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Schur power convexity of Stolarsky means

By ZHEN-HANG YANG (Hangzhou)

Abstract. In this paper, the Schur convexity is generalized to Schur f -convexity,

which contains the Schur geometrical convexity, Schur harmonic convexity and so on.

When f : R+ → R is defined by f(x) = (xm − 1)/m if m 6= 0 and f(x) = lnx if

m = 0, the necessary and sufficient conditions for f -convexity (is called Schur m-power

convexity) of Stolarsky means are given, which generalized and unified certain known

results.

1. Introduction and main results

Let p, q ∈ R and a, b ∈ R+ := (0,∞) with a 6= b. The so-called Stolarsky

means Sp,q(a, b) are defined by

Sp,q(a, b) =





(
q(ap − bp)

p(aq − bq)

) 1
p−q

if pq(p− q) 6= 0,

(
ap − bp

p(ln a− ln b)

) 1
p

if p 6= 0, q = 0,

(
aq − bq

q(ln a− ln b)

) 1
q

if q 6= 0, p = 0,

exp

(
ap ln a− bp ln b

ap − bp
− 1

p

)
if p = q 6= 0,

√
ab if p = q = 0.

(1.1)
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Also, Sp,q(a, a) = a. It is known that the Stolarsky means Sp,q(a, b) are C∞

function on the domain {(p, q, a, b) : p, q ∈ R, a, b ∈ R+} (see [19, Lemma 1]),

and obviously symmetric with respect to a, b and p, q.

Most of the classical two variable means are special cases of Sp,q(a, b), for

example, S1,2 = A is the arithmetic means, S0,0 = G is the geometric mean,

S−1,−2 = H is the harmonic mean, S1,0 = L is the logarithmic mean, S1,1 = I

is the identric mean (exponential mean), and more generally, the r-th power

mean is equal to Sr,2r. The basic properties of Stolarsky means, as well as their

comparison theorems, log-convexity, and inequalities were studied in papers [3],

[8], [12], [15], [16], [18], [19], [20], [23], [24], [25], [26], [27], [28], [36], [37], [42],

[43], [44], [46], [47].

Schur convexity was introduced by Schur in 1923 [21], and it has many im-

portant applications in analytic inequalities [2], [11], [49], linear regression [35],

graphs and matrices [7], combinatorial optimization [14], information-theoretic

topics [9], Gamma functions [22], stochastic orderings [32], reliability [13], and

other related fields.

In recent years, the Schur convexity and Schur geometrical convexity of

Sp,q(a, b) have attracted the attention of a considerable number of mathemati-

cians [4], [5, 17], [29], [30], [31], [33]. Qi [30] first proved that the Stolarsky

means Sp,q(a, b) are Schur convex on (−∞, 0] × (−∞, 0] and Schur concave on

[0,∞) × [0,∞) with respect to (p, q) for fixed a, b > 0 with a 6= b. Yang [45]

improved Qi’s result and proved that Stolarsky means Sp,q(a, b) are Schur convex

with respect to (p, q) for fixed a, b > 0 with a 6= b if and only if p + q < 0 and

Schur concave if and only if p+ q > 0.

Qi et al. [29] tried to obtain the Schur convexity of Sp,q(a, b) with respect to

(a, b) for fixed (p, q) and declared an incorrect conclusion. Shi et al. [33] observed

that the above conclusion is wrong and obtained a sufficient condition for the

Schur convexity of Sp,q(a, b) with respect to (a, b). Chu and Zhang [5] improved

Shi’s results and gave a necessary and sufficient condition. This perfectly solved

the Schur convexity of Stolarsky means with respect to (a, b).

The Schur geometrical convexity was introduced by Zhang [50], and there

has many interesting results [10], [34], [39], [40]. For the Schur geometrical con-

vexity of Stolarsky means Sp,q(a, b), Chu and Zhang [4] proved that they are

Schur geometrically convex with respect to (a, b) ∈ R2
+ if p + q ≥ 0 and Schur

geometrically concave if p + q ≤ 0. Li et al. [17] also investigated the Schur

geometrical convexity of generalized exponent mean Ip(a, b). In 2010, a necessary

and sufficient condition for Schur geometrical convexity of the four-parameter
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means with respeto to a pair of parameters was given in [48]. This give a unified

treatment for Schur geometrical convexity of Stolarsky and Gini means.

Recently, Anderson et al. [1] discussed an attractive class of inequalities,

which arise from the notation of harmonic convexity. And then it was started

to research for Schur harmonic convexity. Chu et al. [6] showed that the Hamy

symmetric function is Schur harmonic convex and obtained some analytic inequ-

alities including the well-known Weierstrass inequalities. Xiao [41] proved that

the Lehmer mean values Lp(a, b) are Schur harmonic convex (Schur harmonic

concave) with respect to (a, b) ∈ R2
+ if and only if p ≥ (≤)0.

The purpose of this paper is to generalize the notion of Schur convexity and

investigated the so-called Schur power convexity of Stolarsky means Sp,q(a, b).

Our main results are as follows.

Theorem 1. For m > 0 and fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is

Schur m-power convex with respect to (a, b) ∈ R2
+ if and only if p+ q ≥ 3m and

min(p, q) ≥ m.

Theorem 2. For m > 0 and fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is

Schur m-power concave with respect to (a, b) ∈ R2
+ if and only if p+ q ≤ 3m and

min(p, q) ≤ m.

Theorem 3. For m < 0 and fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is

Schur m-power convex with respect to (a, b) ∈ R2
+ if and only if p+ q ≥ 3m and

max(p, q) ≥ m.

Theorem 4. For m < 0 and fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is

Schur m-power concave with respect to (a, b) ∈ R2
+ if and only if p+ q ≤ 3m and

max(p, q) ≤ m.

Theorem 5. For m = 0 and fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is

Schur m-power convex (Schur m-power concave) with respect to (a, b) ∈ R2
+ if

and only if p+ q ≥ (≤)0.

The organization of the paper is as follows. In Section 2, based on the notion

and lemmas of Schur convexity, we introduce the definition of Schur f -convex and

Schur f -concave function, and prove decision theorem for Schur f -convexity. As

a special case, the definition and decision theorem of Schur power convexity are

deduced. In Section 3, some lemmas are given. In Section 4, our main results are

proved.
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2. Schur f-convexity and Schur power convexity

For convenience of readers, we recall some definitions as follows.

Definition 1 ([21], [38]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈
Rn(n ≥ 2).

(i) x is said to by majorized by y (in symbol x ≺ y) if

k∑

i=1

x[i] ≤
k∑

i=1

y[i] for 1 ≤ k ≤ n− 1,

n∑

i=1

x[i] =

n∑

i=1

y[i], (2.1)

where x[1] ≥ x[2] · · · ≥ x[n] and y[1] ≥ y[2] · · · ≥ y[n] are rearrangements of x

and y in a decreasing order.

(ii) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n. Let Ω ⊆ Rn(n ≥ 2). The function

φ : Ω → R is said to be increasing if x ≥ y implies that φ(x) ≥ φ(y). φ is

said to be decreasing if and only if −φ is increasing.

(iii) Ω ⊆ Rn is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for all x, y

and all α, β ∈ [0, 1] with α+ β = 1.

(iv) Let Ω ⊆ Rn(n ≥ 2) be a set with nonempty interior. Then φ : Ω → R is said

to be Schur convex if x ≺ y on Ω implies that φ(x) ≤ φ(y). φ is said to be

Schur concave if −φ is Schur convex.

Definition 2 ([21]). (i) Ω ⊆ Rn(n ≥ 2) is called symmetric set, if x ∈ Ω

implies that xP ∈ Ω for every n× n permutation matrix P.

(ii) The function φ : Ω → Rn is called symmetric if for every permutation

matrix P, φ(xP) = φ(x) for all x ∈ Ω.

For the Schur convexity, there is the following well-known result.

Lemma 1 ([21], [38]). Let Ω ⊆ Rn be a symmetric set with nonempty

interior Ω0 and φ : Ω → R be continuous on Ω and differentiable in Ω0. Then φ

is Schur convex (Schur concave) on Ω if and only if φ is symmetric on Ω and

(x1 − x2)

(
∂φ

∂x1
− ∂φ

∂x2

)
≥ (≤)0 (2.2)

Next let us define the Schur f -convexity as follows.

Definition 3. Let Ω = Un(U ⊆ R) and f be a strictly monotone function

defined on U. Denote by

f(x) = (f(x1), f(x2), . . . , f(xn)) and f(y) = (f(y1), f(y2), . . . , f(yn)).
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(i) Ω is called a f -convex set if (f−1(αf(x1) + βf(y1)), . . . , f
−1(αf(xn)+

βf(yn))) ∈ Ω for all x,y ∈ Ω and all α, β ∈ [0, 1] with α+ β = 1.

(ii) Let Ω be a set with nonempty interior. Then function φ : Ω → R is said to

be Schur f -convex on Ω if f(x) ≺ f(y) on Ω implies that φ(x) ≤ φ(y).

φ is said to be Schur f -concave if −φ is Schur f -convex.

Remark 1. Let Ω = Un(U ⊆ R) and f be a strictly monotone function defined

on U and f(Ω) = {f(x) : x ∈ Ω}. Then function φ : Ω → R is Schur f -convex

(Schur f -concave) if and only if φ ◦ f−1 is Schur convex (Schur concave) on f(Ω).

Indeed, if function φ : Ω → R is Schur f -convex, then ∀x′,y′ ∈ f(Ω), there

are x,y ∈ Ω such that x′ = f(x),y
′
= f(y). If f(x) ≺ f(y), that is, x′ ≺ y′,

then φ(x) ≤ φ(y), that is, φ((f−1(x′)) ≤ φ((f−1(y′)). This shows that φ ◦ f−1

is Schur convex on f(Ω). Conversely, if φ ◦ f−1 is Schur convex on f(Ω), then

∀x,y ∈ Ω such that f(x) ≺ f(y), we have φ((f−1(f(x))) ≤ φ((f−1(f(y))), that

is, φ(x) ≤ φ(y). This indicates φ is Schur f -convex on Ω.

In the same way, we can show that φ is Schur f -concave on Ω if and only if

φ ◦ f−1 is Schur concave on f(Ω).

Remark 2. Let Ω ⊆ Rn(n ≥ 2) be a symmetric set and the function φ : Ω → R
be Schur f -convex (Schur f -concave). Then φ is symmetric on Ω.

In fact, for any x ∈ Ω and every permutation matrix P, we have xP ∈ Ω.

Note xP is another permutation of x, hence f(x) ≺ f(xP) ≺ f(x). Since φ is

Schur f -convex (Schur f -concave), we have φ(x) ≤ (≥)φ(xP) ≤ (≥)φ(x), that is,

φ(xP) = φ(x) for all x ∈ Ω. This shows that φ is symmetric on Ω.

By Lemma 1 and Remark 1, 2, we have the following

Theorem 6. Assume that Ω = Un(U ⊆ R) is a symmetric set with nonempty

interior Ω0, f is a strictly monotone and derivable function defined on U, and
φ : Ω → R is continuous on Ω and differentiable in Ω0. Then φ is Schur f -convex

(Schur f -concave) on Ω if and only if φ is symmetric on Ω and

(f(x1)− f(x2))

(
1

f ′(x1)

∂φ

∂x1
− 1

f ′(x2)

∂φ

∂x2

)
≥ (≤)0 (2.3)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

Proof. We easily check that φ ◦ f−1 is symmetric on f(Ω) if and only if φ

is symmetric on Ω.

By Remark 1 and Lemma 1, φ ◦ f−1 is Schur convex (Schur concave) if and

only if φ ◦ f−1 is symmetric on f(Ω) and

(y1 − y2)

(
∂(φ ◦ f−1)

∂y1
− ∂(φ ◦ f−1)

∂y2

)
≥ (≤)0
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holds for any y ∈ f(Ω)0 with y1 6= y2. Substituting f−1(y) = x yields (2.3),

where x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

This proof is finished. ¤

Putting f(x) = 1, lnx, x−1 in Definition 3 yield the Schur convexity, Schur

geometrical convexity and Schur harmonic convexity. It is clear that the Schur f -

convexity is a generalization of the Schur convexity mentioned above. In general,

we have

Definition 4. Let f : R+ → R be defined by f(x) = (xm − 1)/m if m 6= 0

and f(x) = lnx if m = 0. Then function φ : Ω(⊆ Rn
+) → R is said to be Schur

m-power convex on Ω if f(x) ≺ f(y) on Ω implies that φ(x) ≤ φ(y).

φ is said to be Schur m-power concave if −φ is Schur m-power convex.

For Schur power convexity, by Theorem 6 we have

Corollary 1. Let Ω ⊆ Rn
+ be a symmetric set with nonempty interior Ω0

and φ : Ω → R be continuous on Ω and differentiable in Ω0. Then φ is Schur

m-power convex (Schur m-power concave) on Ω if and only if φ is symmetric on

Ω and

xm
1 − xm

2

m

(
x1−m
1

∂φ

∂x1
− x1−m

2

∂φ

∂x2

)
≥ (≤)0 if m 6= 0, (2.4)

(lnx1 − lnx2)

(
x1

∂φ

∂x1
− x2

∂φ

∂x2

)
≥ (≤)0 if m = 0 (2.5)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

3. Lemmas

Lemma 2. For fixed (p, q) ∈ R2, Stolarsky mean Sp,q(a, b) is Schur m-
power convex (Schur m-power concave) with respect to (a, b) ∈ R2

+ if and only if
g(t) ≥ (≤)0 for all t > 0, where

g(t)= gp,q(t)=





(p− q) sinhAt− p sinhBt− q sinhCt

pq(p− q)
if pq(p− q) 6= 0,

sinh(p−m)t+sinh(p+m)t−2pt cosh(p−m)t

−p2
if p 6= 0, q = 0,

sinh(q−m)t+sinh(q+m)t−2qt cosh(q−m)t

−q2
if q 6= 0, p = 0,

sinh(2p−m)t+ sinhmt− 2pt coshmt

p2
if p = q 6= 0,

−2t2 sinhmt if p = q = 0,

(3.1)
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and

A = p+ q −m, B = p− q −m C = p− q +m, (3.2)

Proof. Let m 6= 0 and S = Sp,q := Sp,q(a, b) defined by (1.1).

In the case of pq(p− q) 6= 0. We have

∂ lnS

∂a
=

1

S

∂S

∂a
=

1

p− q

(
pap−1

ap − bp
− qaq−1

aq − bq

)
,

∂ lnS

∂b
=

1

S

∂S

∂b
=

1

p− q

(−pbp−1

ap − bp
− −qbq−1

aq − bq

)
,

hence,

a1−m ∂S

∂a
− b1−m ∂S

∂b
=

S

p− q

(
p
ap−m + bp−m

ap − bp
− q

aq−m + bq−m

aq − bq

)
.

Substituting ln
√
a/b = t and using sinhx = 1

2 (e
x − e−x), coshx = 1

2 (e
x + e−x),

the right hand side above can be written as

a1−m ∂S

∂a
− b1−m ∂S

∂b
=

S(ab)−m/2

p− q

(
p
cosh(p−m)t

sinh pt
− q

cosh(q −m)t

sinh qt

)

=
S

2(ab)m/2

p

sinh pt

q

sinh qt

· 2p cosh(p−m)t sinh qt− q cosh(q −m)t sinh pt

pq(p− q)
.

Using the “product into sum” formula for hyperbolic functions and (3.2), we have

∆ :=
am − bm

m

(
a1−m ∂Sp,q

∂a
− b1−m ∂Sp,q

∂b

)

=
am − bm

m(a− b)

(a− b)Sp,q

2 (ab)
m/2

p

sinh pt

q

sinh qt

(p− q) sinhAt− p sinhBt− q sinhCt

pq(p− q)

= dp,q(t) · gp,q(t),

where

dp,q(t) =
am − bm

m(a− b)

(a− b)Sp,q

2 (ab)
m/2

p

sinh pt

q

sinh qt
(pq(p− q) 6= 0) (3.3)

and gp,q(t) is defined by (3.1).

In the case of p 6= q = 0. Since Sp,q(a, b) ∈ C∞ we have

∂Sp,0

∂a
= lim

q→0

∂Sp,q

∂a
,

∂Sp,0

∂b
= lim

q→0

∂Sp,q

∂b
,
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∂Sp,p

∂a
= lim

q→p

∂Sp,q

∂a
,

∂Sp,p

∂b
= lim

q→p

∂Sp,q

∂b
,

∂S0,0

∂a
= lim

p→0

∂Sp,p

∂a
,

∂S0,0

∂b
= lim

p→0

∂Sp,p

∂b
.

It follows that

∆ =
am − bm

m

(
a1−m ∂Sp,0

∂a
− b1−m ∂Sp,0

∂b

)

= lim
q→0

(
am − bm

m

(
a1−m ∂Sp,q

∂a
− b1−m ∂Sp,q

∂b

))

= lim
q→0

(dp,q(t)gp,q(t)) = gp,0(t) lim
q→0

dp,q(t).

Likewise, in the case of q 6= p = 0, we have

∆ =
am − bm

m

(
a1−m ∂S0,q

∂a
− b1−m ∂S0,q

∂b

)
= g0,q(t) lim

p→0
dp,q(t).

In the case of p = q 6= 0, we have

∆ =
am − bm

m

(
a1−m ∂Sp,p

∂a
− b1−m ∂Sp,p

∂b

)
= gp,p(t) lim

q→p
dp,q(t),

In the case of p = q = 0, we have

∆ =
am − bm

m

(
a1−m ∂S0,0

∂a
− b1−m ∂S0,0

∂b

)
= g0,0(t) lim

p→0
dp,p(t),

Summarizing all cases above yield

∆ =
am − bm

m

(
a1−m ∂S

∂a
− b1−m ∂S

∂b

)
(3.4)

=





gp,q(t) · dp,q(t) if pq(p− q) 6= 0,

gp,0(t) limq→0 dp,q(t) if p 6= 0, q = 0,

g0,q(t) limp→0 dp,q(t) if q 6= 0, p = 0,

gp,p(t) limq→p dp,q(t) if p = q 6= 0,

g0,0(t) limp→0 dp,0(t) if p = q = 0.

(3.5)
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Since ∆ is symmetric with respect to a and b, without loss of generality

we assume that a > b. It is easy to verify that am−bm

m(a−b) > 0,
(a−b)Sp,q

2(ab)m/2 > 0,
p

sinh pt ,
q

sinh qt > 0 if pq(p − q) 6= 0 for t = ln
√
a/b > 0, which implies that

dp,q(t) and its limits at (p, q) ∈ {(p, q) : pq(p − q) = 0} are all positive. Thus by

Corollary 1 Stolarsky mean Sp,q(a, b) is Schur m-power convex (Schur m-power

concave) with respect to (a, b) ∈ R2
+ if and only if ∆ ≥ (≤)0 if and only if

g(t) = gp,q(t) ≥ (≤)0 for all t > 0.

It is easy to check that for m = 0 this lemma is also true.

This Lemma is proved. ¤
Lemma 3. Both the g(t) = gp,q(t) defined by (3.1) and g′(t) := ∂gp,q(t)/∂t

are symmetric with respect to p and q, and continuous with respect to (p, q)

on R2.

Proof. Firstly, it is easy to check gp,q(t) is symmetric with respect to p an q.

Hence, ∂gq,p(t)/∂t = ∂gp,q(t)/∂t, which implies that ∂gp,q(t)/∂t is also symmetric

with respect to p and q.

Secondly, by the proof of Lemma 2, it is easy to see that g(t) = gp,q(t) is

continuous with respect to (p, q) on R2.

Lastly, we prove g′(t) = ∂gp,q(t)/∂t is also continuous with respect to (p, q)

on R2.

A simple calculation yields

g′(t) =
∂gp,q(t)

∂t

=





(p− q)A coshAt− pB coshBt− qC coshCt

pq(p− q)
if pq(p− q) 6= 0,

(p+m) cosh(p+m)t−(p+m) cosh(p−m)t−2p(p−m)t sinh(p−m)t

−p2
if p 6= 0, q = 0,

(q+m) cosh(q+m)t−(q+m) cosh(q−m)t−2q(q−m)t sinh(q−m)t

−q2
if q 6= 0, p = 0,

(2p−m) cosh(2p−m)t− (2p−m) coshmt− 2pmt sinhmt

p2
if p = q 6= 0,

−4t sinhmt− 2mt2 coshmt if p = q = 0.

(3.6)

It is obvious that ∂gp,q(t)/∂t is continuous with respect to (p, q)∈{(p, q) : p, q ∈R,
pq(p − q) 6= 0}. We have also to verify that ∂gp,q(t)/∂t is continuous on (p, q) ∈
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{(p, 0) : p ∈ R, p 6= 0}, {(0, q) : q ∈ R, q 6= 0}, {(p, p) : p ∈ R, p 6= 0}, {(0, 0)}.
In fact, some simple calculations yield

lim
q→0

∂gp,q(t)

∂t
=

∂gp,0(t)

∂t
, lim

p→0

∂gp,q(t)

∂t
=

∂g0,q(t)

∂t
,

lim
q→p

∂gp,q(t)

∂t
=

∂gp,p(t)

∂t
, lim

p→0

∂gp,p(t)

∂t
=

∂g0,0(t)

∂t
,

which completes this proof. ¤

Lemma 4. We have

lim
t→0, t>0

3g(t)

2t3
= p+ q − 3m. (3.7)

Proof. It is easy to check that g(0) = g′(0) = g′′(0) = 0.

In the case of pq(p − q) 6= 0. Applying L’Hospital’s rule (three times) we

have

lim
t→0, t>0

3g(t)

2t3
= lim

t→0, t>0

g′(t)
2t2

= . . .

=
(p− q)A3 − pB3 − qC3

4pq(p− q)
= p+ q − 3m. (3.8)

In the case of pq(p − q) = 0. Likewise, some simple calculations also lead

to (3.7).

This completes the proof. ¤

Lemma 5. Let m > 0 and β = max(|A|, |B|, |C|) where A, B, C are defined

by (3.2). Then

(i) If pq(p− q) 6= 0 and p > q, then

lim
t→∞

2βg(t)

eβt
=





p+ q −m

pq
if p > q > m or q < p < 0,

p− q −m

q(p− q)
if p > q = m,

−p− q +m

p(p− q)
if p > 0, q < m, p > q.

(3.9)

(ii) If p 6= q = 0, then

lim
t→∞

2βg(t)

eβt
=

{
−∞ if p < 0,

−(p+m)p−2 if p > 0.
(3.10)
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(iii) If p = q 6= 0, then

lim
t→∞

2βg(t)

eβt
=

{
(2p−m)p−2 if p > m or p < 0,

−∞ if 0 < p ≤ m.
(3.11)

(iv) If p = q = 0, then

lim
t→∞

2βg(t)

eβt
= −∞. (3.12)

Proof. (3.9)–(3.12) easily follow from the following limit relations:

lim
t→∞

2 coshαt

eβt
=

{
1 if β = |α|,
0 if β > |α|;

(3.13)

lim
t→∞

2αt sinhαt

eβt
=

{
∞ if β = |α|,
0 if β > |α|.

(3.14)

(i) If pq(p − q) 6= 0 and p > q, then β = max(|A|, |B|, |C|) = max(|A|, |C|)
because |C|2 − |B|2 = 4m(p− q) > 0. By (3.6) and (3.13) we have

pq(p− q) lim
t→∞

2βg(t)

eβt
= pq(p− q) lim

t→∞
2g′(t)
eβt

= lim
t→∞

2
(p− q)A coshAt− pB coshBt− qC coshCt

eβt

=





(p− q)A if |A| > |C|, i.e. p(q −m) > 0,

(p− q)A− qC if |A| = |C|, i.e. p(q −m) = 0,

−qC if |A| < |C|, i.e. p(q −m) < 0.

(3.15)

Taking into account pq(p− q) 6= 0 and p > q, we obtain

pq(p− q) lim
t→∞

2βg(t)

eβt
=





(p− q)(p+ q −m) if p > q > m or q < p < 0,

p(p− q −m) if p > q = m,

−q(p− q +m) if p > 0, q < m, p > q.

Divided by pq(p− q) in the above limit relation yields (3.9).

(ii) If p 6= q = 0, then β = max(|A|, |B|, |C|) = max(|p −m|, |p +m|). By (3.6)

and (3.13), (3.14) we have

lim
t→∞

2βg(t)

eβt
= lim

t→∞
2g′(t)
eβt
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= lim
t→∞

2
(p+m) cosh(p+m)t− (p+m) cosh(p−m)t− 2p(p−m)t sinh(p−m)t

−p2eβt

=

{
−∞ if |p−m| > |p+m|, i.e. p < 0,

−(p+m)p−2 > 0 if |p−m| < |p+m|, i.e. p > 0.

(iii) If p = q 6= 0, then β = max(|A|, |B|, |C|) = max(|2p −m|,m). By (3.6) and

(3.13), (3.14) we have

lim
t→∞

2βg(t)

eβt
= lim

t→∞
2g′(t)
eβt

= lim
t→∞

2
(2p−m) cosh(2p−m)t− (2p−m) coshmt− 2pmt sinhmt

p2eβt

=





(2p−m)p−2 if |2p−m| > m, i.e. p > m or p < 0,

−∞ if |2p−m| = m, i.e. p = m,

−∞ if |2p−m| < m, i.e. 0 < p < m.

(iv) If p = q = 0, then β = max(|A|, |B|, |C|) = max(m,m,m) = m. By (3.6)

and (3.13), (3.14) we have

lim
t→∞

2βg(t)

eβt
= lim

t→∞
2
−2mt2 sinhmt

emt
= −∞.

This proof is complete. ¤

Lemma 6. Suppose that |t1|, |t2|, |t3| are pairwise distinct numbers. Then

the following identities

sgn (u(t1, t2, t3)) = sgn(cosh t1 − cosh t3) = sgn(|t1| − |t3|) (3.16)

hold, where

u(t1, t2, t3) =
t1 sinh t1 − t2 sinh t2
cosh t1 − cosh t2

− t2 sinh t2 − t3 sinh t3
cosh t2 − cosh t3

(3.17)

Proof. To prove the first identity of (3.16), we note that both the function

t → cosh t and t → t sinh t are even on R, and so we have

u(t1, t2, t3) = u(|t1|, |t2|, |t3|).

Put cosh |ti| = xi, i = 1, 2, 3, then x1, x2, x3 > 1 and are also pairwise

distinct, and

|ti| = ln
(
xi +

√
x2
i − 1

)
, sinh |ti| =

√
x2
i − 1.
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Thus, the first identity of (3.16) is equivalent to

sgn

(
f(x1)− f(x2)

x1 − x2
− f(x2)− f(x3)

x2 − x3

)
= sgn(x1 − x3), (3.18)

where

f(x) =
√
x2 − 1 ln

(
x+

√
x2 − 1

)
, x > 1.

By simple calculations, we get

f ′(x) = 1 +
x√

x2 − 1
ln
(
x+

√
x2 − 1

)
,

f ′′(x) =
x
√
x2 − 1− ln

(
x+

√
x2 − 1

)
(√

x2 − 1
)3 :=

h(x)(√
x2 − 1

)3 .

Since h′(x)= 2
(√

x2 − 1
)−1

> 0, we have h(x) > h(1)= 0, which yields f ′′(x) > 0,

and so f is convex on (1,∞). From the properties of convex functions it follows

that
1

x1 − x3

(
f(x1)− f(x2)

x1 − x2
− f(x2)− f(x3)

x2 − x3

)
> 0,

which implies that the first identity of (3.16) holds.

Next we show that the second identity of (3.16) holds. Since the function

t → cosh t is even on R and strictly increasing on R+, we have

cosh t1 − cosh t3 = (|t1| − |t3|) cosh |t1| − cosh |t3|
|t1| − |t3| ,

from which the second identity of (3.16) follows.

This proof is ended. ¤

Lemma 7. Let

g′(t) =
∂gp,q(t)

∂t
= g1(t) · g2(t) for pq(p− q) 6= 0, (3.19)

where

g1(t) =
cosBt− cosCt

p− q
, (3.20)

g2(t) =
(p− q)A coshAt−coshCt

cosBt−cosCt − pB

pq
(3.21)

and A,B,C are defined by (3.2). Then for all t > 0, we have
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(i) sgn(g1(t)) = − sgn(m).

(ii) sgn(g2(t)) = − sgn(m) sgn(g′(t)).

(iii) g2(t) is monotone with t > 0.

Proof. (i) By the second identity of (3.16) we have

sgn (g1(t)) =
sgn(|Bt| − |Ct|)

sgn (p− q)
= − sgn(m)

for all t > 0.

(ii) Using (3.19) and the first result of this lemma yield

sgn(g2(t)) =
sgn (g′(t))
sgn (g1(t))

=
sgn (g′(t))
− sgn (m)

= − sgn (m) sgn (g′(t)) .

(iii) To prove that g2(t) is monotone with t > 0, it is enough to show that

sgn (g′2(t)) does not depend on all t > 0. In fact, we have

sgn (g′2(t)) = − sgn(m) sgn(p−m) sgn(q −m) sgn(p+ q −m) (3.22)

holds for pq(p− q) 6= 0.

A simple derivative computation yields

pqg′2(t) = (p− q)A
coshAt− coshCt

cosBt− cosCt

×
(
A sinhAt− C sinhCt

coshAt− coshCt
− B sinhBt− C sinhCt

cosBt− cosCt

)

= t−1(p− q)A
coshAt− coshCt

cosBt− cosCt
u(At,Ct,Bt),

where u(t1, t2, t3) is defined by (3.17). From (3.16) and t > 0 it follows that

sgn (pqg′2(t)) = sgn
(
t−1(p− q)

)
sgn(A)

sgn (|At|−|Ct|)
sgn (|Bt|−|Ct|) sgn (cosh |At| − cosh |Bt|)

= sgn (p− q) sgn(p+ q −m)
sgn (p(q −m))

sgn (−m(p− q))
sgn (q(p−m))

= − sgn(m) sgn(p) sgn(q) sgn(p−m) sgn(q −m) sgn(p+ q −m),

which is equivalent to (3.22) for pq(p− q) 6= 0.

This accomplishes the proof. ¤
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4. Proofs of main results

Proof of Theorem 1. Denote by

D = {(p, q) : p+ q − 3m ≥ 0, min(p, q) ≥ m} (m > 0).

By Lemma 3.1, to prove Theorem 1, it suffices to prove that gp,q(t) ≥ 0 for all

t > 0 if and only if (p, q) ∈ D.

Necessity. We prove that (p, q) ∈ D is the necessary conditions for g(t) =

gp,q(t) ≥ 0 for all t > 0. It is obvious that

lim
t→0, t>0

3g(t)

2t3
≥ 0 and lim

t→∞
2βg(t)

eβt
≥ 0. (4.1)

The necessary conditions will be obtained from (4.1) together with (3.7) and

(3.9)–(3.12). We divide the proof of necessity into six cases.

(i) Case 1: pq(p− q) 6= 0 and p > q.

Subcase 1:





p+ q − 3m ≥ 0,

p+ q −m

pq
≥ 0,

p > q > m or q < p < 0

=⇒
{
p+ q − 3m ≥ 0,

p > q > m,

which implies that (p, q) ∈ {(p, q) : p > q > m} = D11.

Subcase 2 : 



p+ q − 3m ≥ 0,

p− q −m

q(p− q)
≥ 0,

p > q = m

=⇒
{
p ≥ 2m,

q = m,

which implies that (p, q) ∈ {(p, q) : p ≥ 2m, q = m} = D12.

Subcase 3 : 



p+ q − 3m ≥ 0,

−p− q +m

p(p− q)
≥ 0,

p > 0,

q < m,

p > q,

=⇒ which is impossible.
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(i’) Case 1 ’: pq(p− q) 6= 0 and p < q.

Since gp,q(t) is symmetric with respect to p and q, so (p, q) ∈ D′
11 ∪ D′

12

if (4.1) holds, where

D′
11 = {(p, q) : q > p > m}, D′

12 = {(p, q) : q ≥ 2m, p = m}.
(ii) Case 2 : p 6= q = 0.

Subcase 1 : 



p+ q − 3m ≥ 0,

−∞ ≥ 0,

p < 0 = q,

=⇒ which is impossible.

Subcase 2 : 



p+ q − 3m ≥ 0,

−(p+m)p−2 ≥ 0,

p > 0 = q,

=⇒ which is impossible.

(ii’) Case 2 ’: q 6= p = 0.

Since gp,q(t) is symmetric with respect to p and q, so this case is also impos-

sible if (4.1) holds.

(iii) Case 3 : p = q 6= 0.

Subcase 1 : 



p+ q − 3m ≥ 0,

(2p−m)p−2 ≥ 0,

p > m or p < 0,

p = q 6= 0

=⇒
{
p+ q − 3m ≥ 0,

p = q > m,

which implies that (p, q) ∈ {(p, q) : p+ q − 3m ≥ 0, p = q > m} = D31.

Subcase 2 : 



p+ q − 3m ≥ 0,

−∞ ≥ 0,

0 < p ≤ m,

p = q 6= 0,

=⇒ which is impossible.
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(iv) Case 4 : p = q = 0.





p+ q − 3m ≥ 0,

−∞ ≥ 0,

p = q = 0,

=⇒ which is impossible.

Summarizing all the cases yield

(p, q) ∈ (D11 ∪D12) ∪ (D′
11 ∪D′

12) ∪D31 = D.

Sufficiency. We prove the condition (p, q) ∈ D is sufficient for g(t) = gp,q(t) ≥ 0

for all t > 0. Since g(0) = 0, it is enough to prove g′(t) ≥ 0 if (p, q) ∈ D.

(i) In the case of (p, q) ∈ D with pq(p− q) 6= 0. By (3.8) and (3.15), we see

that

sgn (g′(0)) = sgn (g(0)) ≥ 0 and sgn (g′(∞)) = sgn (g(∞)) ≥ 0

if (p, q) ∈ D with pq(p− q) 6= 0.

On the other hand, noting m > 0 and by (ii) and (iii) of Lemma 7, we have

sgn (g2(0)) = − sgn (m) sgn (g′(0)) ≤ 0,

sgn (g2(∞)) = − sgn (m) sgn (g′(∞)) ≤ 0

and g2(t) is monotone with t > 0, which mean that g2(t) ≤ 0 for all t > 0. Taking

into account sgn (g1(t)) = − sgn (m) < 0, we obtain that g′(t) = g1(t)g2(t) ≥ 0

for all t > 0.

(ii) In the case of (p, q) ∈ D with pq(p − q) = 0. Form Lemma 3 it follows

that

g′(t) =
∂gp,0(t)

∂t
= lim

q→0

∂gp,q(t)

∂t
≥ 0 if (p, q) ∈ D with p 6= q = 0.

Similarly, we have

g′(t) =
∂g0,q(t)

∂t
≥ 0 if (p, q) ∈ D with q 6= p = 0,

g′(t) =
∂gp,p(t)

∂t
≥ 0 if (p, q) ∈ D with p = q 6= 0,

g′(t) =
∂g0,0(t)

∂t
≥ 0 if (p, q) ∈ D with p = q = 0.

Therefore, g′(t) = ∂gp,q(t)/∂t ≥ 0 if (p, q) ∈ D.

This completes the proof of Theorem 1. ¤
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Proof of Theorem 2. Denote by

E = {(p, q} : p+ q − 3m ≤ 0, p ≥ q, q ≤ m} (m > 0),

E′ = {(p, q} : p+ q − 3m ≤ 0, q ≥ p, p ≤ m} (m > 0).
Then

E ∪ E′ = {(p, q} : p+ q − 3m ≤ 0 and min(p, q) ≤ m} (m > 0).

By Lemma 3.1, to prove Theorem 2, it suffices to show that gp,q(t) ≤ 0 for all

t > 0 if and only if (p, q) ∈ E ∪ E′.

Necessity. We prove (p, q) ∈ E ∪ E′ is the necessary conditions for g(t) =

gp,q(t) ≤ 0 for all t > 0. It is clear that

lim
t→0, t>0

3g(t)

2t3
≤ 0 and lim

t→∞
2βg(t)

eβt
≤ 0. (4.2)

We derive the necessary conditions from (4.2) together with (3.7) and (3.9)–(3.12).

To this aim, we divide the proof of necessity into six cases.

(i) Case 1 : pq(p− q) 6= 0 and p > q.

Subcase 1 : 



p+ q − 3m ≤ 0,

p+ q −m

pq
≤ 0,

p > q > m or q < p < 0

=⇒ 0 > p > q,

which implies that (p, q) ∈ {(p, q) : 0 > p > q} = E11.

Subcase 2 : 



p+ q − 3m ≤ 0,

p− q −m

q(p− q)
≤ 0,

p > q = m

=⇒





p ≤ 2m,

q = m,

p > q,

which implies that (p, q) ∈ {(p, q) : q = m, p ≤ 2m} = E12.

Subcase 3 :




p+ q − 3m ≤ 0,

−p− q +m

p(p− q)
≤ 0,

p > 0,

q < m,

p > q

=⇒





p+ q − 3m ≤ 0,

p > 0,

q < m,

p > q,
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which implies that (p, q) ∈ {(p, q) : p+ q− 3m ≤ 0, p > 0, q < m, p > q} = E13.

(i’) Case 1 ’: pq(p− q) 6= 0 and p < q.

Since gp,q(t) is symmetric with respect to p and q, so (p, q) ∈ E′
11∪E′

12∪E′
13

if (4.2) holds, where

E′
11 = {(p, q) : 0 > q > p},

E′
12 = {(p, q) : p = m, q ≤ 2m, q > p},

E′
13 = {(p, q) : p+ q − 3m ≤ 0, q > 0, p < m, q > p}.

(ii) Case 2 : p 6= q = 0.

Subcase 1 : 



p+ q − 3m ≤ 0,

−∞ ≤ 0,

p < 0 = q

=⇒
{
p+ q − 3m ≤ 0,

p < 0 = q,

which implies that (p, q) ∈ {(p, q) : p+ q − 3m ≤ 0, p < 0 = q} = E21.

Subcase 2 : 



p+ q − 3m ≤ 0,

−(p+m)p−2 ≤ 0,

p > 0 = q

=⇒
{
p+ q − 3m ≤ 0,

p > 0 = q,

which implies that (p, q) ∈ {(p, q) : p+ q − 3m ≤ 0, p > 0 = q} = E22.

(ii’) Case 2 ’: q 6= p = 0.

Since gp,q(t) is symmetric with respect to p and q, so (p, q) ∈ E′
21 ∪ E′

22 if

(4.2) holds, where

E′
21 = {(p, q) : p+ q − 3m ≤ 0, q < 0 = p},

E′
22 = {(p, q) : p+ q − 3m ≤ 0, q > 0 = p}.

(iii) Case 3 : p = q 6= 0.

Subcase 1 : 



p+ q − 3m ≤ 0,

(2p−m)p−2 ≤ 0,

p > m or p < 0,

p = q 6= 0

=⇒
{
p+ q − 3m ≤ 0,

p = q < 0,

which implies that (p, q) ∈ {(p, q) : p+ q − 3m ≤ 0, p = q < 0} = E31.
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Subcase 2 : 



p+ q − 3m ≤ 0,

−∞ ≤ 0,

0 < p ≤ m,

p = q 6= 0

=⇒
{
p+ q − 3m ≤ 0,

0 < p = q ≤ m,

which implies that (p, q) ∈ {(p, q) : p+ q − 3m ≤ 0, 0 < p = q ≤ m} = E32.

(iv) Case 4 : p = q = 0.





p+ q − 3m ≤ 0,

−∞ ≤ 0,

p = q = 0,

=⇒ which implies that (p, q) ∈ {(0, 0)} = E4.

Summarizing all the cases yield

(p, q) ∈ (E11 ∪ E12 ∪ E13) ∪ (E′
11 ∪ E′

12 ∪ E′
13)

∪ (E21 ∪ E22) ∪ (E′
21 ∪ E′

22) ∪ (E31 ∪ E32) ∪ E24 = E ∪ E′.

Sufficiency. Similarly to proof of sufficiency of Theorem 1, we can prove g′(t) ≤ 0

if (p, q) ∈ E ∪ E′. Hence g(t) = gp,q(t) ≤ g(0) = 0 for all t > 0.

The proof of Theorem 2 is completed. ¤

Proof of Theorem 3. Let gp,q,m(t) := gp,q(t) defined by (3.1) and

p′ = −p, q′ = −q, m′ = −m.

We easily verify that, for p, q, p′, q′,m,m′ ∈ R,

gp,q,m(t) = −gp′,q′,m′(t).

From this and Lemma 2, for m < 0 Stolarsky mean Sp,q(a, b) is Schur m-power

convex if and only if Sp′,q′(a, b) is Schur m
′-power concave with respect to (a, b) ∈

R2
+, which, by Theorem 2, if and only if

p′ + q′ ≤ 3m′ and min(p′, q′) ≤ m′,
that is,

p+ q ≥ 3m and max(p, q) ≥ m.

Theorem 3 follows. ¤
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Proof of Theorem 4. Similarly to the proof of Theorem 3, we have that

for m < 0 Stolarsky mean Sp,q(a, b) is Schur m-power concave if and only if

Sp′,q′(a, b) is Schur m
′-power convex with respect to (a, b) ∈ R2

+, which, by The-

orem 1, if and only if

p′ + q′ ≥ 3m′ and min(p′, q′) ≥ m′,
that is,

p+ q ≤ 3m and max(p, q) ≤ m,

The proof of Theorem 4 ends. ¤

Proof of Theorem 5. By Lemma 3.1, to prove Theorem 5, it is enough

to prove that gp,q(t) ≥ (≤)0 for all t > 0 if and only if p + q ≥ (≤)0 for m = 0.

For this end, we divide the proof into four cases.

(i) Case 1 : pq(p− q) 6= 0. By (3.1) we have

gp,q(t) =
(p− q) sinh(p+ q)t− (p+ q) sinh(p− q)t

pq(p− q)

= t(p+ q)
k((p+ q)t)− k((p− q)t)

pq
.

Denote by k(x) = (sinhx)/x if x 6= 0 and k(0) = 1. We easily check that

k(−x) = k(x) and k′(x) > (<)0 for x > (<)0. In fact, k′(x) = x−2w(x), w(x) =

x coshx − sinhx > (<)0 for x > (<)0 because w′(x) = x sinhx > 0 for x 6= 0.

Thus,

sgn

(
k((p+ q)t)− k((p− q)t)

pq

)

= sgn

( |(p+ q)t| − |(p− q)t|
pq

)
sgn

(
k(|(p+ q)t|)− k(|(p− q)t|
|(p+ q)t|)− |(p− q)t|

)

= sgn

(
t

|p+ q|+ |p− q|
(p+ q)2 − (p− q)2

pq

)
= 1,

it follows that

sgn(gp,q(t)) = sgn(t(p+ q)) sgn

(
k((p+ q)t)− k((p− q)t)

pq

)
= sgn(p+ q).

This shows that gp,q(t) ≥ (≤)0 for all t > 0 if and only if p+ q ≥ (≤)0.

(ii) Case 2 : pq = 0, p 6= q. By (3.1) we have

gp,0(t) =
2

p2
(pt cosh(pt)− sinh(pt)) (p 6= 0).
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Since w(x) = x coshx− sinhx > (<)0 for x > (<)0, gp,0(t) ≥ (≤)0 (p 6= 0) for all

t > 0 if and only if pt > (<)0, that is, p > (<)0.

In the same way, we can prove that g0,q(t) ≥ (≤)0 (q 6= 0) for all t > 0 if and

only if q > (<)0.

(iii) Case 3 : p = q 6= 0. By (3.1) we have

gp,p(t) =
sinh(2pt)− 2pt

p2
=

2t

p

(
sinh(2pt)

2pt
− 1

)
=

2t

p
(k(2pt)− k(0)) .

Since k′(x) > (<)0 for x > (<)0, we get k(2pt) > k(0). It follows that gp,p(t) ≥
(≤)0 (p 6= 0) for all t > 0 if and only if 2t/p > (<)0, that is, p > (<)0.

(iv) Case 4 : p = q = 0. Clearly, g0,0(t) = 0.

To sum up, for m = 0, gp,q(t) ≥ (≤)0 for all t > 0 if and only if p+ q ≥ (≤)0.

The proof of Theorem 5 is completed. ¤
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[8] P. Czinder and Zs. Páles, An extension of the Hermite–Hadmard inequality and an
application for Gini and stolarsky means, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 42.

[9] A. Forcina and A. Giovagnoli, Homogeneity indices and Schur-convex functions, Statis-
tica 42(4) (1982), 529–542.

[10] Ch. Gu and H. N. Shi, Schur-convexity and Schur-geometric convexity of Lehmer Means,
Math. Prac. Theory 39(12) (2009), 183–188.

[11] G. H. Hardy, J. E. Littlewood and G. Pólya, Some simple inequalities satisfied by
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