — q) A cosh At — pB cosh Bt — qC cosh Ct

= lim 2

t—o00 eﬂt

p—qA if |A] > |C], i.e. p(g —m) >0,

=4 (p—qA—qC if |Al=]C], ie p(g—m)=0,
—qC if |Al <|C], ie.p(g—m) <0

Taking into account pg(p — ¢q) # 0 and p > ¢, we obtain

(3.15)

p—q)p+qg—m) if p>g>morqg<p<O,

_ 2fBg(t) ,
pa(p —q) lim —5= = ¢ p(p—q—m) if p>q=m,

—q(p—q+m) if p>0, ¢g<m, p>q.

Divided by pg(p — ¢) in the above limit relation yields (3.9).

(i) If p # ¢ = 0, then 8 = max(|A[,|B|,|C|) = max(|p — m/|, |[p + m|). By (3.6)

and (3.13), (3.14) we have

i 2090 _ 290

t—o00 eﬁt - t—00 eﬁt
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~ lim 2 (p + m) cosh(p + m)t — (p + m) cosh(p — m)t — 2p(p — m)tsinh(p — m)t
S —p2eft

—00 if [p—m|>|p+m|, ie.p <0,
—(p+m)p~2>0 if [p—m|<|p+m]| ie p>0.

(ii) If p = ¢ # 0, then 8 = max(|4|,|B|,|C|) = max(|2p — m|,m). By (3.6) and
(3.13), (3.14) we have

_2Pg(t) _ . 2¢'(1)
tlirgo et tlggo eBt

~ lim 2 (2p — m) cosh(2p — m)t — (2p — m) coshmt — 2pmt sinh mt

T p2eft
2p —m)p~2 if [2p—m|>m, i.e. p>m or p <O,
(

=4 —00 if |2p—m|=m, ie.p=m,
—00 if 2p—m|<m, ie. 0<p<m.

(iv) If p = ¢ = 0, then 8 = max(|A|,|B|,|C|) = max(m,m,m) = m. By (3.6)
and (3.13), (3.14) we have

. 2Bg(t) ) —2mt? sinh mt
lim = lim 2—— = —o0.
t—oo  ePt t—o00 emt
This proof is complete. (I

Lemma 6. Suppose that |t1], |t2], |t3] are pairwise distinct numbers. Then
the following identities

sgn (u(t1,t2,t3)) = sgn(cosht; — coshts) = sgn(|t1] — |t3]) (3.16)
hold, where
t1sinht; — tosinht tosinhty — t3sinht
u(t17t2’t3) _ 1 SIn 1 2 SINN 9 . 2 S1NN 19 381NN ts (317)

cosht; — coshtg coshty — coshts

PRrROOF. To prove the first identity of (3.16), we note that both the function
t — cosht and t — tsinht are even on R, and so we have

u(ty, ta, t3) = u(|t1], [ta, |ts]).

Put cosh |t;| = z;, ¢ = 1,2,3, then x1,z2,23 > 1 and are also pairwise

[t;| = In (xz + \/33127—1) sinh |t;| = \/ﬁ

distinct, and
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Thus, the first identity of (3.16) is equivalent to

san (f(an) — flx2)  flx2) — flzs)

Tr1 — T2 T2 — I3

) = sgn(z; — x3), (3.18)

where

f@)=+va?2—1ln(z+Va2-1), z > 1.

By simple calculations, we get

fll@) =1+ —m—=1In(z + Va2 — 1),

vz -1
() = eva?—1—In(z+ Va2 —1) _ h(x)
(Ve =1)° (VereT)

Since A'(z) =2(Va? — 1 )_1> 0, we have h(x) > h(1) =0, which yields f”(x) > 0,
and so f is convex on (1,00). From the properties of convex functions it follows

that L (M) s st)
T1) — T2 _ To) — xIs >0,

T1 — I3 Tl — T2 T2 — T3

which implies that the first identity of (3.16) holds.
Next we show that the second identity of (3.16) holds. Since the function
t — cosht is even on R and strictly increasing on R, we have

h |t1] — cosh |t
cosht; — coshits = (Jt1] — |t3]) cosh |fa] = coshts|

)

[ta] — [ts]
from which the second identity of (3.16) follows.
This proof is ended. O
Lemma 7. Let
Ogp 4(t
g1 = 2290 _ 400y gu(0) for patp—a) £0, (3.19)
where
cos Bt — cos C't
)= —— (3.20)

pP—q
sh At—cosh C
(P — QA Gty — PB

bq

(3.21)

92(t) =

and A, B,C are defined by (3.2). Then for all t > 0, we have
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(i) sgn(g1(t)) = —sgn(m).
(ii) sgn(g2(t)) = —sgn(m)sgn(g’(¢)).
(iii) g2(t) is monotone with t > 0.

(
(

PROOF. (i) By the second identity of (3.16) we have

sgn(|Bt| — |Ct
sgn (g1(t)) = gSgII(IL_L)) = —sgn(m)
for all t > 0.

(ii) Using (3.19) and the first result of this lemma yield

senaa(8) = S — TN (s (¢ (1)

(iii) To prove that go(t) is monotone with ¢ > 0, it is enough to show that
sgn (g4 (t)) does not depend on all ¢ > 0. In fact, we have

sgn (g5(t)) = — sgn(m) sgn(p — m) sgn(q — m) sgn(p + ¢ — m) (3.22)

holds for pq(p — q) # 0.
A simple derivative computation yields

cosh At — cosh Ct
paga(t) = (v — a)A cos Bt — cos C't
Asinh At — C'sinh Ct  Bsinh Bt — C'sinh Ct
( cosh At —coshCt ~ cos Bt — cos Ct >
cosh At — cosh Ct
cos Bt — cos Ct

= til(p - q)A U(Atv Cta Bt)a

where u(t1,t2,t3) is defined by (3.17). From (3.16) and ¢ > 0 it follows that
sgn (14¢ - Ct)
sgn (|Bt|—|Ct])

m sgn (q(p —m))

= —sgn(m) sgn(p) sgn(q) sgn(p — m) sgn(q — m) sgn(p + q — m),

sgn (pags(t)) = sgn (¢~ (p — @) sgn(A) sgn (cosh | At| — cosh | Bt|)

=sgn(p—q)sgn(p+q—m)

which is equivalent to (3.22) for pq(p — q) # 0.
This accomplishes the proof. ([
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4. Proofs of main results

ProoOF oF THEOREM 1. Denote by
D={(p,q):p+q—3m >0, min(p,q) >m} (m>0).

By Lemma 3.1, to prove Theorem 1, it suffices to prove that g, ,(t) > 0 for all
t > 0 if and only if (p,q) € D.

Necessity. We prove that (p,q) € D is the necessary conditions for g(t) =
Gpq(t) >0 for all t > 0. It is obvious that

lim 39(t) >0 and lim 2B(t)
t—0,t>0 2t3 tSoo  eB

> 0. (4.1)

The necessary conditions will be obtained from (4.1) together with (3.7) and
(3.9)—(3.12). We divide the proof of necessity into six cases.

(i) Case 1: pg(p —q) #0 and p > q.
Subcase I

p+q—3m=0,

p+qg—m
pq

p>qg>morqg<p<0

{p+q—3m20,
>0, =

p>q>m,

which implies that (p,q) € {(p,q) : p > ¢ > m} = D1;.
Subcase 2:
p+qg—3m=0,

—g— >2m
p—q m207 — b=z )
q(p—q) q=m,
p>q=m

which implies that (p,q) € {(p,q) : p > 2m, ¢ =m} = Dys.

Subcase 3:
p+qg—3m=0,
_boatm 0,
» >p(()2’3 —4) — which is impossible.
q<m,
p>4q,
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(i) Case 17: pg(p —q) #0 and p < q.
Since gp 4(t) is symmetric with respect to p and ¢, so (p,q) € D}; U D/,
if (4.1) holds, where
Dy ={®a):q>p>m}, Diy={(p,q):q=2m, p=m}.
(ii) Case 2: p#£q=0.

Subcase 1:
p+qg—3m=>0,
—o0 > 0, = which is impossible.
p<0=g,

Subcase 2:

p+q—3m2=0,
—(p+m)p~2 >0, = which is impossible.
p>0=gq,

(i) Case 2: q #p = 0.

Since gp ¢(t) is symmetric with respect to p and ¢, so this case is also impos-
sible if (4.1) holds.

(iii) Case 3: p=q #0.

Subcase 1:
p+qg—3m=>0,
(zp_m)p_2207 p+q_3m207
=
p>morp <0, p=gq>m,

pP=q#0

which implies that (p,q) € {(p,q) :p+q¢—3m >0, p=g>m} = D3.
Subcase 2:
p+q—3m =0,

—o0 > 0,
0<p<m,
p=q#0,

—> which is impossible.
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(iv) Case 4: p=q=0.
p+q—3m =0,
—o0 > 0, = which is impossible.
p=q=0,
Summarizing all the cases yield

(p, q) S (Dll U Dlg) U (Dil U D/12) UD3; = D.

Sufficiency. We prove the condition (p,q) € D is sufficient for g(t) = g, 4(t) > 0
for all ¢ > 0. Since ¢g(0) = 0, it is enough to prove ¢'(t) > 0 if (p,q) € D.
(i) In the case of (p,q) € D with pg(p — ¢) # 0. By (3.8) and (3.15), we see
that
sgn (¢'(0)) =sgn (g(0)) =0 and  sgn(g'(c0)) =sgn(g(oc)) =0

if (p,q) € D with pg(p — q) # 0.
On the other hand, noting m > 0 and by (ii) and (iii) of Lemma 7, we have
sgn (92(0)) = —sgn (m) sgn (¢'(0)) <0,
sgn (g2(00)) = — sgn (m) sgn (¢'(c0)) <0
and go(t) is monotone with ¢ > 0, which mean that go(t) < 0 for all ¢ > 0. Taking
into account sgn (g1(t)) = —sgn(m) < 0, we obtain that ¢'(t) = g1(t)g2(¢) > 0
for all ¢t > 0.

(ii) In the case of (p,q) € D with pg(p — ¢) = 0. Form Lemma 3 it follows
that

9gp0(t) _ 1. Ogpyq(t) . .
() = L0 gy DIl _
g ot lim === 20 if (p,g) € Dwithp#¢=0.

Similarly, we have

9go,4(t)

g(t)= =35> >0 if (p.g) € D with g #p =0,
g’(t)=agpa’—§(” >0 if (p,g) € D with p=q #0,
_ 990.0(t)

g'(t) ot >0 if (p,q) € D withp=¢q=0.

Therefore, ¢'(t) = dgp,4(t)/0t > 0 if (p,q) € D.
This completes the proof of Theorem 1. (|
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PROOF OF THEOREM 2. Denote by
E={(p,q}:p+q—3m<0,p>q, ¢g<m} (m>0),

E'={(p,¢}:p+q—3m<0, ¢g>p, p<m} (m>0).
Then

EUE ={(p,q} :p+q—3m <0 and min(p,q) <m} (m >0).

By Lemma 3.1, to prove Theorem 2, it suffices to show that g, ,(t) < 0 for all
t > 0 if and only if (p,q) e EUE'.

Necessity. We prove (p,q) € E U E’ is the necessary conditions for g(t) =
Gp,q(t) <0 for all t > 0. It is clear that

im 39() <0 and lim 2B9(t)
t—0,t>0 2t3 t—oo Bt

<0. (4.2)

We derive the necessary conditions from (4.2) together with (3.7) and (3.9)—(3.12).
To this aim, we divide the proof of necessity into six cases.
(i) Case 1: pg(p — q) # 0 and p > q.
Subcase 1:
p+q—3m<0,
ptqg—m
pq
p>g>morqg<p<0

<0 = 0>p>gq,

— )

which implies that (p,q) € {(p,q) : 0 > p > q} = E1;.
Subcase 2:

wgov —t q:m,

a(p—q) -

P> q—m p>q

which implies that (p,q) € {(p,q) : ¢ = m,p < 2m} = Ejs.
Subcase 3:

p—q+m p+q—3m<0,

plp—q) ~ p>0,
=

p>0, q<m,
a<m p>q,
p>q
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which implies that (p,q) € {(p,q) : p+q—3m <0, p>0, ¢ <m, p>q} = Ei3.

(i) Case 1’: pg(p —q) # 0 and p < q.
Since g, 4(t) is symmetric with respect to p and ¢, so (p,q) € Ej; UE{;UE1;3
if (4.2) holds, where

E ={(p.q): 0>q>p},
Ely ={(p,q) :p=m, ¢ <2m, ¢>p},

Els={(p,q):p+q—3m<0, ¢>0, p<m, q>p}.

(ii) Case 2: p #q=0.

Subcase 1:
+ - 3m S 0)
P p+qg—3m <0,
—00 <0,
p<0=gq,
p<0=gq

which implies that (p,q) € {(p,q) :p+q¢—3m <0, p<0=gq} = Eo.
Subcase 2:

p+q—3m <0,
—(p+m)p2 <0,

:}{
p>0=gq

p>0=gq,

which implies that (p,q) € {(p,q) :p+q¢—3m <0, p>0=¢q} = Es.

(ii’) Case 2’: ¢ #p=0.

Since gp (t) is symmetric with respect to p and ¢, so (p,q) € Ey U Ej, if
(4.2) holds, where

Eélz{(p’9)1p+q—3m§0, q < 0=p},
Ey={p,q):p+q—3m<0, ¢>0=p}
(iii) Case 3: p=q # 0.

Subcase 1:

2p—m)p~2 <0, +q—3m <0,
(2p—m)p~2 < _ Jpta <
p>morp<O0,

p=q#0

p=q<0,

which implies that (p,q) € {(p,q) :p+q¢—3m <0, p=q <0} = E3.
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Subcase 2:
p+q—3m<0,
—00 <0, +q—3m <0,
= — pr4q S
0<p<m, O0<p=g<m,
p=q#0

which implies that (p,q) € {(p,q) :p+q¢—3m <0, 0<p=gq <m} = Es.
(iv) Case 4: p=q=0.

p+q—3m<0,
—00 <0, = which implies that (p,q) € {(0,0)} = E,.

p=q=0,
Summarizing all the cases yield

(p,q) € (Er1 U E12 U Ei3) U (B}, UEj, U EYS)
U (B U E2) U (ESy UEL) U (E31 UEsy)UEsyy = EUE.

Sufficiency. Similarly to proof of sufficiency of Theorem 1, we can prove ¢’'(t) < 0

if (p,q) € EUE'. Hence g(t) = gp,4(t) < g(0) =0 for all ¢t > 0.
The proof of Theorem 2 is completed. ([l

PROOF OF THEOREM 3. Let gp 4.m(t) := gp q(t) defined by (3.1) and

/

p=-pq=-q¢ m=-m

We easily verify that, for p,q,p’,¢,m,m' € R,

Ip.qm(t) = —=Gp g7 ().

From this and Lemma 2, for m < 0 Stolarsky mean Sy, 4(a,b) is Schur m-power
convex if and only if Sy 4 (a, b) is Schur m/-power concave with respect to (a,b) €
R?, which, by Theorem 2, if and only if
p+q¢ <3m' and min(p’,q) <m/,
that is,
p+¢>3m and max(p,q)>m.

Theorem 3 follows. O
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PROOF OF THEOREM 4. Similarly to the proof of Theorem 3, we have that
for m < 0 Stolarsky mean Sy, 4(a,b) is Schur m-power concave if and only if
Spr.q(a@,b) is Schur m’-power convex with respect to (a,b) € R%, which, by The-
orem 1, if and only if

!/

p+q¢ >3m'" and min(p’,q) >m/,
that is,
p+¢<3m and max(p,q)<m,

The proof of Theorem 4 ends. O

PROOF OF THEOREM 5. By Lemma 3.1, to prove Theorem 5, it is enough
to prove that g, 4(t) > (<)0 for all ¢ > 0 if and only if p+ ¢ > (<)0 for m = 0.
For this end, we divide the proof into four cases.

(i) Case 1: pg(p — q) # 0. By (3.1) we have

(p — g)sinh(p + ¢)t — (p + ¢) sinh(p — q)¢
pa(p —q)
k((p+q@)t) — k((p — 9)t)

=tp+q) o .

Ip.q(t) =

Denote by k(z) = (sinhz)/z if z # 0 and k(0) = 1. We easily check that
k(=) = k(z) and k'(x) > (<)0 for z > (<)0. In fact, k'(z) = 2 2w(x), w(z) =
xzcoshz — sinhz > (<)0 for > (<)0 because w'(z) = xsinhz > 0 for z # 0.
Thus,

sn (k((er Qt) — k(lp — Q)t))
pq
_ [(p+ @)t| = [(p — @)t k(|(p+@)t]) — k(I(p — 9)t]
‘Sg“< pq )Sgn< o+ a)th) — [(p— )] )

Sgn< t (p+q)2(pq)2)17

lp+aql+Ip—q Pq

it follows that

k((p+ @)t) — k((p — 9)t)
pq

sgn(gp,q(t)) = sgn(t(p + q)) sgn ( ) =sgn(p +q).

This shows that g, 4(t) > (<)0 for all ¢ > 0 if and only if p + ¢ > (<)0.
(ii) Case 2: pg =0, p # q. By (3.1) we have

Ipo(t) = %(pt cosh(pt) — sinh(pt)) (p #0).
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Since w(z) = z coshz —sinhz > (<)0 for z > (<)0, gp.0(t) > (<)0 (p # 0) for all
t > 0 if and only if pt > (<)0, that is, p > (<)0.

In the same way, we can prove that go 4(t) > (<)0 (¢ # 0) for all ¢ > 0 if and
only if ¢ > (<)0.

(iii) Case 3: p=q # 0. By (3.1) we have

Ipp(t) =

sinh(2pt) —2pt 2t (sinh(2pt)
»? Cp\ 2t

- 1) _ % (k(2pt) — k(0)).

Since k'(z) > (<)0 for z > (<)0, we get k(2pt) > k(0). It follows that g, ,(t) >
(<)0 (p #0) for all t > 0 if and only if 2¢/p > (<)0, that is, p > (<)0.
(iv) Case 4: p=¢q=0. Clearly, go,o(t) = 0.
To sum up, for m =0, g, 4(t) > ()0 for all t > 0 if and only if p+¢ > (<)0.
The proof of Theorem 5 is completed. O
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