
Publ. Math. Debrecen

80/1-2 (2012), 107–126

DOI: 10.5486/PMD.2012.4930

On ϕ-convexity

By JUDIT MAKÓ (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract. In this paper, approximate convexity and approximate midconvexity

properties, called ϕ-convexity and ϕ-midconvexity, of real valued function are investiga-

ted. Various characterizations of ϕ-convex and ϕ-midconvex functions are obtained.

Furthermore, the relationship between ϕ-midconvexity and ϕ-convexity is established.

1. Introduction

The stability theory of functional inequalities started with the paper [13] of

Hyers and Ulam who introduced the notion of ε-convex function: If D is a

convex subset of a real linear space X and ε is a nonnegative number, then a

function f : D → R is called ε-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε (1)

for all x, y ∈ D, t ∈ [0, 1]. The basic result obtained by Hyers and Ulam states

that if the underlying space X is of finite dimension then f can be written as

f = g + h, where g is a convex function and h is a bounded function whose

supremum norm is not larger than knε, where the positive constant kn depends

only on the dimension n of the underlying space X. Hyers and Ulam proved that

kn ≤ (n(n + 3))/(4(n + 1)). Green [11], Cholewa [5] obtained much better
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estimations of kn showing that asymptotically kn is not bigger than (log2(n))/2.

Laczkovich [22] compared this constant to several other dimension-depending

stability constants and proved that it is not less than (log2(n/2))/4. This result

shows that there is no analogous stability results for infinite dimensional spacesX.

A counterexample in this direction was earlier constructed by Casini and Papini

[4]. The stability aspects of ε-convexity are discussed by Ger [10]. An overview of

results on δ-convexity can be found in the book ofHyers, Isac, andRassias [12].

If t = 1/2 and (1) holds for all x, y ∈ D, then f is called an ε-Jensen-convex

function. There is no analogous decomposition for ε-Jensen-convex functions by

the counterexample given by Cholewa [5]. However, one can get Bernstein–

Doetsch type regularity theorems which show that ε-Jensen-convexity and local

upper boundedness imply 2ε-convexity. This result is due to Bernstein and Do-

etsch [2] for ε = 0, and to Ng and Nikodem [28] in the case ε ≥ 0. For some

recent extensions of these results to more general convexity concepts, see [29]. For

locally upper bounded ε-Jensen-convex functions one can obtain the existence of

an analogous stability constant jn (defined similarly as kn above). The sharp

value of this stability constant has recently been found by Dilworth, Howard,

and Roberts [6] who have shown that

jn =
1

2

(
[log2(n)] + 1 +

n

2[log2(n)]

)
≤ 1 +

1

2
log2(n)

is the best possible value for jn. (Here [·] denotes the integer-part function). The
connection between ε-Jensen-convexity and ε-Q-convexity has been investigated

by Mrowiec [26].

If D ⊂ R and (1) is supposed to be valid for all x, y ∈ D except a set of 2-

dimensional Lebesgue measure zero then one can speak about almost ε-convexity.

Results in this direction are due to Kuczma [20] (the case ε = 0) and Ger [9]

(the case ε ≥ 0).

In a recent paper [30], the second author introduced a more general notion

than ε-convexity. Let ε and δ be nonnegative constants. A function f : D → R
is called (ε, δ)-convex, if

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + δ + εt(1− t)‖x− y‖

for every x, y ∈ D and t ∈ [0, 1]. The main results of the paper [30] obtain a

complete characterization of (ε, δ)-convexity if D ⊆ R is an open real interval by

showing that these functions are of the form f = g+h+ `, where g is convex, h is

bounded with ‖h‖ ≤ δ/2 and ` is Lipschitzian with Lipschitz modulus Lip(`) ≤ ε.
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In the papers [17], [18], the notion of (ε, p)-convexity and (ε, p)-midconvexity

were introduced: If ε, p ≥ 0 and t ∈ [0, 1], then a function f : D → R is called

(ε, p, t)-convex, if

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε(t(1− t)‖x− y‖)p

for every x, y ∈ D. If the above property holds for t = 1/2 and for all t ∈
[0, 1], then we speak about (ε, p)-midconvexity and (ε, p)-convexity, respectively.

The main result in [18] shows that, for locally upper bounded functions, (ε, p)-

midconvexity implies (cε, p)-convexity for some constant c.

Another, but related, notion of approximate convexity, the concept of so-

called paraconvexity was introduced by Rolewicz [33], [34], [35] in the late 70s.

It also turned out that Takagi-like functions appear naturally in the investigation

of approximate convexity, see, for example, Boros [3], Házy [15], [16], Házy and

Páles [17], [18], [19], Makó and Páles [24], [25], Mrowiec, Tabor and Tabor

[27], Tabor and Tabor [36], [37], Tabor, Tabor, and ŻoÃldak [39], [38].

The aim of this paper is to offer a unified framework for most of the ment-

ioned approximate convexity notions by introducing the notions of ϕ-convexity

and ϕ-midconvexity and to extend the previously known results to this more ge-

neral setting. We also introduce the relevant Takagi type functions which appear

naturally in the description of the connection of ϕ-convexity and ϕ-midconvexity.

2. ϕ-convexity and ϕ-midconvexity

Throughout the paper R, R+, and N denote the sets of real, nonnegative

real, and natural numbers, respectively. Assume that D is a nonempty convex

subset of a real normed space X and denote D+ := {‖x − y‖ : x, y ∈ D}. Let

ϕ : D+ → R+ be a given function.

Definition 1. A function f : D → R is called ϕ-convex on D, if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + tϕ
(
(1− t)‖x− y‖)

+ (1− t)ϕ
(
t‖x− y‖) (2)

holds for all t ∈ [0, 1] and for all x, y ∈ D. If (2) holds for t = 1/2, i.e., if, for all

x, y ∈ D,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ϕ

(∥∥∥x− y

2

∥∥∥
)
, (3)

then we say that f is ϕ-midconvex.
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In the case ϕ ≡ 0, the meaning of inequalities (2) and (3) is the convexity

and midconvexity (Jensen-convexity) of f , respectively.

An important particular case occurs when ϕ : D+ → R+ is of the form

ϕ(x) := εxp, where p, ε ≥ 0 are arbitrary constants. Then the function f is called

(ε, p)-convex and (ε, p)-midconvex on D, respectively (cf. [30]).

The next results describe the structure of ϕ-convex functions and ϕ-mid-

convex functions.

Proposition 2. .

(i) If, for j = 1, . . . , n, ϕj : D+ → R+, the function fj : D → R is ϕj-convex

and cj is a nonnegative number, then c1f1+ · · ·+cnfn is (c1ϕ1+ · · ·+cnϕn)-

convex. In particular, the set of ϕ-convex functions on D is convex.

(ii) Let {fγ : D → R | γ ∈ Γ} be a family of ϕ-convex functions. Assume, for all

x ∈ D, that f(x) := supγ∈Γ fγ(x) < +∞. Then f is ϕ-convex.

(iii) Let {fγ : D → R | γ ∈ Γ} be a downward directed family of ϕ-convex

functions in the following sense: for all γ1, γ2 ∈ Γ and x1, x2 ∈ D, there

exists γ ∈ Γ such that fγ(xi) ≤ fγi(xi) for i = 1, 2. Assume, for all x ∈ D,

that f(x) := infγ∈Γ fγ(x) > −∞. Then f is ϕ-convex.

Proof. (i) is easy to prove.

(ii) Let x, y ∈ D and t ∈ [0, 1]. For all γ ∈ Γ, we have

fγ(tx+ (1− t)y) ≤ tfγ(x)+ (1− t)fγ(y)+ tϕ((1− t)‖x− y‖)+ (1− t)ϕ(t‖x− y‖)
≤ tf(x) + (1− t)f(y)+ tϕ((1− t)‖x− y‖)+ (1− t)ϕ(t‖x− y‖).

Thus,
f(tx+ (1− t)y) = sup

γ∈Γ
fγ(tx+ (1− t)y)

≤ tf(x) + (1− t)f(y) + tϕ
(
(1− t)‖x− y‖)+ (1− t)ϕ

(
t‖x− y‖).

Hence f is ϕ-convex.

(iii) Let x, y ∈ D and t ∈ [0, 1]. Let δ > 0 be arbitrary. Then f(x) < f(x)+δ

and f(y) < f(y) + δ. Thus there exist γ1, γ2, such that fγ1(x) < f(x) + δ and

fγ2(y) < f(y) + δ. By the conditions of the proposition, there exists γ ∈ Γ, such

that

fγ(x) ≤ fγ1(x) < f(x) + δ, fγ(y) ≤ fγ2(y) < f(y) + δ.

Then we get

f(tx+ (1− t)y) ≤ fγ(tx+ (1− t)y)

≤ tfγ(x) + (1− t)fγ(y) + tϕ
(
(1− t)‖x− y‖)+ (1− t)ϕ

(
t‖x− y‖)

≤ tf(x) + (1− t)f(y) + δ + tϕ
(
(1− t)‖x− y‖)+ (1− t)ϕ

(
t‖x− y‖).
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This proves that f is ϕ-convex. ¤

The following statements concern midconvex functions, they are analogous

to those of Proposition 2.

Proposition 3. .

(i) If, for j = 1, . . . , n, ϕj : D
+ → R+, the function fj : D → R is ϕj-midconvex

and cj is a nonnegative number, then c1f1+ · · ·+cnfn is (c1ϕ1+ · · ·+cnϕn)-

midconvex. In particular, the set of ϕ-midconvex functions on D is convex.

(ii) Let {fγ : D → R | γ ∈ Γ} be a family of ϕ-midconvex functions. Assume,

for all x ∈ D, that f(x) := supγ∈Γ fγ(x) < +∞. Then f is ϕ-midconvex.

(iii) Let {fγ : D → R | γ ∈ Γ} be a downward directed family of ϕ-midconvex

functions in the following sense: for all γ1, γ2 ∈ Γ and x1, x2 ∈ D, there exists

γ ∈ Γ such that fγ(xi) ≤ fγi(xi) for i = 1, 2. Assume, for all x ∈ D, that

f(x) := infγ∈Γ fγ(x) > −∞. Then f is ϕ-midconvex.

Definition 4. A function f : D → R is said to be of ϕ-Hölder class on D or

briefly f is called ϕ-Hölder on D if there exists a nonnegative constant H such

that, for all x, y ∈ D,

|f(x)− f(y)| ≤ Hϕ(‖x− y‖). (4)

The smallest constant H such that (4) holds is said to be the ϕ-Hölder modulus

of f and is denoted by Hϕ(f).

A relationship between the ϕ-Hölder property and ϕ-convexity is obtained

in the following result.

Proposition 5. Let f : D → R be of ϕ-Hölder class on D. Then f is(
Hϕ(f) · ϕ

)
-convex on D.

Proof. Let x, y ∈ D and let t ∈ [0, 1]. Then

f(tx+ (1− t)y)− tf(x)− (1− t)f(y)

= t
(
f(tx+ (1− t)y)− f(x)

)
+ (1− t)

(
f(tx+ (1− t)y)− f(y)

)

≤ tHϕ(f)ϕ(‖tx+ (1− t)y − x‖) + (1− t)Hϕ(f)ϕ(‖tx+ (1− t)y − y‖),

which is equivalent to the
(
Hϕ(f) · ϕ

)
-convexity of f . ¤

For functions ϕ : D+ → R, we introduce the following subadditivity-type

property:
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Definition 6. We say that ϕ is increasingly subadditive on D+ if, for all

u, v, w ∈ D+ with u ≤ v + w,

ϕ(u) ≤ ϕ(v) + ϕ(w) (5)
holds.

Clearly, if ϕ : R+ → R is nondecreasing and subadditive then it is also

increasingly subadditive on R+.

Proposition 7. Assume that ϕ : D+ → R is increasingly subadditive. Then,

for all z ∈ D, the map x 7→ −ϕ(‖x− z‖) is of ϕ-Hölder class on D with ϕ-Hölder

modulus 1, and therefore, it is also ϕ-convex on D.

Proof. Let z ∈ D be fixed. To prove the ϕ-Hölder property of the map

x 7→ −ϕ(‖x− z‖), let x, y ∈ D. Then u = ‖x− z‖, v = ‖x− y‖, and w = ‖y− z‖
are elements ofD+ such that (5) holds. Therefore, by the increasing subadditivity,

we get

ϕ(‖x− z‖)− ϕ(‖y − z‖) ≤ ϕ(‖x− y‖) + ϕ(‖y − z‖)− ϕ(‖y − z‖) = ϕ(‖x− y‖).
Interchanging x and y, we also have ϕ(‖y− z‖)−ϕ(‖x− z‖) ≤ ϕ(‖y−x‖). These
two inequalities imply

∣∣ϕ(‖x− z‖)− ϕ(‖y − z‖)
∣∣ ≤ ϕ(‖x− y‖),

which means that the map x 7→ −ϕ(‖x − z‖) is ϕ-Hölder on D with ϕ-Hölder

modulus 1. ¤

The next lemma is well known, for completeness we provide its short proof.

Lemma 8. Let 0 ≤ p ≤ 1 be an arbitrary constant. Then the map x 7→ xp is

subadditive and nondecreasing on R+ and hence it is also increasingly subadditive

on R+.

Proof. For s ∈]0, 1[, we have s ≤ sp. Hence

1 = s+ (1− s) ≤ sp + (1− s)p.

If x, y ∈ R+ then, with s := x
x+y ∈]0, 1[, we get

1 ≤
( x

x+ y

)p

+
( y

x+ y

)p

,

which shows the subadditivity of the function x 7→ xp. ¤

Definition 9. Let 0 < p ≤ 1 be an arbitrary constant. For all t ∈ D+ let

ϕ(t) := tp, then if f : D → R is a ϕ-Hölder function, then it is called (classical)

p-Hölder functions. In this case the ϕ-Hölder modulus is called p-Hölder modulus
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of f and it is denoted by Hp(f).

The next corollary gives a relationship between the p-Hölder functions and

the p-convex functions.

Corollary 10. Let 0 < p ≤ 1 be an arbitrary constant and z ∈ X. Then

x 7→ −‖x − z‖p is of p-Hölder class on X with the p-Hölder modulus 1, and

therefore, it is (1, p)-convex on X.

The subsequent theorem, which is one of the main results of this paper, offers

equivalent conditions for ϕ-convexity. It generalizes the result of [30, Theorem 1].

Theorem 11. Let D be an open real interval and f : D → R. Then the

following conditions are equivalent.

(i) f is ϕ-convex on D.

(ii) For x, u, y ∈ D with x < u < y,

f(u)− f(x)− ϕ(u− x)

u− x
≤ f(y)− f(u) + ϕ(y − u)

y − u
. (6)

(iii) There exists a function a : D → R such that, for x, u ∈ D,

f(x)− f(u) ≥ a(u)(x− u)− ϕ(|x− u|). (7)

Proof. (i) ⇒ (ii) Assume that f : D → R is ϕ-convex and let x < u < y be

arbitrary elements of D. Choose t ∈ [0, 1] such that u = tx+ (1− t)y, that is let

t := y−u
y−x . Then, applying the ϕ-convexity of f , we get

f(u)≤ y−u

y−x
f(x)+

u−x

y−x
f(y)+

y−u

y−x
ϕ

(
u− x

y − x
(y − x)

)
+
u− x

y − x
ϕ

(
y − u

y − x
(y − x)

)
,

which is equivalent to

(y − u)
(
f(u)− f(x)− ϕ(u− x)

) ≤ (u− x)
(
f(y)− f(u) + ϕ(y − u)

)
.

Dividing by (y − u)(u− x) > 0, we arrive at (6).

(ii) ⇒ (iii) Assume that (ii) holds and, for u ∈ D, define

a(u) := inf
y∈D,u<y

f(y)− f(u) + ϕ(y − u)

y − u
.

Then in view of (ii), we get

f(x)− f(u)− ϕ(u− x)

x− u
≤ a(u) ≤ f(y)− f(u) + ϕ(y − u)

y − u
, (8)
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for all x < u < y in D. The left-hand side inequality in (8) yields (7) in the

case x < u, and analogously, the right-hand side inequality (with the substitution

y := x) reduces to (7) in the case x > u. The case x = u is obvious.

(iii) ⇒ (i) Let x, y ∈ D, t ∈ [0, 1], and set u := tx+ (1− t)y. Then, by (iii),

we have

f(x)−f(u) ≥ a(u)(x−u)−ϕ(|x−u|), f(y)−f(u) ≥ a(u)(y−u)−ϕ(|y−u|).
Multiplying the first inequality by t and the second inequality by 1− t and adding

up the inequalities so obtained, we get (2). ¤
Remark 12. In the vector variable setting (i.e., when D is an open convex

subset of a normed space X), instead of condition (iii), the following analogous

property can be formulated:

(iii)∗ There exists a function a : D → X∗ such that, for x, u ∈ D,

f(x)− f(u) ≥ a(u)(x− u)− ϕ(‖x− u‖).
One can easily see (by the same argument as above) that (iii)∗ implies (i), that is,

the ϕ-convexity of f . The validity of the reversed implication is an open problem.

The next theorem gives another characterization of ϕ-convex functions, if ϕ

is increasingly subadditive.

Theorem 13. Let D be an open real interval and let ϕ : D+ → R+ be

increasingly subadditive. Then a function f : D → R is ϕ-convex if and only if

there exist two functions a : D → R and b : D → R such that

f(x) = sup
u∈D

(
a(u)x+ b(u)− ϕ(|x− u|)), (9)

for all x ∈ D.

Proof. Assume that f is ϕ-convex. By Theorem 11, there exists a function

a : D → R such that

f(x) ≥ f(u) + a(u)(x− u)− ϕ(|x− u|),
for all u, x ∈ D. Define b(u) := f(u)− a(u)u, for u ∈ D. Thus, for u, x ∈ D,

f(x) ≥ a(u)x+ b(u)− ϕ(|x− u|)
and we have equality for u = x. Therefore, (9) holds.

Conversely, assume that (9) is valid for x ∈ D. By Proposition 7, for fixed

u ∈ D, the mapping x 7→ −ϕ(|x − u|) is ϕ-convex. The map x 7→ a(u)x + b(u)

is affine, and hence the function fu : D → R defined by fu(x) := a(u)x + b(u)−
ϕ(|x− u|) is ϕ-convex for all fixed u ∈ D. Now applying (ii) of Proposition 2, we

obtain that f is ϕ-convex. ¤
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Remark 14. In the vector variable setting (i.e., when D is an open convex

subset of a normed space X), the following implication can be formulated: If

ϕ : D+ → R+ is increasingly subadditive and there exist two function a : D → X∗

and b : D → R such that, for x ∈ D,

f(x) = sup
u∈D

(
a(u)(x) + b(u)− ϕ(‖x− u‖)),

then f is ϕ-convex. The validity of the reversed implication is an open problem.

Corollary 15. Let D be an open real interval and let 0 < p ≤ 1 and ε ≥ 0

be arbitrary constants. Then a function f : D → R is (ε, p)-convex if and only if

there exist two functions a : D → R and b : D → R such that

f(x) = sup
u∈D

(
a(u)x+ b(u)− ε|x− u|p),

for all x ∈ D.

The subsequent theorem offers a sufficient condition for the ϕ-midconvexity.

The result is analogous to the implication (iii)⇒(i) of Theorem 11. Unfortuna-

tely, we were not able to obtain the necessity of this condition, i.e., the reversed

implication.

Theorem 16. Let f : D → R and assume that, for all u ∈ D, there exists

an additive function Au : X → X such that

f(x)− f(u) ≥ Au(x− u)− ϕ(‖x− u‖) (x ∈ D). (10)

Then, f is ϕ-midconvex.

Proof. Let x, y ∈ D and set u := x+y
2 . Then, by (10), we have

f(x)− f(u) ≥ Au(x− u)− ϕ(‖x− u‖) = Au

(
x− y

2

)
− ϕ

(∥∥∥x− y

2

∥∥∥
)
,

f(y)− f(u) ≥ Au(y − u)− ϕ(‖y − u‖) = Au

(
y − x

2

)
− ϕ

(∥∥∥y − x

2

∥∥∥
)
.

Adding up the inequalities and multiplying the inequality so obtained by 1
2 , we

get (3). ¤

The following result is analogous to Theorem 13, however it offers only a

sufficient condition for ϕ-midconvexity.
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Theorem 17. Let ϕ :D+ →R+ be increasingly subadditive and let f :D→R.
Assume that, for all u ∈ D, there exists an additive function Au : X → X and

there exists a function b : D → R such that

f(x) = sup
u∈D

(
Au(x) + b(u)− ϕ(‖x− u‖)), (11)

for all x ∈ D. Then f is ϕ-midconvex.

Proof. Assume that (11) is valid for x ∈ D. By Proposition 7, for fixed

u ∈ D, the mapping x 7→ −ϕ(‖x − u‖) is ϕ-convex, so it is ϕ-midconvex. The

map x 7→ Au(x) + b(u) is affine, and hence the function fu : D → R defined by

fu(x) := Au(x) + b(u) − ϕ(‖x − u‖) is ϕ-midconvex for all fixed u ∈ D. Now

applying (ii) of Proposition 3, we obtain that f is ϕ-midconvex. ¤

Henceforth we search for relations between the local upper-bounded ϕ-mid-

convex functions and ϕ-convex functions with the help of the results from the

papers [14] and [18] by Házy and Páles.

Define the function dZ : R→ R+ by

dZ(t) = dist(t,Z) := min{|t− k| : k ∈ Z}.

It is immediate to see that dZ is 1-periodic and symmetric with respect to t = 1/2,

i.e., dZ(t) = dZ(1−t) holds for all t ∈ R. For a fixed ϕ : 1
2D

+ → R+, we introduce

the Takagi type function Tϕ : R×D+ → R+ by

Tϕ(t, u) :=

∞∑
n=0

ϕ
(
dZ(2nt)u

)

2n
((t, u) ∈ R×D+). (12)

Applying the estimate 0 ≤ dZ ≤ 1
2 , one can easily see that Tϕ(t, u) ≤ 2ϕ

(
u
2

)
for

u ∈ D+ whenever ϕ is nondecreasing.

For p ≥ 0, we also define the Takagi type function Tp : R→ R+ by

Tp(t) :=

∞∑
n=0

(
dZ(2nt)

)p
2n

(t ∈ R). (13)

In the case when ϕ is of the form ϕ(t) = ε|t|p for some constants ε ≥ 0 and p ≥ 0,

the following identity holds:

Tϕ(t, u) = εTp(t)u
p ((t, u) ∈ R×D+).

Observe that Tϕ and Tp are also 1-periodic and symmetric with respect to t = 1/2

in their first variables.
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In order to obtain lower and upper estimates for the functions Tϕ and Tp

defined above, we need to recall de Rham’s classical theorem [31]. By B(R,R) we
denote the space of bounded functions f : R → R equipped with the supremum

norm.

Theorem 18. Let ψ ∈ B(R,R), a, b ∈ R, |a| < 1. Let Fψ : B(R,R) →
B(R,R) be an operator defined as follows

(
Fψf

)
(t) := af(bt) + ψ(t) for f ∈ B(R,R), t ∈ R.

Then

(i) Fψ is a contraction on B(R,R) with a unique fixed point fψ which is given

by the formula

fψ(t) =

∞∑
n=0

anψ(bnt) (t ∈ R);

(ii) if a ≥ 0 and the functions g, h ∈ B(R,R) satisfy the inequalities g ≤ Fψg

and Fψh ≤ h, then g ≤ fψ ≤ h.

Remark 19. In view of the first assertion of this theorem, observe that the

functions Tϕ(·, u) and Tp defined in (12) and (13) are the fixed points of the

operator: (
Fψf

)
(t) :=

1

2
f(2t) + ψ(t) for f ∈ B(R,R), t ∈ R (14)

where ψ ∈ B(R,R) is given by ψ(t) := ϕ
(
dZ(t)u

)
and ψ(t) :=

(
dZ(t)

)p
, respecti-

vely.

In the results below, we establish upper and lower bounds for Tϕ in terms of

the function τϕ : R×D+ → R defined by

τϕ(t, u) := dZ(t)ϕ
(
(1− dZ(t))u

)
+ (1− dZ(t))ϕ

(
dZ(t)u

)
((t, u) ∈ R×D+).

Observe that, for t ∈ [0, 1], we have

τϕ(t, u) := tϕ
(
(1− t)u

)
+ (1− t)ϕ

(
tu
)

(u ∈ D+),

which is exactly the error term related to ϕ-convexity.

Proposition 20. Let ϕ : D+ → R+ be subadditive. Then, for all (t, u) ∈
R×D+,

τϕ(t, u) ≤ Tϕ(t, u). (15)
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Proof. Let u ∈ D+ be arbitrarily fixed. By the 1-periodicity and symmetry

with respect to the point t = 1/2, it suffices to show that (15) holds for all

t ∈ [
0, 1

2

]
. If t = 0 then (15) is obvious. Now assume that 0 < t ≤ 1

2 . Then there

exists a unique k ∈ N such that 1
2k+1 < t ≤ 1

2k
. Then, one can easily see that

dZ(t) = t, dZ(2t) = 2t, . . . , dZ(2
k−1t) = 2k−1t, dZ(2

kt) = 1− 2kt. (16)

On the other hand, by the well-known identity
∑k−1

j=0 2
j = 2k − 1, we have

(1− t)u = tu+ 2tu+ · · ·+ 2k−1tu+ (1− 2kt)u.

Then, by the subadditivity of ϕ, and by t ≤ 1
2k

< 1
2k−1 < · · · < 1

2 , it follows that

tϕ((1− t)u) ≤ tϕ(tu) + tϕ(2tu) + · · ·+ tϕ(2k−1tu) + tϕ((1− 2kt)u)

≤ tϕ(tu) +
ϕ(2tu)

2
+ · · ·+ ϕ(2k−1tu)

2k−1
+

ϕ((1− 2kt)u)

2k
.

Adding (1− t)ϕ(tu) to the previous inequality and using (16), we get

τϕ(t, u) := tϕ((1− t)u) + (1− t)ϕ(tu) ≤ ϕ(tu) +
ϕ(2tu)

2
+ . . .

+
ϕ(2k−1tu)

2k−1
+

ϕ((1− 2kt)u)

2k
=

k∑

j=0

ϕ(dZ(2jt)u)

2j
≤ Tϕ(t, u).

Which completes the proof of (15). ¤

Proposition 21. Let ϕ : D+ → R+ be nondecreasing with ϕ(s) > 0 for

s > 0 and assume that

γϕ := sup
0<s∈ 1

2D
+

ϕ(2s)

ϕ(s)
< 2.

Then, for all (t, u) ∈ R×D+,

Tϕ(t, u) ≤ 2

2− γϕ
τϕ(t, u) (17)

holds.

Proof. To prove (17), we fix an arbitrary element u ∈ D+. By Remark 19,

the function Tϕ(·, u) is the fixed point of the operator

(Fϕf)(t) =
1

2
f(2t) + ϕ(dZ(t)u).
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Define the function g : R → R by g(t) := 2
2−γϕ

τϕ(t, u). In view of Theorem 18,

in order to prove inequality (17), it is enough to show that

(Fϕg)(t) ≤ g(t) (t ∈ R). (18)

Since g is periodic by 1 and symmetric with respect to t = 1/2, it suffices to

prove that (18) is satisfied on
[
0, 1

2

]
. Trivially, γϕ ≥ 1, hence the inequality (18)

is obvious for t = 0 or for u = 0. Thus, we may assume that u > 0 and 0 < t ≤ 1
2 .

By the definition of the constant γϕ, we have that

ϕ(tu)
(
1− γϕ

2

)
≤ ϕ(tu)− ϕ(2tu)

2
. (19)

Since t ≤ 2t and 1− 2t ≤ 1− t and ϕ is nondecreasing we also have that

0 ≤ t(ϕ((1− t)u)− ϕ((1− 2t)u)) + tϕ(2tu)− tϕ(tu).

Adding ϕ(tu)− ϕ(2tu)
2 to the previous inequality and also using (19), we obtain

ϕ(tu)
(
1− γϕ

2

)
≤ ϕ(tu)− ϕ(2tu)

2

≤ t
(
ϕ((1− t)u)− ϕ((1− 2t)u)

)
+ (1− t)ϕ(tu)−

(1
2
− t

)
ϕ(2tu).

Rearranging this inequality, we finally obtain that

1

2− γϕ

(
2tϕ

(
(1− 2t)u

)
+ (1− 2t)ϕ

(
2tu

))
+ ϕ(tu)

≤ 2

2− γϕ

(
tϕ

(
(1− t)u

)
+ (1− t)ϕ

(
tu
))
,

which means that (18) is satisfied for all 0 < t ≤ 1
2 . ¤

Let µ be a nonnegative finite Borel measure on [0, 1] and let suppµ denote

the support of µ.

Lemma 22. Let µ be a nonnegative and nonzero finite Borel measure on

[0, 1] and let χ :]0,∞[→ R+ be defined by

χ(s) =

∫
[0,1]

(2s)pdµ(p)∫
[0,1]

spdµ(p)
.

Then χ is nondecreasing on ]0,∞[ and

lim
s→∞

χ(s) = 2p0 , (20)

where p0 := sup(suppµ).
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Proof. The function x 7→ 2x is strictly increasing, hence, for p, q ∈ R, we
have (2p − 2q)(p− q) ≥ 0. It suffices to show that χ′ ≥ 0. For s > 0, we obtain

χ′(s) =

∫
[0,1]

2ppsp−1dµ(p) · ∫
[0,1]

spdµ(p)− ∫
[0,1]

2pspdµ(p) · ∫
[0,1]

psp−1dµ(p)
( ∫

[0,1]
spdµ(p)

)2

=

∫
[0,1]

2ppsp−1dµ(p) · ∫
[0,1]

sqdµ(q) +
∫
[0,1]

2qqsq−1dµ(q) · ∫
[0,1]

spdµ(p)

2
( ∫

[0,1]
spdµ(p)

)2

−
∫
[0,1]

2pspdµ(p) · ∫
[0,1]

qsq−1dµ(q) +
∫
[0,1]

2qsqdµ(q) · ∫
[0,1]

psp−1dµ(p)

2
( ∫

[0,1]
spdµ(p)

)2

=

∫
[0,1]

∫
[0,1]

(2p − 2q)(p− q)sp+q−1dµ(p)dµ(q)

2
( ∫

[0,1]
spdµ(p)

)2 ≥ 0,

which proves that χ is nondecreasing.

Using suppµ ⊆ [0, p0], for s > 0, we obtain
∫

[0,1]

spdµ(p) =

∫

[0,1]

2p
(s
2

)p

dµ(p) ≤ 2p0

∫

[0,1]

(s
2

)p

dµ(p),

which proves that χ(s) ≤ 2p0 , and hence, lims→∞ χ(s) ≤ 2p0 .

To show that in (20) the equality is valid, assume that lims→∞ χ(s) < 2p0 .

Choose q < q0 < p0 so that lims→∞ χ(s) ≤ 2q. Then, for all s > 0,
∫

[0,1]

(2s)pdµ(p) ≤ 2q
∫

[0,1]

spdµ(p),

i.e., for all s ≥ 1,

0 ≤
∫

[0,1]

(2q − 2p)spdµ(p)

=

∫

[0,q[

(2q − 2p)spdµ(p) +

∫

[q,q0[

(2q − 2p)spdµ(p) +

∫

[q0,1]

(2q − 2p)spdµ(p)

≤
∫

[0,q[

(2q − 2p)spdµ(p) +

∫

[q0,1]

(2q − 2p)spdµ(p)

≤
∫

[0,q[

(2q − 2p)spdµ(p) +

∫

[q0,1]

(2q − 2p)sq0dµ(p).

Therefore, for s ≥ 1,

0 ≤
∫

[0,q[

(2q − 2p)sp−q0dµ(p) +

∫

[q0,1]

(2q − 2p)dµ(p).
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The first integrand converges uniformly to 0 on [0, q[ as s → ∞. Thus, by taking

the limit s → ∞, we get

0 ≤
∫

[q0,1]

(2q − 2p)dµ(p). (21)

On the other hand, the inequality q0 < p0 = sup(suppµ) implies µ([q0, 1]) > 0

and, obviously, 2q − 2p < 0 for p ∈ [q0, 1]. Hence the right hand side of (21) is

negative. The contradiction so obtained proves (20). ¤

Proposition 23. Let µ be a nonnegative and nonzero finite Borel measure

on [0, 1]. Denote α := supD+ and p0 := sup(suppµ) and define ϕ : D+ → R+ by

ϕ(s) :=

∫

[0,1]

spdµ(p) for all s ∈ D+.

Then ϕ is subadditive and nondecreasing, furthermore,

γϕ =





∫
[0,1]

αpdµ(p)∫
[0,1]

(α/2)pdµ(p)
, if α < ∞,

2p0 , if α = ∞
(22)

and γϕ < 2 if either α < ∞ and µ is not concentrated at the singleton {1} or

p0 < 1. In addition, for all t ∈ [0, 1] and u ∈ D+,

∫

[0,1]

[
t(1− t)p + (1− t)tp

]
updµ(p) ≤

∫

[0,1]

Tp(t)u
pdµ(p) (23)

and, provided that γϕ < 2,

∫

[0,1]

Tp(t)u
pdµ(p) ≤ 2

2− γϕ

∫

[0,1]

[
t(1− t)p + (1− t)tp

]
updµ(p). (24)

Proof. It can be easily seen that ϕ is nondecreasing. The subadditivity is

a consequence of Lemma 8.

Let α < ∞. Then, by Lemma 22, the map s 7→ ϕ(2s)
ϕ(s) =

∫
[0,1]

(2sp)dµ(p)∫
[0,1]

spdµ(p)
= χ(s)

is nondecreasing on 1
2D

+, so it attains its supremum at α/2. Thus, in this case,

γϕ =

∫
[0,1]

αpdµ(p)∫
[0,1]

(α/2)pdµ(p)
. To prove that γϕ < 2, we use the inequality 2p < 2 for

p ∈ [0, 1] to obtain:

∫

[0,1]

αpdµ(p) =

∫

[0,1]

2p
(α
2

)p

dµ(p) < 2

∫

[0,1]

(α
2

)p

dµ(p).
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In the case α = ∞, by Lemma 22, we have that γϕ = lims→∞ χ(s) = 2p0 .

Obviously, γϕ < 2 if p0 < 1.

The inequalities (23) and (24) are immediate consequences of Proposition 20

and Proposition 21, respectively. ¤

In the case when the measure µ is concentrated at a singleton {p}, Proposit-
ion 23 simplifies to the following result.

Corollary 24. Let 0 ≤ p ≤ 1 be an arbitrary constant. Then, for all

t ∈ [0, 1],

t(1− t)p + (1− t)tp ≤ Tp(t)

and, provided that p < 1,

Tp(t) ≤ 2

2− 2p
(
t(1− t)p + (1− t)tp

)
.

The proof of the next theorem is analogous to that in [18].

Theorem 25. Let ϕ : D+ → R+ be nondecreasing. If f : D → R is ϕ-

midconvex and locally bounded from above at a point of D, then f is locally

bounded from above on D.

The following theorem generalizes the analogous result of the paper [18] ob-

tained for (ε, p)-convexity. A similar result was also established by Tabor and

Tabor [36], [37].

Theorem 26. Let f : D → R be locally bounded from above at a point of

D and let ϕ : 1
2D

+ → R+ be nondecreasing. Then f is ϕ-midconvex on D, i.e.,

(3) holds for all x, y ∈ D if and only if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Tϕ(t, ‖x− y‖) (25)

for all x, y ∈ D and t ∈ [0, 1].

Proof. Assume that f is ϕ-midconvex onD and locally bounded from above

at a point of D. From Theorem 25, it follows that f is locally bounded from

above at each point of D. Thus f is bounded from above on each compact subset

of D, in particular, for each fixed x, y ∈ D, f is bounded from above on [x, y] =

{tx+ (1− t)y | t ∈ [0, 1]}. Denote by Kx,y a finite upper bound of the function

t 7→ f(tx+ (1− t)y)− tf(x)− (1− t)f(y) (t ∈ [0, 1]). (26)
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We are going to show, by induction on n, that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) +
Kx,y

2n
+

n−1∑

j=0

ϕ
(
dZ(2jt)‖x− y‖)

2j
(27)

for all x, y ∈ D and t ∈ [0, 1]. For n = 0, the statement follows from the definition

of Kx,y (with the convention that the summation for j = 0 to (−1) is equal to

zero).

Now assume that (27) is true for some n ∈ N. Assume that t ∈ [0, 1/2].

Then, due to the ϕ-midconvexity of f , we get

f(tx+ (1− t)y) = f

(
y + (2tx+ (1− 2t)y)

2

)

≤ f(y) + f(2tx+ (1− 2t)y)

2
+ ϕ(t‖x− y‖).

On the other hand, by (27), we get that

f(2tx+ (1− 2t)y) ≤ 2tf(x) + (1− 2t)f(y) +
Kx,y

2n
+

n−1∑

j=0

ϕ
(
dZ(2j+1t)‖x− y‖)

2j
.

Combining these two inequalities, we obtain

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) +
1

2

(
Kx,y

2n
+

n−1∑

j=0

ϕ
(
dZ(2j+1t)‖x− y‖)

2j

)

+ϕ(t‖x− y‖) = tf(x) + (1− t)f(y) +
Kx,y

2n+1
+

n∑

j=0

ϕ
(
dZ(2jt)‖x− y‖)

2j
.

In the case t ∈ [1/2, 1], the proof is similar. Thus, (27) is proved for all n ∈ N.
Finally, taking the limit n → ∞ in (27), we get the desired inequality (25).

To see that (25) implies the ϕ-midconvexity of f , substitute t = 1/2 into (25)

and use the easy-to-see identity Tϕ

(
1
2 , u

)
= ϕ( |u|2 ) (u ∈ R). ¤

The optimality of the error term in (25) and the appropriate convexity

properties of Tϕ have recently been obtained in [23].

Theorem 27. Let ϕ : D+ → R+ be nondecreasing with ϕ(s) > 0 for s > 0

and assume that γϕ := sup0<s∈ 1
2D

+
ϕ(2s)
ϕ(s) < 2. If f : D → R is locally bounded

from above a point of D and it is also ϕ-midconvex, then f is
(

2
2−γϕ

· ϕ)-convex
on D.
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Proof. By Proposition 21 and by Theorem 26, the proof of this theorem is

evident. ¤

Corollary 28. Let µ be a nonnegative and nonzero finite Borel measure on

[0, 1]. Denote α := supD+ and p0 := sup(suppµ) and assume that either α < ∞
and µ is not concentrated at the singleton {1} or p0 < 1. Define ϕ : D+ → R+

by

ϕ(s) :=

∫

[0,1]

spdµ(p) for all s ∈ D+.

If f : D → R is locally bounded from above a point of D and it is also ϕ-

midconvex, then f is
(

2
2−γϕ

· ϕ)-convex on D, where γϕ is given by (22).

Corollary 29. Let 0 ≤ p < 1 and ε ≥ 0 be arbitrary constants. If f : D → R
is locally bounded from above a point of D and it is also (ε, p)-midconvex, then

f is
(

2ε
2−2p , p

)
-convex on D.
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[25] J. Makó and Zs. Páles, Strengthening of strong and approximate convexity, Acta Math.
Hungar. 132(1–2) (2011), 78–91.

[26] J. Mrowiec, Remark on approximately Jensen-convex functions, C. R. Math. Rep. Acad.
Sci. Canada 23(1) (2001), 16–21.
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[39] Ja. Tabor, Jó. Tabor and M. ŻoÃldak, Optimality estimations for approximately mid-
convex functions, Aequationes Math. 80 (2010), 227–237.

JUDIT MAKÓ
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