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Semi-invariant submanifolds of K-manifolds

By LUIGIA DI TERLIZZI, (Bari) FRANCESCA VERROCA (Bari)
and ROBERT A. WOLAK (Kraków)

Abstract. We are concerned with K-manifolds which are a natural generalization

of metric quasi-Sasakian manifolds. They are Riemannian manifolds with a compatible

f -structure which admits a parallelizable kernel, have closed Sasaki 2-form and verify

a certain normality condition. We study semi-invariant submanifolds of a K-manifold

and investigate the integrability of the various distributions involved. We also study the

normality of semi-invariant submanifolds and present a significant example.

1. Introduction

We consider a Riemannian manifold M̃ of dimension 2n + s equipped with

an f -structure ϕ of rank 2n with parallelizable kernel which is compatible with

the Riemannian metric. These manifolds are known as f.pk-manifolds or globally

framed f -manifolds (cf. [16], [17]) and naturally generalize almost contact metric

manifolds. When certain further conditions are satisfied we obtain more speci-

fic structures that D. E. Blair in [5] calls K- and S-structures that naturally

generalize quasi-Sasakian and Sasakian structures (e.g. cf. [5], [13], [12]).

There are many examples of such structures, (cf. [5], [15]), even of even

dimensional manifolds which are never Kähler but which admit S-structures; in
[15] an S-structure on the 4-dimensional manifold U(2) is constructed.

The study of semi-invariant submanifolds was started by A. Bejancu in [1] for

the Kählerian case and then intensively continued by several geometers (cf. e.g.

[2], [3], [4], [21]) in both the Hermitian and the Sasakian case. Generalizations

to the case of S-manifolds can be found in literature (cf. eg. [8], [19]). C. Calin
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(cf. [9], [10]) investigated the case of semi-invariant submanifolds of quasi-Sasakian

manifolds. The present paper generalizes this case: in fact, it deals with semi-

invariant submanifolds of the K-manifolds. It is organized in the following way.

Section 2 recalls the definitions and results that will be used in the paper. In

Section 3 we generalize in a natural way the notion of semi-invariant submanifold

of a K-manifolds, exhibit a pertinent example and study the integrability of the

distributions involved in this structure: the invariant the anti-invariant and their

direct sums with kerϕ. Finally, in Section 4 we present the concept of normality

for a semi-invariant submanifold and give two characterizations.

All manifolds and distributions considered are smooth i.e. of the class C∞; we

denote by Γ(−) the set of all sections of the corresponding bundle.

2. K- and S-manifolds

Let M̃ be a (2n+ s)-dimensional manifold equipped with an f -structure ϕ,

vector fields ξ1, . . . , ξs and 1-forms η1, . . . , ηs such that for all i, j ∈ {1, . . . , s},
ϕ(ξi) = 0, ηi ◦ ϕ = 0, ηi(ξj) = δij and ϕ2 = −Id +

∑s
j=1 η

j ⊗ ξj . The set

(M̃, ϕ, ξi, η
j), i, j ∈ {1, . . . , s}, is called an f -manifold with parallelizable kernel

(shortly: f.pk-manifold). If g is a Riemannian metric compatible with the struc-

ture, that is satisfies g(ϕX,ϕY ) = g(X,Y ) − ∑s
i=1 η

i(X)ηi(Y ), for any X,Y ∈
Γ(TM), the set (M̃, ϕ, ξi, η

j , g), i, j ∈ {1, . . . , s}, is called a metric f.pk-manifold.

The distribution D = =ϕ is clearly orthogonal to kerϕ = 〈ξ1, . . . , ξs〉. With a met-

ric f.pk-manifold there is naturally associated the Sasaki 2-form F := g(−, ϕ−)

and the tensor N of type (1, 2) such that N := [ϕ,ϕ]+2
∑s

i=1 dη
i⊗ξi, where [ϕ,ϕ]

is the Nijenhuis torsion of ϕ. When N = 0 we say that M̃ is normal. Moreover,

if the f.pk-manifold M̃ is normal and has closed Sasaki 2-form we say that it is a

K-manifold (cf. [5]). Clearly in the case s = 1 we get a quasi-Sasakian manifold.

If moreover dη1 = · · · = dηs = F then the K-manifold is called an S-manifold

and for s = 1 we have a Sasakian manifold.

S. Kanemaki obtained in [18] an important characterization of the quasi-Sasakian

manifolds. In [13], the authors proved the following generalization of Kanemaki’s

result.

Theorem 2.1 ([13]). Let (M̃, ϕ, ξi, η
j , g), i, j ∈ {1, . . . , s}, be an f.pk-

manifold. Then it is a K-manifold if and only if

a) Lξiη
j = 0 for all i, j ∈ {1, . . . , s}

b) there exists a family A1, . . . , As of tensor fields of type (1, 1) such that



Semi-invariant submanifolds of K-manifolds 91

(1) (∇Xϕ)Y =
∑s

i=1{g(AiX,Y )ξi − ηi(Y )AiX}
(2) Ai ◦ ϕ = ϕ ◦Ai

(3) g(AiX,Y ) = g(X,AiY ).

Remark 2.1. In the proof of this theorem one meets the family of tensor fields

Ai = ϕ ◦ ∇ξi, i ∈ {1, . . . , s}, verifying b) of Theorem 2.1. Moreover, the family

Āi = Ai + ηi ⊗ ξi, i ∈ {1, . . . , s} is called the family of indicators and satisfy b)

of Theorem 2.1 and Āiξj = δijξj (cf. [13]).

Remark 2.2. It is well known that on an S-manifold (M̃, ϕ, ξi, η
i, g), i, j ∈

{1, . . . , s}, the following identity holds (cf. [7])

(∇Xϕ)Y = g(ϕX,ϕY )ξ̄ + η̄(Y )ϕ2(X). (2.1)

On the other hand in [14] it is proven that the validity on an f.pk-manifold M̃ of

(2.1) together with Lξiη
j = 0, i, j ∈ {i, . . . , s} and ξ1, . . . , ξs Killing, implies that

(M̃, ϕ, ξi, η
i, g), i, j ∈ {1, . . . , s}, is an S-manifold. Then we can conclude that on

an S-manifold a family of (1, 1)-tensor fields verifying b) of Theorem 2.1 is given

by A1 = · · · = As = −ϕ2.

In the sequel we will denote by A1, . . . , As a family of (1, 1)-tensor fields verifying

b) of Theorem 2.1.

Taking ξk in place of Y in b) 1. of Theorem 2.1 and applying ϕ to both the

sides for each k ∈ {1, . . . , s}, X ∈ Γ(TM̃) we get

∇̃Xξk = −ϕ(AkX) +

s∑

i=1

ηi(∇̃Xξk)ξi. (2.2)

Then we again apply ϕ to both sides of the last identity and get

AkX = ϕ(∇̃Xξk) +

s∑

i=1

ηi(AkX)ξi. (2.3)

On the other hand, taking in (2.2) ξj , j ∈ {1, . . . , s}, in place of X and using

ϕ ◦Ak = Ak ◦ ϕ we get

∇̃ξjξk =

s∑

i=1

ηi(∇̃ξjξk)ξi, (2.4)

that is

∇̃ξjξk ∈ 〈ξ1, . . . , ξk〉. (2.5)
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Then by (2.3) we have

Akξj =

s∑

i=1

ηi(Akξj)ξi, (2.6)

that is also Akξj ∈ kerϕ.

Lemma 2.1. Let (M̃, ϕ, ξi, η
j , g), i, j ∈ {1, . . . , s}, be a K-manifold. Then

for each i ∈ {1, . . . , s} we have

∇̃ξiϕ = 0 (2.7)

Proof. Using identity b)1. of Theorem 2.1 and (2.6) we get

(∇̃ξiϕ)X =

s∑

j,k=1

ηi(X){ηj(Akξi)− ηk(Ajξi)}ξk. (2.8)

If in particular we write (2.8) using the indicators Āi, i ∈ {1, . . . , s}, since Āiξj =

δijξj (cf. Remark 2.1), we obtain that ∇̃ξiϕ = 0. ¤

3. Semi-invariant submanifolds of K-manifolds

Definition 3.1. Let (M̃, ϕ, ξi, η
j , g), i, j ∈ {1, . . . , s} be a K-manifold and M

be a submanifold of M̃ . We say that M is a semi-invariant submanifold of M̃ if

there exist two distributions D and D⊥ on M such that the following conditions

are verified

a) TM = D ⊕D⊥ ⊕ 〈ξ1, . . . , ξs〉
b) ϕ(D) ⊂ D

c) ϕ(D⊥) ⊂ TM⊥

where TM⊥ is the bundle normal to M . D is called the invariant distribution,

D⊥ the anti-invariant distribution. The semi-invariant submanifold is said to be

proper if both D and D⊥ are non-zero distributions.

From the definition it follows that the distributions D and D⊥ are orthogonal.

Certainly D has even dimension as ϕ is an almost complex structure on it. If

D = {0} then M is an anti-invariant submanifold of M̃ , i.e. for each x ∈ M

ϕ(TxM) ⊂ TxM
⊥; if D⊥ = {0} then M is an invariant submanifold of M̃ , i.e. for

each x ∈ M ϕ(TxM) ⊂ TxM .

Any vector field X tangent to the semi-invariant submanifold M we can write as

X = PX +QX +

s∑

i=1

ηi(X)ξi, where PX ∈ Γ(D), QX ∈ Γ(D⊥)
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We give now an example based on the Lie theory. For more details about Lie

groups and subgroups see, for example, [20].

Example 3.1. Let us consider a nilpotent Lie algebra n, and let N be the

simply connected nilpotent Lie group whose Lie algebra is n. Then if n has rational

coefficients, the Lie group N admits a cocompact subgroup Γ - the quotient space

Γ/N = M(N,Γ) is a compact manifold.

Consider the following nilpotent Lie algebra n8 with the basis

{Z0, Z1, X1, X2, X3, Y1, Y2, Y3}
and the bracket

[Xi, Yi] = aiZ0 + biZ1

where the numbers a1, a2, a3, b1, b2, b3 are rational and not zero, and the other

brackets are zero.

Define the linear transformation ϕ : n8 → n8 by the formula

ϕ(Xi) = Yi, ϕ(Yi) = −Xi ϕ(Zj) = 0.

The total space of the simply connected Lie group N8 admits a left invariant

Riemannian metric g for which the left-invariant vector fields

X∗
1 , X

∗
2 , X

∗
3 , Y

∗
1 , Y

∗
2 , Y

∗
3 , Z

∗
0 , Z

∗
1

are orthonormal, i.e.

g(A∗, B∗) = g0(A,B)

for any A,B ∈ n8 where g0 is a scalar product on n8. As the vectors Z0 and Z1

commute with all vectors of n8, so [Z∗
0 , A

∗] = [Z∗
1 , A

∗] = 0 for any A ∈ n8. It also

means that the vector fields Z∗
0 and Z∗

1 are Killing vector fields of the Riemannian

manifold (N8, g).

Let us define an f.pk-structure on N8 for s=2,

(N8, ϕ, ξ1, ξ2, η
1, η2, g)

where ξ1 = Z∗
0 , ξ2 = Z∗

1 , η
1 = g(Z∗

0 , .), η
2 = g(Z∗

1 , .), ϕ(A
∗) = ϕ(A)∗.

It is easy to verify that this structure is normal. Using the structure equations

of the Lie algebra n8 we get that it is a K-manifold.

First, notice that for an invariant k-form η

dη(A∗
1, . . . , A

∗
k+1) = Σi<j(−1)i+jηe([Ai, Aj ], A0, . . . , Âi, . . . , Âj . . . Ak+1).
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Therefore simple calculations show that our manifold is a K-manifold. Moreover,

dη1 = dη2

iff ai = bi for i=1,2,3.

This f.pk structure descends to the compact manifold M(N8,Γ) - we denote

the corresponding tensors on this manifold by the same letters.

The vectors {Z0, Z1, X1, X2, Y1} define a 5-dimensional subalgebra of n8,

and the corresponding simply connected Lie group N5 is a closed Lie subgroup

of N8, in particular a closed submanifold. Take the distribution D spanned by

X∗
1 , Y

∗
1 over N5. Its orthogonal complement in TN5 is spanned by X2. Thus we

have constructed a proper semi-invariant submanifold of N8. The whole setup

descends to the compact manifold M(N8,Γ), and the manifold Γ ∩N5/N5 is its

proper semi-invariant submanifold. However, it needn’t be a closed submanifold.

We recall that a D-homothetic deformation on M̃ of constant a > 0 is a change

of the structure in the following way (cf. [11]):

ϕ̃ = ϕ, ξ̃i =
1

a
ξi, η̃i = aη, g̃ = ag + a(a− 1)

s∑

i=1

ηi ⊗ ηi.

It is easy to see that (ϕ̃, ξ̃i, η̃
j , g̃), i, j ∈ {1, . . . , s} is a K-structure on M̃ . Mo-

reover, if M̃ carries an S-structure, then (ϕ̃, ξ̃i, η̃
j , g̃), i, j ∈ {1, . . . , s} is an S-

structure on M̃ .

Proposition 3.1. Semi-invariant submanifolds are invariant under D-homo-

thetic deformations.

Proof. Let M be a semi-invariant submanifold of a K-manifold

(M̃, ϕ, ξi, η
j , g), i, j ∈ {1, . . . , s} and let (ϕ̃, ξ̃i, η̃

j , g̃), i, j ∈ {1, . . . , s} be a K-

structure obtained on M̃ by a D-homothetic deformation of constant a. Then for

each x ∈ M , TxM
⊥g = TxM

⊥g̃ . In fact, for each X ∈ TxM, Y ∈ TxM
⊥g we

have g̃(X,Y ) = ag(X,Y ) + a(a− 1)
∑s

i=1 η
i(X)ηi(Y ) = 0 and then Y ∈ TxM

⊥g̃ ;

on the other hand if we take Z ∈ TxM
⊥g̃ , then we get ag(X,Z) = g̃(X,Z)−

a(a − 1)
∑s

i=1 η
i(X)ηi(Z) = (a − 1)

∑s
i=1 η

i(X)η̃i(Z) = 0 so that Z ∈ TxM
⊥g .

Now, it is obvious that D, D⊥ verify Definition 3.1 with respect to the D-

homothetic deformed structure. ¤

We recall the Gauss and Weingarten equations

∇̃XY = ∇XY + h(X,Y ), for each X,Y ∈ Γ(TM)

∇̃XN = −ANX +∇⊥
XN, for each X ∈ Γ(TM), N ∈ Γ(TM⊥).
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Moreover, the second fundamental form h and the Weingarten operator AN are

related by the well known identity

g(ANX,Y ) = g(h(X,Y ), N). (3.1)

By (2.5) it follows that

∇ξjξk ∈ 〈ξ1, . . . , ξk〉, h(ξk, ξj) = 0. (3.2)

Let us fix some notation: we put for eachX ∈ Γ(TM), N ∈ Γ(TM⊥), Z ∈ Γ(TM̃)

ϕX = τX + ωX, where τX ∈ Γ(TM), ωX ∈ Γ(TM⊥) (3.3)

ϕN = BN + CN, where BN ∈ Γ(TM), CN ∈ Γ(TM⊥) (3.4)

AiZ = αiZ + βiZ, where αiZ ∈ Γ(TM), βiZ ∈ Γ(TM⊥). (3.5)

Remark 3.1. It follows immediately by (3.3), (3.4) that

ω = ϕ ◦Q. (3.6)

Moreover, from the antisymmetry of ϕ with respect to g we obtain that τ and C

are antisymmetric as well. Furthermore, by ϕ2 = −Id+
∑s

i=1 η
i ⊗ ξi we get

τ2 = −Id+B ◦ ω +

s∑

i=1

ηi ⊗ ξi, (3.7)

C2 = −Id− ω ◦B, (3.8)

ω ◦ τ = C ◦ ω = B ◦ C = τ ◦B = 0. (3.9)

Applying (3.7) to τX, for any X ∈ Γ(TM), we get that τ3X = −τX, and then τ

is an f -structure on the tangent bundle TM ; analogously, applying (3.8) to CN ,

for any N ∈ Γ(TM⊥), we get C3 = −C, that is C is an f -structure on TM⊥.

In the remaining results of the present section we always suppose that a semi-

invariant submanifold M of a K-manifold (M̃, ϕ, ξi, η
j , g), i, j ∈ {1, . . . , s}, is

fixed.

Lemma 3.1. For any vector field tangent to M and k ∈ {1, . . . , s} we have:

αk(X) = τ(∇Xξk) +Bh(X, ξk) +

s∑

i,j=1

ηj(X)ηj(Akξi)ξi (3.10)

βk(X) = ω(∇Xξk) + Ch(X, ξk). (3.11)
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Proof. By (2.3), (3.5), the Gauss equation and (3.3) we get αk(X) +

βk(X) = τ(∇Xξk) + ω(∇Xξk) + Bh(X, ξk) + Ch(X, ξk) +
∑s

i=1 g(X,Akξi)ξi.

Then we use (2.6) and compare the tangent and the normal part to obtain (3.10),

(3.11). ¤

Proposition 3.2. Let M be a semi-invariant submanifold of a K-manifold

M̃ . Then Γ(TM) is invariant under Ak, k ∈ {1, . . . , s}, that is Ak(Γ(TM)) ⊂
Γ(TM), if and only if

ω(∇Xξk) = 0 and Ch(X, ξk) = 0. (3.12)

Furthermore, if Γ(TM) is invariant under Ak then both Γ(D) and Γ(D⊥) are

invariant under Ak.

Proof. If X ∈ Γ(TM) then AkX is tangent to M if and only if βk(X) = 0.

Hence by Lemma 3.1

ω(∇Xξk) + Ch(X, ξk) = 0. (3.13)

Since C is antisymmetric, by (3.9) for each Y ∈ Γ(TM), N ∈ Γ(TM⊥), we

have g(ωY,CN) = −g(CωY,N) = 0 and then the two summands in (3.13) are

orthogonal. Hence βkX = 0 if and only if each summand in (3.13) is zero, that

is (3.12).

To prove the second part, first notice that by (2.6) g(AkX, ξi) = g(X,Akξi) = 0,

for any X ∈ Γ(D) or X ∈ Γ(D⊥). Then to show the invariance of Γ(D) under

Ak, it is enough to observe that X ′ = −ϕX ∈ Γ(D) and for each Z ∈ Γ(D⊥)
g(AkX,Z) = g(Ak(ϕX

′), Z) = −g(AkX
′, ϕZ) = 0. Finally, we observe that

g(AkZ,X) = g(Z,AkX) = 0, due to the just proved invariance of Γ(D) under

Ak. Hence we have invariance of Γ(D⊥) under Ak. ¤

We recall that the covariant derivatives of τ , ω, B and C are defined respectively

by (∇Xτ)Y = ∇X(τY ) − τ(∇XY ), (
∗
∇Xω)Y = ∇⊥

XωY − ω(∇XY ), (
∗
∇XB)N =

∇XBN−B(∇⊥
XN) and (∇⊥

XC)N = ∇⊥
XCN−C(∇⊥

XN), for each X,Y ∈ Γ(TM),

N ∈ Γ(TM⊥).

Lemma 3.2. We have the following explicit expressions of the covariant

derivatives

(∇Xτ)Y =

s∑

i=1

{
g(AiX,Y )ξi − ηi(Y )αi(X)

}
+AωY X +Bh(X,Y )

(
∗
∇Xω)Y = −

s∑

i=1

ηi(Y )βiX − h(X, τY ) + Ch(X,Y )
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(
∗
∇XB)N =

s∑

i=1

g(AiX,N)ξi +ACNX − τ(ANX)

(∇⊥
XC)N = −h(X,BN)− ω(ANX)

Proof. By (3.3) and by the Gauss and Weingarten equations we get

(∇̃Xϕ)Y = ∇X(τY ) + h(X, τY )−AωY X +∇⊥
X(ωY )

− τ(∇XY )− ω(∇XY )−Bh(X,Y )− Ch(X,Y ). (3.14)

On the other hand by b)1. of Theorem 2.1 and (3.5) we have

(∇̃Xϕ)Y =

s∑

i=1

{
g(AiX,Y )ξi − ηi(Y )αiX − ηi(Y )βiX

}
. (3.15)

Then we get the first two claimed identities comparing (3.14) and (3.15) and

taking separately the tangent and the normal summands.

Analogously, using the Gauss and Weingarten equations we have

(∇̃Xϕ)N = ∇X(BN) + h(X,BN)−ACNX +∇⊥
XCN

+ τ(ANX) + ω(ANX)−B(∇⊥
XN)− C(∇⊥

XN)

while by b)1. of Theorem 2.1 we get (∇̃Xϕ)N =
∑s

i=1 g(AiX,N)ξi. Then the

last two claimed identities follow by comparing the two expressions of (∇̃Xϕ)N

and taking first the tangent and then the normal summands. ¤
Lemma 3.3. For each X,Y ∈ Γ(D⊥), U ∈ Γ(TM), V ∈ Γ(D) we have

AϕXY = AϕY X (3.16)

g(h(U, V ), ϕX) = g(∇UX,ϕV ). (3.17)

Proof. Using (3.1), the Gauss equation, compatibility of ϕ with respect

to g and Weingarten equation we get

g(AϕXY, U) = g(h(Y, U), ϕX) = g(∇̃UY, ϕX)− g(∇̃U (ϕY ), X)

= g(AϕY U,X) = g(AϕY X,U),

that is (3.16).

By the Gauss equation, the parallelism of g with respect to ∇̃ and b)1. of The-

orem 2.1

g(h(U, V ), ϕX) = −g(V, ∇̃UϕX) = −g(V, ϕ(∇̃UX))

= g(ϕV,∇UX + h(U,X)) = g(ϕV,∇UX)

that is (3.17). ¤
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We would like to establish some necessary and sufficient conditions for the integra-

bility of various distributions involved in the semi-invariant submanifold. Before

going further we need the following

Lemma 3.4. We have

g([X,Y ], Z) = 0 ∀ X,Y ∈ Γ(D⊥), Z ∈ Γ(D). (3.18)

Proof. By c) of Definition 3.1 we have τX = τY = 0 and then ϕX = ωX,

ϕY = ωY . Hence

g([X,Y ], Z) = g(ϕ[X,Y ], ϕZ) = g(τ [X,Y ], ϕZ) = −g((∇Xτ)Y − (∇Y τ)X,ϕZ)

= g(AωXY, ϕZ)− g(AωY X,ϕZ) = 0.

Here in the last but one equality we use the first identity of Lemma 3.2 and in

the last we use (3.16). ¤

Theorem 3.1. The distribution D⊥ is integrable if and only if for all i ∈
{1, . . . , s} Ai(Γ(D

⊥)) is orthogonal to ϕ(Γ(D⊥)).

Proof. Let X,Y ∈ Γ(D⊥), Z ∈ Γ(D). By (2.2) g(∇XY, ξi) = g(∇̃XY, ξi)−
g(Y, ∇̃Xξi) = g(Y, ϕ(AiX)) = −g(ϕY,AiX) and hence

g([X,Y ], ξi) = −2g(AiX,ϕY ).

We conclude that [X,Y ] is orthogonal to kerϕ if and only if for all i ∈ {1, . . . , s}
Ai(Γ(D

⊥)) and ϕ(Γ(D⊥)) are orthogonal to each other. By (3.18) we get our

claim. ¤

Remark 3.2. Obviously by Proposition 3.2 if for each i ∈ {1, . . . , s} Γ(TM)

is invariant under Ai then D⊥ is integrable.

By Remark 2.2 and Theorem 3.1 it follows

Corollary 3.1. Let M be a semi-invariant submanifold of an S-manifold

M̃ . Then the distribution D⊥ is integrable.

Proof. In fact, ϕ(Γ(D⊥)) is orthogonal to −ϕ2(Γ(D⊥)) = Ai(Γ(D
⊥)). ¤

Theorem 3.2. The distribution D⊥ ⊕ kerϕ is always integrable.

Proof. Let X,Y ∈ Γ(D⊥), Z ∈ Γ(D). Since we know by (3.18) that [X,Y ]

is normal to Z it is sufficient to prove that [X, ξi] is orthogonal to Z, for each

i ∈ {1, . . . , s}. In fact we have

g([X, ξi], Z) = g(ϕ[X, ξi], ϕZ) = −g(ϕ(∇̃Xξi), ϕZ) + g(ϕ(∇̃ξiX), ϕZ)
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= g((∇̃Xϕ)ξi), ϕZ) + g(∇̃ξi(ϕZ), ϕX)

= g(AiX,ϕZ) + g(h(ξi, ϕZ), ϕX)

= g(AiX,ϕZ) + g(ϕX, ∇̃ϕZξi)

= −g(AiX,ϕZ)− g(ϕX,ϕAiϕX) = 0.

Here we use (2.7), b)1. of Theorem 2.1, the Gauss equation and (2.2). The last

case is obvious as [ξi, ξj ] = 0 (cf. [5]). ¤

Theorem 3.3. The distribution D ⊕ kerϕ is integrable if and only if

h(X,ϕY ) = h(ϕX, Y ), for each X,Y ∈ Γ(D). (3.19)

Proof. For each Z ∈ Γ(D⊥), i ∈ {1, . . . , s}, by the compatibility of ϕ with

the metric, (2.7), b)1. of Theorem 2.1 and (2.2) we have

g([X, ξi], Z) = −g((∇̃Xϕ)ξi, ϕZ)− g(∇̃ξi(ϕX), ϕZ)

= g(AiX,ϕZ)− g(∇̃ϕXξi, ϕZ) = g(AiX,ϕZ) + g(ϕAiϕX,ϕZ) = 0.

On the other hand, from the expression of
∗
∇ω in Lemma 3.2, we have

(
∗
∇Xω)Y − (

∗
∇Y ω)X = −h(X,ϕY ) + Ch(X,Y ) + h(Y, ϕX)− Ch(Y,X),

as for each i ∈ {1, . . . , s} ηi(X) = ηi(Y ) = 0 and ωX = ωY = 0, that is

ϕX = τX, ϕY = τY . Hence ω([X,Y ]) = h(X,ϕY ) − h(Y, ϕX). If D ⊕ kerϕ

is integrable then [X,Y ] ∈ Γ(D ⊕ kerϕ) and hence ω[X,Y ] = 0. Vice versa, if

h(X,ϕY ) = h(ϕX, Y ) then by (3.6) ϕ(Q[X,Y ])=ω[X,Y ] = 0 so that Q[X,Y ] = 0.

Hence [X,Y ] ∈ Γ(D ⊕ kerϕ). ¤

Theorem 3.4. The distribution D is integrable if and only if (3.19) is veri-

fied and, moreover, for each i ∈ {1, . . . , s} Ai(Γ(D)) and Γ(D) are orthogonal.

Proof. From the proof of Theorem 3.3 we get that for each X,Y ∈ Γ(D),

[X,Y ] is orthogonal to Γ(D⊥) if and only if (3.19) is verified. Furthermore,

by (2.2) we obtain g([X,Y ], ξi) = −g(Y, ∇̃Xξi) + g(X, ∇̃Y ξi) = g(Y, ϕAiX) −
g(X,ϕAiY ) = 2g(AiX,ϕY ) and this complets the proof. ¤

Corollary 3.2. If there exists i ∈ {1, . . . , s} such that Ai is an automorphism

of Γ(TM) and D is integrable then M is an anti-invariant submanifold.

Proof. The hypotheses and Proposition 3.2 imply Ai(Γ(D)) = Γ(D). Then

by Theorem 3.4 it follows that D = {0}. ¤
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The following Corollary is a simple consequence of Remark 2.2 and Theorem 3.4.

Corollary 3.3. Let M be a semi-invariant submanifold of an S-manifold

M̃ . Then the distribution D is never integrable.

Proof. In fact, if D is integrable then Γ(D) is orthogonal to −ϕ2(Γ(D)), a

contradiction. ¤

4. Normal semi-invariant submanifolds of K-manifolds

The concept of normality for semi-invariant submanifolds of Kählerian mani-

folds is well-known (e.g. cf. [21]). Furthermore Bejancu and Papaghiuc (cf. [4])

gave the definition of normal semi-invariant submanifold of a Sasakian manifold

and Calin extended the definition to a semi-invariant submanifold of a quasi-

Sasakian manifold. Now we give a natural generalization of this definition for a

semi-invariant submanifold of a K-manifold.

Definition 4.1. Let M be a semi-invariant submanifold of a K-manifold M̃ .

We say that M is normal if the (1,2)-tensor field S on M defined for each X,Y ∈
Γ(TM) by

S(X,Y ) = [τ, τ ](X,Y )− 2Bdω(X,Y ) +

s∑

i=1

{F (αiX,Y )− F (αiY,X)}ξi, (4.1)

and called the torsion of the semi-invariant structure, vanishes identically.

Lemma 4.1. For each X,Y ∈ Γ(TM), k ∈ {1, . . . , s} the following identities

hold

dηk(X,Y ) = g(βkX,ωY ) + F (αkX,Y ) +

s∑

i=1

ηi(∇Xξk)η
i(Y ) (4.2)

dηk(ϕX, τY ) = g(AkX, τY ) (4.3)

F (τX, τY ) = F (X,Y ) (4.4)

Proof. Since for each k ∈ {1, . . . , s} ξk is Killing (cf. [5]) we have for any

X,Y ∈ Γ(TM)

dηk(X,Y ) = g(Y, ∇̃Xξk). (4.5)

Then we easily get (4.2) from (2.2), (3.5) and the Gauss equation.

By (4.5) and (2.2) we obtain

dηk(ϕX, τY ) = −g(ϕAkϕX, τY ) = g(AkX, τY ) (4.6)
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that is (4.3).

We observe that for each X ∈ Γ(TM), N ∈ Γ(TM⊥) we have

g(ωX,N) = −g(X,BN). (4.7)

Hence by (3.9), (3.7), (4.7) and the antisymmetry of τ we infer that

F (τX, τY ) = g(τX,ϕτY ) = g(τX, τ2Y ) = −g(τX, Y ) + g(τX,BωY )

= g(X, τY )− g(ωτX, ωY ) = g(X,ϕY ) = F (X,Y ).

for any X,Y ∈ Γ(TM). Thus (4.4) has been proved. ¤

Proposition 4.1. We have the following expression for the torsion

S(X,Y ) = AωY τX −AωXτY − τ(AωY X −AωXY )

+

s∑

i=1

{ηi(X)αiω(Y )− ηi(Y )αiω(X)}.
(4.8)

for any X,Y ∈ Γ(TM).

Proof. By a direct computation, for each X,Y ∈ Γ(TM) we get

[τ, τ ](X,Y ) = (∇τXτ)Y − (∇τY τ)X + τ ((∇Y τ)X − (∇Xτ)Y ) . (4.9)

On the other hand, by Lemma 3.2 we have that

2dω(X,Y ) = (
∗
∇Xω)Y − (

∗
∇Y ω)X =

s∑

i=1

{ηi(X)βi(Y )− ηi(Y )βi(X)}

− h(X, τY ) + h(Y, τX). (4.10)

Hence from (4.9), (4.10) it follows that the tensor field S can be written as

S(X,Y ) = (∇τXτ)Y − (∇τY τ)X + τ ((∇Y τ)X − (∇Xτ)Y )

+

s∑

i=1

{
ηi(Y )Bβi(X)− ηi(X)Bβi(Y ) + (F (αiX,Y )− F (αiY,X))ξi

}

−Bh(Y, τX) +Bh(X, τY ). (4.11)

(4.9) Lemma 3.2, the symmetry of h and of A1, . . . , As and (4.3) assure that

[τ, τ ] = AωY τX −AωXτY − τ(AωY X −AωXY )

+

s∑

i=1

{
ηi(Y )(ταiX − αiτX)− ηi(X)(ταiY − αiτY )
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+ (dηi(ϕY, τX)− dηi(ϕX, τY ))ξi
}
+Bh(τX, Y )−Bh(τY,X). (4.12)

Furthermore, for each i ∈ {i, . . . , s} αiτX − ταiX −BβiX is the tangent part of

AiτX−ϕαiX−ϕβiX = AiτX−ϕAiX = AiτX−AiϕX = Ai(τ−ϕ)X = −AiωX.

Then

αiτX − ταiX −BβiX = −αiωX. (4.13)

From (4.3) we easily get that

dηi(ϕX, τY ) = F (αiX,Y ). (4.14)

for each i ∈ {i, . . . , s}. Using (4.11), (4.12), (4.14) and (4.10) we obtain

S(X,Y ) = AωY τX −AωXτY − τ(AωY X −AωXY )

+

s∑

i=1

{
ηi(Y )(ταiX −αiτX +BβiX)− ηi(X)(ταiY−αiτY +BβiY )

+ dηi(ϕY, τX)− dηi(ϕX, τY )− F (αiY,X) + F (αiX,Y )
}
. (4.15)

Hence (4.8) is a consequence of (4.15) and (4.13). ¤

Lemma 4.2. For all i, j ∈ {1, . . . , s}

g(αiX,Y ) = g(X,αiY ) ∀ X,Y ∈ Γ(TM) (4.16)

g(βiV,W ) = g(V, βiW ) ∀ V,W ∈ Γ(TM⊥) (4.17)

g(X,αiV ) = g(βiX,V ) ∀ X ∈ Γ(TM), V ∈ Γ(TM⊥) (4.18)

g(βiX,ωY ) = −g(τX, αiY ) ∀ X ∈ Γ(D), Y ∈ Γ(D⊥) (4.19)

g(ωX, βiξj) = 0 ∀ X ∈ Γ(D⊥). (4.20)

Proof. (4.16), (4.17) and (4.18) are obvious; (4.19), (4.20) can be easily

derived from the identity g(αiX, τY )+g(βiX,ωY )−g(τX, αiY )−g(ωX, βiY ). ¤

Theorem 4.1. A semi-invarian submanifold M of a K-manifold M̃ is normal

if and only if the distribution D⊥ is integrable and

AωY τX = τAωY X ∀ X ∈ Γ(D), Y ∈ Γ(D⊥). (4.21)

Proof. The identity (4.8) assures that for any j ∈ {1, . . . , s}, Y ∈ Γ(D⊥)

S(ξj , Y ) = αjωY − τAωY ξj (4.22)
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and then by the antisymmetry of τ , for each Z ∈ Γ(D⊥)

g(S(ξj , Y ), Z) = g(αjωY,Z). (4.23)

Moreover, from (4.8) we obtain

S(X,Y ) = AωY τX − τAωY X, X ∈ Γ(D), Y ∈ Γ(D⊥). (4.24)

Now, if S = 0, from (4.23) and Theorem 3.1 it follows that the distribution D⊥

is integrable. Furthermore, (4.21) is clearly verified by virtue of (4.24).

Vice versa, first we observe that by (4.8) S(X,Y ) = 0 for any X,Y ∈ Γ(D)

or X,Y ∈ Γ(D⊥) or X = ξi, i ∈ {1, . . . , s} and Y ∈ Γ(D). Then from the

integrability of D⊥ and (4.23) we get that for all Y ∈ Γ(D⊥) S(ξi, Y ) is normal to

D⊥. On the other hand for each Z ∈ Γ(D), by (4.22), we have the antisymmetry

of τ and (4.18)

g(S(ξi, Y ), Z) = g(αiωY − τAωY ξi, Z) = g(αiωY,Z) + g(AωY ξi, τZ)

= g(ωY, βiZ) + g(ξi,AωY τZ) = g(ωY, βiZ) = 0

since by (4.19), the symmetry of each Ai, (2.2) and (4.21)

g(ωY, βiZ) = −g(αiY, τZ) = −g(Y,AiτZ)− g(ϕY, ϕAiτZ)

= g(ωY, ∇̃τZξi)− g(∇̃τZωY, ξi) = g(AωY τZ, ξi)− g(∇⊥
τZωY, ξi) = 0.

Finally, (4.22), (4.18), (4.20) ensure that for any j ∈ {1, . . . , s}, g(S(ξi, Y ), ξj) =

g(αiωY, ξj) − g(τAωY ξi, ξj) = 0. Hence for all Y ∈ Γ(D), i ∈ {1, . . . , s},
S(ξi, Y ) = 0, as it is obviously normal to TM⊥ by virtue of (4.22). ¤

Remark 4.1. As ϕ(D⊥) is a vector subbundle of TM⊥ we can consider its

orthogonal complement µ. Then ϕ(µ) = µ. In fact, by (4.7) g(ϕN,X) = 0 for

any X ∈ Γ(TM) and N ∈ Γ(µ), that is ϕ(µ) ⊂ TM⊥. Moreover, g(ϕN,ϕX) = 0

for any X ∈ Γ(D⊥) and N ∈ Γ(µ), and then ϕ(µ) ⊂ µ. The opposite inclusion is

obvious.

Another characterization of the normality of semi-invariant submanifolds of K-

manifolds is given by the following result.

Theorem 4.2. A semi-invariant submanifold M of a K-manifold M̃ is nor-

mal if and only if

h(τX,W ) ∈ Γ(µ) ∀X ∈ Γ(D), W ∈ Γ(D⊥) (4.25)

h(X, τY ) + h(τX, Y ) ∈ Γ(µ) ∀X,Y ∈ Γ(D) (4.26)

Ai(D
⊥) ⊆ µ⊕D⊥ ∀i ∈ {1, . . . , s}. (4.27)
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Proof. We observe that ∀X,Y ∈ Γ(D), Z,W ∈ Γ(D⊥), the antisymmetry

of τ and (3.1) assure that

g(AωZτX − τAωZX,W ) = g(AωZτX,W ) = g(h(τX,W ), ωZ) (4.28)

g(AωZτX − τAωZX,Y ) = g(h(τX, Y ) + h(X, τY ), ωZ). (4.29)

Furthermore, for each X ∈ Γ(D⊥), Y ∈ Γ(D) we have

g(ϕY,AiX) = g(AiτY,X) = g(ϕAiτY, ϕX) = −g(ωX, ∇̃τY ξi) = g(∇̃τY ωX, ξi)

= g(AωXτY, ξi) = g(AωXτY − τAωXY, ξi). (4.30)

If the semi-invariant submanifold is normal then using Theorem 4.1 from (4.29),

(4.28) we easily derive (4.26) and (4.25). To prove (4.27), first we take X ∈
Γ(D⊥), Y ∈ Γ(D) and observe that from (4.30) and Theorem 3.4 it follows that

g(ϕY,AiX) = 0 and then 0 = g(ϕY,AiX) = −g(αiX+βiX,ϕY ) = −g(αiX,ϕY )

so that αiX ∈ Γ(D⊥ ⊕ 〈ξ1, . . . , ξs〉). Furthermore, by (3.10), (4.16) and (3.2),

g(αiX, ξj) = g(X,αiξj) = g(X, τ∇ξjξi) + g(X,Bh(ξi, ξj)) = 0. Hence

αiX ∈ Γ(D⊥). (4.31)

On the other hand, g(βiX,ϕZ) = g(AiX,ϕZ) = 0, for any Z ∈ Γ(D⊥), as by

Theorem 4.1 D⊥ is integrable, so

βi(X) ∈ Γ(µ). (4.32)

The properties (4.31), (4.32) ensure (4.27).

Conversely, for any X,Y ∈ Γ(D⊥), from (4.27) one obtains that g(AiX,ϕY ) =

g(αiX,ϕY ) + g(βiX,ϕY ) = 0, that is D⊥ is integrable. Moreover, by (4.29),

(4.28), (4.26) and (4.25) it follows that AωZτX − τAωZX is normal to D ⊕D⊥

for all X ∈ Γ(D), Z ∈ Γ(D⊥); on the other hand, g(AiZ,ϕX) = 0 as AiZ ∈
Γ(µ⊕D⊥) and ϕX ∈ Γ(D). Then by (4.30) AωZτX − τAωZX is orthogonal to

〈ξ1, . . . , ξs〉. Hence we have (4.21). ¤

Definition 4.2. We say that a submanifoldM of aK-manifold is anti-holomor-

phic if M is a semi-invariant submanifold such that dim(TM⊥) = dim(D⊥).

Remark 4.2. If M is a normal anti-holomorphic semi-invariant submanifold

of a K-manifold, then µ = {0}. Hence Theorem 4.2 assures that
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Corollary 4.1. Let M be an anti-holomorphic submanifold of a K-manifold

M̃ . Then M is a normal semi-invariant submanifold of M̃ if and only if

h(τX,W ) = 0 ∀X ∈ Γ(D), W ∈ Γ(D⊥)

h(X, τY ) + h(τX, Y ) = 0 ∀X,Y ∈ Γ(D)

Ai(D
⊥) ⊆ D⊥ ∀i ∈ {1, . . . , s}.

Finally, let us return to the example.

i) The distribution D ⊕ 〈ξ1, ξ2〉 = 〈Z∗
0 , Z

∗
1 , X

∗
1 , Y

∗
1 〉 is integrable, its integral

submanifolds are invariant submanifolds.

ii) The distribution D⊥ ⊕ 〈ξ1, ξ2〉 = 〈Z∗
0 , Z

∗
1 , X

∗
1 〉, is integrable, its integral

submanifolds are anti-invariant submanifolds.

iii) The submanifold M(N5,Γ) is normal. The normality of this submanifold

can be checked on the level of the universal covering space, i.e. N8, using the

characterization given in Theorem 4.1. In this case the distribution D = 〈X∗
1 , Y

∗
1 〉

and D⊥ = 〈X∗
2 〉. The subbundle D⊥ being 1-dimensional is integrable. Therefore

it remains to check that

AωY τX = τAωY X

for any X ∈ Γ(D) and Y ∈ Γ(D⊥). Therefore it is sufficient to check that equality

holds for X = X∗
1 , Y

∗
1 and Y = X∗

2 . It is an easy calculation that in these cases

both sides of the equation are zero.

References

[1] A. Bejancu, CR submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978),
134–142.

[2] A. Bejancu, Geometry of CR Submanifolds, D. Reidel Publishing Company, Dordrecht –
Boston – Lancaster – Tokio, 1986.

[3] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An.
Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 27 (1981), 163–170.

[4] A. Bejancu and N. Papaghiuc, Normal semi-invariant submanifolds of a Sasakian mani-
fold, Mat. Vesnik 35, no. 4 (1983), 345–355.

[5] D. E. Blair, Geometry of manifolds with structural group U(n)×O(s), J. Diff. Geom. 4
(1970), 155–167.

[6] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in
Math. 203, Birkhäuser, Boston, 2002.

[7] J. L. Cabrerizo, L. M. Fernández and M. Fernández, The curvature tensor fields on
f -manifolds with complemented frames, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat.
36 (1990), 151–161.



106 L. Di Terlizzi et al. : Semi-invariant submanifolds of K-manifolds

[8] J. L. Cabrerizo, L. M. Fernández and M. Fernández, On normal CR-submanifolds of
an S-manifolds, Colloq. Math. 64, no. 2 (1993), 203–214, (1990), 151–161.

[9] C. Ca̧lin, Contact CR-submanifolds of a quasi-Sasakian manifold, Bull. Math. de la Soc.
Sci. Math. de Roumanie, Tome 536(584), no. 3–4 (1992), 217–226.

[10] C. Ca̧lin, Normal contact CR-submanifolds of a quasi-Sasakian manifold, Publ. Math.
Debrecen 53 (1998), 257–270.

[11] B. Cappelletti Montano and L. Di Terlizzi, D-homothetic transformations for a gene-
ralization of contact metric manifolds, Bull. Belg. Math. Soc. 14 (2007), 277–289.

[12] L. Di Terlizzi, J. J. Konderak, A. M. Wolak and A. M. Pastore, K-structures and
foliations, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 44 (2001), 171–182.
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