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Additive and multiplicative functions on
arithmetical semigroups

By KARL-HEINZ INDLEKOFER (Paderborn)

and EUGENIJUS MANSTAVIČIUS (Vilnius)

1. Introduction

Many problems concerning additive and multiplicative functions de-
fined on N can be posed and solved in a more abstract setting. One can
investigate functions on an arithmetical semigroup which by definition is
a commutative semigroup G with identity element 1, and which contains
a countable subset P such that every element a 6= 1 in G admits unique
factorization into a finite product of powers of elements of P. The direct
generalization of N is the arithmetical semigroup satisfying

Axiom A. A completely multiplicative norm function ‖ · ‖ is defined
on G so that ‖p‖ > 1 for each p ∈ P, and there exist constants A > 0,
0 ≤ θ′ < 0 such that

(1) #{a ∈ G; ‖a‖ ≤ x} = Axθ + O(xθ′).

The development of analytic and probabilistic number theory in such
semigroups is represented by J. Knopfmacher’s monograph [8], papers
quoted in it and more recent publications. The semigroup of primary
polynomials over a finite field as well as that of the integral divisors in al-
gebraic function fields and many other interesting arithmetical semigroups
do not fall under the scope of Axiom A because the regularity of norms of
elements has different character. These semigroups satisfy

Axiom A∗. A completely additive degree function ∂ is defined on G
so that ∂(p) ≥ 1 for each p ∈ P and

G(n) := #{a ∈ G; ∂(a) = n} = Aqn + O(qνn)

This work was done while the second author held a visiting professorship at the Pader-
born Universität supported by the Deutsche Forschungsgemeinschaft.
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as n →∞ for some constants A > 0, q > 1, 0 ≤ ν < 1.

Note that if one defines ‖a‖ = q∂(a), then the last asymptotic relation
implies (1) only for the sequence x = xn := qn →∞.

Another nonequivalent axiom has been suggested by the first of the
authors [5]. In [9] J. Knopfmacher gives an introductory analytic theory
of semigroups satisfying Axiom A∗, deeper problems he leaves as open
questions (Chapter 12). The purpose of the present paper is to answer
some of them. Investigating the mean values of multiplicative functions we
obtain an analogue of the Halász theorem [4]. Observe that the specific
structure of the considered semigroups implies a new effect in the problem
which is shown below by the example of the Möbius function. By some
limit theorems for additive functions we demonstrate that the probabilistic
number theory in N, systematically represented by J. Kubilius [11] and
P.D.T.A. Elliott [3], has its analogue in semigroups satisfying Axiom A∗.

2. Analytic background

In the following let the arithmetical semigroup G satisfy Axiom A∗.
For y ∈ C, |y| < 1, we put

Z(y) =
∞∑

n=0

G(n)(q−1y)n =
∞∏

k=1

(1− (q−1y)k)−π(k)

where
π(k) := #{p ∈ P; ∂(p) = k}.

The function Z(y) is analytic in the disc |y| < 1 and has an analytic
continuation into the disc |y| < q1−ν with a simple pole at y = 1 with the
residue −A (see [9], Chapter 2). As it was shown in [6], Lemma 8.5 in [9]
is not correct. In general, Axiom A∗ does not imply that Z(y) 6= 0 for
|y| = 1 though only one simple exceptional zero at y = −1 can occur. In
the general case we have the prime number theorem analogue

(2) π(k) = qkk−1(1− (−1)kκ) + O(qc0k)

with some c0, max{ 1
2 , ν} < c0 < 1 ([6], [7]). Here κ = 1 if Z(−1) = 0 and

κ = 0 otherwise.
Let f : G → C be a multiplicative function which may depend on n

or other parameters. We shall investigate the asymptotic behaviour of

Mn(f) := A−1q−n
∑

∂(a)=n

f(a)
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as n →∞ where |f(a)| ≤ 1 for each a ∈ G. Put

F (y) =
∞∑

n=1

∑

∂(a)=n

f(a)(q−1y)n =

=
∏

p∈P
(1 + f(p)(q−1y)∂(p) + f(p2)(q−1y)2∂(p) + . . . ) :=

:=
∏
p

χp(y) :=
∏
p

χp(y; f).

For |y| < 1 the function F (y) is analytic and F (y) 6= 0 in this disc. Due to
the estimate (2) there is only a finite number of prime elements satisfying
the inequality

∂(p) ≤ (log 2)/ log q := c.

For the other primes we have

|χp(y)− 1| ≤ (q∂(p) − 1)−1 ≤ 1− c1,

uniformly in |y| ≤ 1 with some c1 > 0 depending only on G. Consider the
equality

F (y) =
[ ∏

∂(p)≤c

χp(y) exp
{
−

∑

∂(p)≤c

f(p)(q−1y)∂(p)+

+
∑

∂(p)>c

(log χp(y)− f(p)(q−1y)∂(p))
}]

× exp
{ ∞∑

k=1

∑

∂(p)=k

f(p)(q−1y)k
}

and denote by H(y) the function in the square brackets. If further

L(y) =
∞∑

k=1

(
q−k

∑

∂(p)=k

f(p)
)
yk :=

∞∑

k=1

F(k)yk ,

then
F (y) = H(y) exp{L(y)}.

The routine considerations [3], [4], [13] show that H(y) is analytic in the
disc |y| < 1 + c2 with some c2 > 0 and |H(y)| + |H ′(y)| ¿ 1 uniformly
with respect to all parameters of the function f in this region. The same
we have for Z(y), namely,

(3) Z(y) = H0(y) exp{L0(y)}
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with

H0(y) = exp
{ ∞∑

k=1

(−π(k) log(1− q−kyk)− P(k)yk)
}

, L0(y) =
∞∑

k=1

P(k)yk

and P(k) = q−kπ(k). Here H0(y) is analytic and |H0(y)|+ |H ′
0(y)| ¿ 1 in

the disc |y| < 1 + c2. At last we can use the following representation

(4) Z(y) = Z̃(y)/(1− y)

with a function Z̃(y), analytic in |y| < 1 + c2 such that Z̃(1) = A. Note
that Z̃(y) 6= 0 for |y| ≤ 1 except, maybe, at the point y = −1. In [6]
we jointly with R. Warlimont showed that semigroups with Z(−1) = 0
really exist. We will see further that the asymptotic behaviour of Mn(f) as
n →∞ can be considerably different in both alternative cases when κ = 0
or κ = 1. The analogy with the corresponding results for multiplicative
functions defined on N or semigroups satisfying Axiom A can brake down.
This effect makes the problem more interesting.

3. Results

The dependence of f on n plays the essential role. When f does not
depend on n we obtain an analogue of the Halász theorem [4].

Theorem 1. Let f : G → C be a multiplicative function, |f(a)| ≤ 1.
Then there exist a real constant t0 ∈ (−π, π] and a complex constant D
such that

(5) Mn(f) = D exp{it0n + i

n∑

k=1

Im(F(k)e−it0k)}+ o(1).

Here and in the following where it is supposed that n →∞ we do not
indicate it.

Theorem 2. In order that Mn(f) = o(1) it is both necessary and
sufficient that one of the following two conditions is satisfied:

(I) for each t ∈ (−π, π] the series

(6)
∞∑

k=1

q−k
∑

∂(p)=k

(1− Re(f(p)e−itk))

diverges;
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(II) there exists a unique t0 ∈ (−π, π] such that the series (6) converges
for t = t0 and ∏

∂(p)≤c

χp(e−it0 ; f) = 0.

In the formulation of Theorems 1 and 2 it is difficult to notice the role
which plays the exceptional zero of Z(y) at y = −1. Therefore we consider
the classical example of the Möbius function µ : G → {0, 1,−1} defined as
a multiplicative function taking values µ(p) = −1 and µ(pk) = 0 for each
prime p and k ≥ 2. Due to the prime number theorem (2) the convergence
of the series (6) at t0 ∈ (−π, π] for f = µ is equivalent to the convergence
of the series

(7)
∞∑

k=1

1 + cos t0k

k
(1− (−1)kκ).

If κ = 0, such a t0 does not exist, hence Mn(µ) = o(1). If κ = 1, evidently,
the series (7) converges for t0 = π. Now Theorem 1 with the calculated
constant D implies

Mn(µ) = (−1)n
∞∏

k=1

(
1− 1 + (−1)k

qk
+

(−1)k

q2k

)π(k)

+ o(1).

The formula (2) shows that in this case the last infinite product converges.

The following theorem is an analogue of the Delange result [1], [2].

Theorem 3. In order that

lim
n→∞

Mn(f) = M(f)

exists and M(f) 6= 0 it is both necessary and sufficient that the series

∞∑

k=1

q−k
∑

∂(p)=k

(1− f(p))

converges and ∏

∂(p)≤c

χp(1; f) 6= 0.

We remark here that Theorem 3 will be proved by applying Theo-
rem 1. The first of the authors together with P. G. Slattery has proved
it by more simple considerations (see [15]).
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As in [12] for the semigroup N, we obtain only partial results when
f depends on n. Let us define the class M of multiplicative functions
f = fn : G → C, |f(a)| ≤ 1, characterized by these two conditions:

(8) sup
f∈M

n−1
n∑

k=1

kq−k
∑

∂(p)=k

(1− Re f(p)) := µn = o(1),

(9) sup
f∈M

n∑

k=1

q−k
∑

∂(p)=k

(1− Re f(p)) ≤ M < ∞.

Let in the following Hn(1) be derived from H(1) defined in Section 2, by
putting f(p) = 1 for ∂(p) > n.

Theorem 4. For arbitrary δ, 0 < δ < 1
3 , and uniformly in f ∈ M we

have

(10) Mn(f) = Hn(1)H−1
0 (1)

× exp
{ n∑

k=1

q−k
∑

∂(p)=k

(f(p)− 1)
}

+ OM,δ

(
µ

1
6−δ
n + n−

1
2

)
.

The above Theorems supply a possibility to prove probabilistic results
about the distribution of additive functions defined on G. We present here
only some of them. Put

νn(. . . ) = A−1q−n#{a ∈ G, ∂(a) = n, . . . }.
Then one of the main problems can be formulated as follows:

Let hn : G → R be a sequence of additive functions, and let α(n) be
a sequence of real constants. When does the sequence

νn(x) := νn(hn(a)− α(n) < x)

weakly converge to a limit distribution function?

In the following the weak convergence will be denoted by =⇒ .
Put u∗ = min{|u|, 1}sgnu, u ∈ R. As in the paper [12] we have

Theorem 5. Let hn : G → R be a sequence of additive functions,
α(n) ∈ R. Suppose in advance that hn(pr) → 0 for each fixed p ∈ P, r ≥ 1
and

(11)
n∑

k=1

q−k
∑

∂(p)=k

h∗2n (p) = O(1),
1
n

n∑

k=1

kq−k
∑

∂(p)=k

h∗2n (p) = o(1) .
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In order that νn(x) =⇒ Φ(x) where Φ(x) is a distribution function
it is both necessary and sufficient that the following two conditions are
satisfied:
(i) there exists a non-decreasing bounded function Ψ(u) defined on R̄ such
that

Ψn(u) :=
n∑

k=1

q−k
∑

∂(p)=k
hn(p)<u

h∗2n (p) =⇒ Ψ(u),

Ψn(±∞) → Ψ(±∞);

(ii) for some constant α ∈ R

α(n) =
n∑

k=1

q−k
∑

∂(p)=k

h∗n(p) + α + o(1).

If these conditions are satisfied the characteristic function of the distribu-
tion Φ(x) is equal to

exp
{

itα +
∫

R
(eitu − 1− itu∗)u∗−2dΨ(u)

}
.

The famous Kubilius class H (see [11]) has its analogue too. Denote

A(n) =
n∑

k=1

q−k
∑

∂(p)=k

h(p), B2(n) =
n∑

k=1

q−k
∑

∂(p)=k

h2(p).

Definition. We say that an additive function h : G → R belongs to
the class H if B(n) →∞ and B(un) ∼ B(n) for each u, 0 < u < 1.

Theorem 6. Let h ∈ H. In order that νn(h(a) − A(n) < xB(n))
weakly converges to a distribution function with variance one it is both
necessary and sufficient that there exists a distribution function K(u) such
that

Kn(u) := B−2(n)
n∑

k=1

q−k
∑

∂(p)=k
h(p)<uB(n)

h2(p) =⇒ K(u).

If this condition is satisfied the characteristic function ϕ(t) of the limiting
distribution can be expressed by the Kolmogorov formula

ϕ(t) = exp
{∫

R
(eitu − 1− itu)u−2dK(u)

}
.
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The function ∑

p|a
log ∂(p)

defined on the semigroup of primary polynomials over a finite constant
field evidently belongs to the class H and a remainder term estimate in its
limit theorem has been obtained by J. L. Nicolas [14].

At last we demonstrate that limit theorems with normalizing con-
stants β(n) ∼ nα, α > 0, are available, too.

Theorem 7. Suppose β(n) → ∞, and assume that there exists a
nondecreasing bounded function Ψ0(u) such that

Ψ∼n (u) :=
n∑

k=1

q−k
∑

∂(p)=k
h(p)<uβ(n)

(
h(p)
β(n)

)∗2
=⇒ Ψ0(u), Ψ∼n (±∞) → Ψ0(±∞).

Let further for each ` ∈ N the sequences

`

n`

n∑

k=1

q−kk`
∑

∂(p)=k
h(p)<uβ(n)

1

weakly converge to some limiting distribution function V`(u). Then with

α(n) = β(n)
n∑

k=1

q−k
∑

∂(p)=k

(
h(p)
β(n)

)∗

the sequence νn(h(a) − α(n) < xβ(n)) weakly converges to a limiting
distribution.

Its rather complicated characteristic function is given in the proof.

Corollary. For each ρ > 0 the sequence

νn

(∑

p|a
∂ρ(p) < xn%

)

weakly converges to the distribution with the characteristic function

1
2πi

∫ 1+i∞

1−i∞

ez

z
exp

{∫ 1

0

eituρ−1

u
e−zudu

}
dz.

Comparing our probabilistic results with that obtained for additive
functions defined on N (see [3], [11], [12], [13]) one can notice a great
analogy. Principal differences appear in the problem of distribution of real
valued multiplicative functions. To this topic we shall devote the next
paper.
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4. Auxilliary lemmas

Our method is based on the information about the function L(y) near
the boundary |y| = 1. Let in the following r = exp{− 1

n}. The symbol ¿
will be used when the constant implied depends on G only. All the lemmas
of this paragraph hold even for sequences of multiplicative functions f = fn

such that |f(a)| ≤ 1.

Lemma 1. We have

max
|t|≤π

exp{Re L(reit)} ¿ n exp
{
− min
|t|≤π

n∑

k=1

(P(k)− Re(F(k)eitk))
}

.

Proof. At first we note that

(12)
∑

k>n

rk/k +
∑

k≤n

(rk − 1)/k ¿ 1

and by (3) and (4) we have exp{L0(r)} ¿ Z(r) ¿ n. Now remembering
the asymptotic formula (2) and estimating exp{Re L(reit) − L0(r)} we
obtain the desired result.

Lemma 2. Suppose K > 1 and

(13) Ψn :=
n∑

k=1

(P(k)− ReF(k)) ≤ M1 < ∞.

Then for δ1 > 0 there exists a positive constant C1, depending on G, M1

and δ1 only, such that

max
K/n≤|t|≤π

exp{Re L(reit)} ≤ C1nK−1+δ1 .

Proof. As previously we have

(14) exp{Re L(reit)} ¿ n exp
{
−

∞∑

k=1

rk(P(k)− Re(F(k)eitk))
}

.

For the difference in the brackets we will apply the inequality

1− Re(z1z2) ≥ 1− Re z1 − (1− Re z2)− 2
√

1− Re z1

√
1− Re z2

where z1, z2 ∈ C and |z1| ≤ 1, |z2| ≤ 1. Hence

P(k)− Re(F(k)eitk) ≥ q−kπ(k)(1− cos tk)− q−k
∑

∂(p)=k

(1− Re f(p))−



10 Karl-Heinz Indlekofer and Eugenijus Manstavičius

−2q−k
√

1− cos tk
∑

∂(p)=k

√
1− Re f(p).

Applying twice the Cauchy inequality we have from (12) and (14)

exp{Re L(reit)} ¿ n exp
{
−

∞∑

k=1

q−krkπ(k)(1− cos tk) + Ψn+

+O((
∞∑

k=1

q−krkπ(k)(1− cos tk))
1
2 (Ψn + 1)

1
2 )

}
.

Now appealing to (3) and (4) we see that

exp{Re L(reit)} ≤ C2n

( |Z(reit)|1−δ1

Z(r)

)
≤ C3nK−1+δ1

if K/n ≤ |t| ≤ π and Ci = Ci(δ1,M1), i = 2, 3, are constants. Lemma 2 is
proved.

Lemma 3. We have

J1 :=
∫ π

−π

|L′(reit)|2dt ¿ n.

Proof. We will apply the Parseval equality for the Fourier series. It
yields

J1 =
∫ π

−π

∣∣∣
∞∑

k=1

krk−1F(k)eit(k−1)
∣∣∣
2

dt =

=
∞∑

k=1

k2r2(k−1)|F(k)|2 ≤
∞∑

k=1

k2r2(k−1)P(k)2 =
∫ π

−π

|L′0(reit)|2dt .

But by (3) and (4) the last integral does not exceed
∫ π

−π

∣∣∣∣
Z ′

Z
(reit)

∣∣∣∣
2

dt + O(1) ¿
∫ π

−π

dt

|1± reit|2 + 1 ¿ n +
∫ π

1
n

dt

t2
¿ n.

Thus the Lemma is proved.

Lemma 4. For each γ > 1 there exists a positive constant C4 depend-
ing on G and γ only such that

J2 = J2(γ) :=
∫ π

−π

exp{γ Re L(reit)}dt ≤ C4n
γ−1.



Additive and multiplicative functions on . . . 11

The Proof is based on the Parseval equality, too. At first we expand
the integrand into a Fourier series. By (12) it is enough to consider the
function

Q(t) :=
n∏

k=1

exp
{γ

2
rkF(k)eitk

}
=

n∏

k=1

∞∑

l=0

(γ

2
F(k)

)` rk`eitk`

`!
=

=
∞∑

m=0

rmeitm
∑

`1,... ,`n≥0
`1+2`2+...+n`n=m

F`1(1) . . .F`n(n)
`1! . . . `n!

(γ

2

)`1+...+`n

:=

:=
∞∑

m=0

rmeitmbm .

But

|bm| ≤
∑

`1,... ,`n≥0
`1+2`2+...+n`n=m

P`1(1) . . .P`n(n)
`1! . . . `n!

(γ

2

)`1+...+`n

:= dm .

Now the Parseval equality yields

J2 =
∞∑

m=0

r2m|bm|2 ≤
∞∑

m=0

r2md2
m =

∫ π

−π

∣∣∣exp
{γ

2

n∑

k=1

rkP(k)eitk
}∣∣∣

2

dt

which by (3) and (12) does not exceed

C5

∫ π

−π

|Z(reit)|γdt ¿
∫ π

−π

dt

|1− reit|γ ≤ C6n
γ−1.

This ends the proof.

The Main Lemma. Suppose the condition (13) is satisfied. Then for
each K > 1, 0 < δ2 < 1 the following formula holds:

Mn(f) =
H(1)

H0(1)2πi

∫ 1+iK

1−iK

ez

z
exp

{ ∞∑

k=1

(F(k)− P(k))e−
zk
n

}
dz×

×
(

1 + O

(
K

n

))
+ O(K− 1

2+δ2) + O(n−
1
2 ).

The functions H(y) and H0(y) are defined in the second section and the
constant in the symbol O depends at most on G, δ2 and M1, given by the
condition (13).
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Proof. By the Cauchy formula we have

(15) Mn(f) =
1

A2πi

∫

|y|=r

F (y)y−n−1dy

where r = exp
{− 1

n

}
. Let J denotes the part of the integral where K/n ≤

arg y = t ≤ π, K > 1. Integrating by parts we obtain

J = ie

∫ π

K/n

F (reit)e−itndt = O(n−1 max
K/n≤t≤π

|F (reit)|)+

+ O(n−1

∫ π

K/n

|H ′(reit)| exp{Re L(reit)}dt) +

+ O(n−1

∫ π

K/n

|H(reit)| exp{Re L(reit)}|L′(reit)|dt).

Now Lemmas 2, 3, 4 and the estimates discussed in the second part show

that for 1 < γ < 2

J = O(K−1+δ1) + O(n−1J
1
2
2 (2))+

+O(n−1J
1
2
1 ( max

K/n<t≤π
exp{Re L(reit)}) 2−γ

2 J
1
2
2 (γ) =(16)

= O(K−1+δ1) + O(n−
1
2 ) + O(K−(1−δ1)(1− δ

2 )) = O(K− 1
2+δ2 + n−

1
2 ).

Here 0 < δ2 < 1
2 is arbitrary and γ, δ1 γ are chosen to satisfy

(1− δ1)(1− γ

2
) >

1
2
− δ2.

The same estimate holds for −π ≤ t ≤ −K
n . In the remaining interval

|t| ≤ K
n we compair F (y) with Z(y) to obtain

F (reit) =
Z̃(reit)H(reit)

(1− reit)H0(reit)
exp

{ ∞∑

k=1

(F(k)− P(k))e−
(1−itn)k

n

}
.
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Further we have for |t| ≤ K
n

Z̃(reit) = A + O

(
K

n

)
;

Hi(reit) = Hi(1) + O

(
K

n

)
, i = 0, 1, H = H1;

(n(1− reit))−1 =

(
n

(
1− itn

n
+ O

(( |1 + itn|
n

)2
)))−1

= (1− itn)−1

(
1 + O

(
K

n

))
.

Using these estimates and (16) in the formula (15) we obtain

Mn(f) =
H(1)
H0(1)

(
1 + O

(
K

n

))
1
2π

∫

|t|≤K
n

e1−itn

1− itn
×

× exp

{ ∞∑

k=1

(F(k)− P(k))e−
(1−itn)k

n

}
dt + O(K− 1

2+δ2 + n−
1
2 ).

Thus the Main Lemma is proved.

5. Proofs of the Theorems

Proof of Theorem 4. The values f(pk) for ∂(p) > n have no influence
to Mn(f) therefore we take f(pk) = 1 when ∂(p) > n and k ≥ 1. It is easy
to check that (8) implies

sup
f∈M

n−1
∣∣∣

n∑

k=1

kq−k
∑

∂(p)=k

Im f(p)
∣∣∣ = O(

√
µn).

Hence for z = 1 + it, |t| ≤ K, we have

exp
{ n∑

k=1

(F(k)−P(k))e−zk/n
}

=

= exp
{ n∑

k=1

(F(k)− P(k))(1 + O(|z|√µn))
}

=

= exp
{ n∑

k=1

q−k
∑

∂(p)=k

(f(p)− 1)
}

(1 + O(|z|√µn)).
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The integral in the formula for Mn(f) in the Main Lemma is equal to

exp
{ n∑

k=1

q−k
∑

∂(p)=k

(f(p)− 1)
} ∫ 1+iK

1−iK

ez(1 + O(|z|√µn))
z

dz =

= exp
{ N∑

k=1

q−k
∑

∂(p)=k

(f(p)− 1)
}

(1 + O(K−1 + K
√

µn)).

The choice K = µ
− 1

3
n and the Main Lemma yield Theorem 4.

Proof of Theorem 1. Suppose at first that the series (6) converges
at t = t0. Such a t0 ∈ (−π, π] can only be unique. For, if (6) converges for
t = t10, too, then the inequality

1− Re(z1z2) ¿ (1− Re z1) + (1− Re z2), |z1| ≤ 1, |z2| ≤ 1

and (2) yield

∞ >

∞∑

k=1

q−k
∑

∂(p)=k

(1− cos(t0 − t10)k) À
∞∑

`=1

1− cos(t0 − t10)(2` + 1)
2` + 1

which is impossible if t0 6= t10.
Put f̂(a) = f(a) exp{−it0∂(a)}. For M = {f̂} the condition (9) is

satisfied. Now f̂ does not depend on n, so (9) implies the condition (8).
Applying (10) we get the asymptotic relation

Mn(f̂) =
Ĥn(1)
H0(1)

exp
{ n∑

k=1

q−k
∑

∂(p)=k

(f̂(p)− 1)
}

+ o(1)

where Ĥn(1) is obtained from Hn(1) by setting f̂(pk) in place of f(pk).
Since

Mn(f) = eit0nMn(f̂),

we obtain (5) with

D =
lim

n→∞
Ĥn(1)

H0(1)
exp

{ ∞∑

k=1

q−k
∑

∂(p)=k

(Re(f(p)e−it0k)− 1)
}

,

when the series (6) converges at t = t0.
If the condition (I) of Theorem 2 is satisfied, then as in the proof

of the Main Lemma we integrate in the complex domain. We take the
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formula
Mn(f) =

A

2πin

∫

|y|=r

F ′(y)y−ndy

where, as before, r = exp
{− 1

n

}
. Now by Lemma 1 we have

max
|t|≤π

exp{Re L(reit)} = o(n).

Then for arbitrary γ, 1 < γ < 2, applying Lemmas 3 and 4 we obtain

Mn(f) = O(n−1J
1
2
2 (2)) + O(n

2−γ
2 J

1
2
1 J

1
2
2 (γ)) = o(1).

So in this case we have D = 0, and Theorem 1 is proved.

Theorems 2 and 3 are only corollaries of Theorem 1 if we analyse the
formula (5) and possible values of the constant D.

Remark. When the function f depends on n, too, and

min
|t|≤π

n∑

k=1

q−k
∑

∂(p)=k

(1− Re(f(p)e−itk)) →∞

then Mn(f) = o(1) as n → ∞. In order to see this one can repeat the
second part of the proof of Theorem 1.

Proof of Theorem 5. Let fn(a) = fn(a, t) = exp{ithn(a)}, t ∈ R
and let T > 0 be an arbitrary fixed number. We will apply Theorem 4
when M = {fn(a, t); |t| ≤ T}. The conditions (8) and (9) evidently follow
from (11). The formulas given in the second part for H`, ` ≥ 0, yield that
the condition fn(pk, t) = o(1) which holds uniformly in |t| ≤ T for each
p ∈ P and k ≥ 1 fixed, imply Hn(1)/H0(1) = 1 + o(1) with the same
uniformity. The weak convergence of νn(x) is equivalent to the uniform
convergence of Mn(fn) exp{−itα(n)} when |t| ≤ T . Due to the formula
(10) we have that the last one is equivalent to the convergence of

(17)

n∑

k=1

q−k
∑

∂(p)=k

(exp{ithn(p)} − 1)− itα(n) =

=
∫

R
(eitu − 1− itu∗)u∗

−2
dΨn(u) + it(

n∑

k=1

q−k
∑

∂(p)=k

h∗n(p)− α(n))

with the same uniformity. Now as in [3] or [12] using the Helly theorem
we obtain both the necessity and sufficiency of the conditions (i) and (ii)
in Theorem 5 as well as the formula of the characteristic function of the
limiting distribution.
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Proof of Theorem 6 is in fact contained in the previous one. We
note that for each 0 < ε < 1

Qn :=
1
n

n∑

k=1

kq−k
∑

∂(p)=k

h2(p) ≤ εB2(n) + (B2(n)−B2(εn)).

Hence Qn = o(B2(n)) as n →∞ and the condition (11) even without the
star notation for hn = h/B(n) is satisfied. Other details can be omitted.

Proof of Theorem 7. Let fn(pk) = exp{ith(pk)/β(n)} when ∂(p) ≤
n and fn(pk) = 1 for ∂(p) > n. As previously, with the help of the
expression (17), we have the convergence

n∑

k=1

q−k
∑

∂(p)=k

(fn(p)− 1)− itα(n) =
∫

R

eitu − 1− itu∗

u∗2
dΨ0(u) + o(1) =

:= κ(t) + o(1)

uniformly in |t| ≤ T for each T > 0. Further, for ` ≥ 1,

(19)
`

n`

n∑

k=1

q−kk`
∑

∂(p)=k

fn(p) = T`(t) + o(1)

where T`(t) is the characteristic function of the distribution V`(u). As in
[13] we apply the Main Lemma. The formulas (18) and (19) yield

n∑

k=1

(F(k)−P(k))e−zk/n = itα(n) + κ(t) +
∞∑

`=1

(−1)`(T`(t)− 1)z`

`!`
+ o(1)

:= itα(n) + q(z, t) + o(1)

uniformly in |t| ≤ T and | Im z| ≤ K. The factor Hn(1)/H0(1) tends to 1
as n →∞ with the same uniformity. Hence

exp{−itα(n)}q−nA−1
∑

∂(a)=n

exp{ith(a)/β(n)} =

=
1

2πi

∫ 1+i∞

1−i∞

ez

z
exp{q(z, t)}dz + o(1)

where the convergence of the integral is also uniform in |t| ≤ T . This ends
the proof.
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In order to prove the Corollary we need only to observe that summa-
tion by parts yields

N∑

k=1

k−1

(
exp

{
it

(
k

n

)ρ}
− 1

)
exp{−zk/n} =

∫ 1

0

eituρ − 1
u

e−zudu + o(1)

uniformly in |t| ≤ T for each T > 0.
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UNIVERSITÄT–PADERBORN
WARBURGER STRASSE 100, D–33098 PADERBORN

EUGENIJUS MANSTAVICIUS
FACULTY OF MATHEMATICS, VILNIUS UNIVERSITY



18 Karl-Heinz Indlekofer and Eugenijus Manstavičius
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