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General and alien solutions of a functional equation
and of a functional inequality

By WÃLODZIMIERZ FECHNER (Katowice) and ESZTER GSELMANN (Debrecen)

Abstract. The purpose of the present paper is to solve (under some assumption

on the domain) the equation

g(x+ y)− g(x)− g(y) = xf(y) + yf(x).

After determining the general solutions, we will investigate the so-called alien solutions.

Finally, we will discuss the real solutions of the following related functional inequality:

g(x+ y)− g(x)− g(y) ≥ xf(y) + yf(x).

1. Introduction

In mathematics there exist several notions concerning functions that are de-

fined through two or more identities. For example, if P and Q are rings, then the

function f : P → Q is termed a homomorphism between P and Q if it is additive

and multiplicative, i.e. if

f(x+ y) = f(x) + f(y) (x, y ∈ P ) (1.1)
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and

f(xy) = f(x)f(y) (x, y ∈ P ) (1.2)

Another example is, for instance, the notion of derivations. Let Q be a ring

and P be its subring. A function f : P → Q is called a derivation if it is additive

and

f(xy) = xf(y) + f(x)y (x, y ∈ P ) .

The following question naturally arises: Is it possible to characterize such

type of functions via a single equation? This problem was firstly investigated by

J. Dhombres in [3]. He examined the equation

af(xy) + bf(x)f(y) + cf(x+ y) + d (f(x) + f(y)) = 0,

where the unknown function f maps a ring X to a field Y and the constants a, b, c

and d belong to the center of Y .

Ten years later, in 1998 R. Ger succeed to strengthen the results of [3].

In the paper [9] he proved several statements concerning the following equation

which is the sum of (1.1) and (1.2):

f(x+ y) + f(xy) = f(x) + f(y) + f(x)f(y).

In this direction some further results can be found in Ger [10] and in Ger–

Reich [11].

Similarly to the notion of homomorphisms, derivations can be characterized

analogously. For example, in [12] the functional equation

f(x+ y)− f(x)− f(y) = g(xy)− xg(y)− yg(x)

is solved under the assumption that the domain of the functions f and g is a

commutative field and the range of these functions is a vector space over this

field.

In parallel, several authors discussed various versions of the following func-

tional inequality:

g(x+ y)− g(x)− g(y) ≥ φ(x, y),

with some additional assumptions upon g and φ (see Baron–Kominek [1], Cho-

czewski–Girgensohn–Kominek [2], Renardy [17], see also [6], [7], [8]). In

Section 4 as a special case of φ we take φ(x, y) = f(x)y+ yf(x) with f satisfying

certain further conditions.
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In this paper we will continue the above–mentioned research and we will

examine the functional equation

g(x+ y)− g(x)− g(y) = xf(y) + yf(x), (∗)
where the unknown functions f and g are defined on an integral domain. Firstly,

we will find the general solution of equation (∗). After that, we will study the

following problem. Let X be a ring. It is obvious that in case the function

g : X → X is additive and the function f : X → X fulfills

xf(y) + yf(x) = 0 (x, y ∈ X) , (1.3)

then equation (∗) holds. These solutions are the so-called alien solutions of the

equation in question. We will point out that equation (∗) has solutions that

are not alien (in the above sense). Moreover, we will also give necessary and

sufficient conditions on the functions f and g to be alien solutions of the equation

in question.

In last section we confine ourselves to the following functional inequality

g(x+ y)− g(x)− g(y) ≥ xf(y) + yf(x), (∗∗)
where the unknown functions f, g : R → R satisfy some additional technical

assumptions.

Finally, let us mention that functional equations, similar to equation (∗) were
considered by several authors. For example in Ebanks–Kannappan–Sahoo [4]

the authors characterize all functions f : K→ G for which f(x+ y)− f(x)− f(y)

depends only on the product xy for all x, y ∈ K, where K is a commutative field

and G is a uniquely q-divisible abelian group. In Ebanks [5] the equation

f(x+ y)− f(x)− f(y) = g (H(x, y))

is investigated, where the unknown functions f, g defined on a nonvoid interval

I ⊂ R and H (I × I), respectively, satisfy some mild regularity conditions and

the given function H fulfills some stronger regularity assumption. Furthermore,

we also note that in Járai–Maksa–Páles [13] the authors described all Ca-

uchy differences that can be written as a quasisum, i.e. they have dealt with the

functional equation

f(x+ y)− f(x)− f(y) = α (β(x) + β(y))

for the unknown function f : I → R, and it is solved under the supposition that

the functions α and β are strictly monotonic.

Let us emphasize that in our Theorem 3.1 below no regularity assumption is

involved. Furthermore, we will work in a quite general framework concerning the

domain and the target space of the unknown functions.
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2. Preliminaries

In this section we will fix the notations and the terminology that will be used

subsequently. We refer the reader to the monographs of Kuczma [15] and of

Shafarevich [19].

Definition 2.1. By an integral domain we understand a commutative unitary

ring that contains no zero divisors.

The following notion will also be used in the next section.

Definition 2.2. Let n be a positive integer and G an abelian group. An

element x ∈ G is said to be divisible by n if there is y ∈ G such that x = ny.

Lemma 2.1. Let X be an integral domain and assume that the function

f : X → X fulfills (1.3). Then the function 2f : X → X is identically zero.

Proof. First let us substitute x → 1 and y → 1 to derive 2f(1) = 0.

Further, with the substitution y → 1, the above equation yields that

2xf(1) + 2f(x) = 0

is satisfied for all x ∈ X. Due to 2f(1) = 0, we obtain that 2f is identically zero

on X, as claimed. ¤
Remark 2.1. In general it is not true that f = 0 in the foregoing lemma

(however, under additional assumption of the divisibility by 2 postulated only for a

single element f(1) one can easily obtain f = 0). If one take X = Z2 and consider

the mapping f1(x) = x then it is easy to check that this functions provides

(nonzero) solutions of the equation. On the other hand, the maps f2(x) = 1 and

f3(x) = x+ 1 (the remaining nonzero self-mappings on X) do not solve it.

Let us also mention the following easily to verify result (the converse impli-

cation of a theorem due to Jessen–Karpf–Thorup [14, Theorem 2]).

Theorem 2.2. Let X be an Abelian group and f : X → X an arbitrary

function. Then the function F : X ×X → X defined by

F (x, y) = f(x+ y)− f(x)− f(x) (x, y ∈ X)

is symmetric, i.e.,

F (x, y) = F (y, x) (x, y ∈ X)

and fulfills the co–cycle equation, that is,

F (x+ y, z) + F (x, y) = F (x, y + z) + F (y, z)

holds for all x, y, z ∈ X.



General and alien solutions of a functional equation. . . 147

Finally, we will need the following two results. Recall that a map f : X → R
defined on an Abelian goup X is subadditive if

f(x+ y) ≤ f(x) + f(y)

for all x, y ∈ X.

Corollary 2.1 ([6], Corollary 1). Assume that X is an Abelian group, f :

X → R and φ : X ×X → R satisfy

f(x+ y)− f(x)− f(y) ≥ φ(x, y) (x, y ∈ X), (2.1)

φ(x,−y) ≥ −φ(x, y) (x, y ∈ X), (2.2)





lim supn→+∞,
1

4n
φ(2nx, 2nx) < +∞ (x ∈ X),

lim infn→+∞
1

4n
φ(2nx, 2ny) ≥ φ(x, y) (x, y ∈ X)

(2.3)

and

φ(−x,−y) = φ(x, y) (x, y ∈ X). (2.4)

Then there exists a subadditive function A : X → R such that

f(x) =
1

2
φ(x, x)−A(x) (x ∈ X).

Moreover, φ is biadditive and symmetric.

Corollary 2.2 ([7], Corollary 8). Assume X to be uniquely 2-divisible Abelian

group and that f : X → R, φ : X ×X → R satisfy (2.1), (2.2),

φ(2x, 2x) ≤ 4φ(x, x) (x ∈ X) (2.5)

jointly with

∀x∈X∃k0∈N∀k≥k0f
( x

2k

)
+ f

(
− x

2k

)
≥ 0. (2.6)

Then there exists an additive function a : X → R such that

f(x) =
1

2
φ(x, x) + a(x) (x ∈ X).

Moreover, φ is biadditive and symmetric.
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3. Functional equation (∗)

The main result in this section is the following:

Theorem 3.1. Let X be an integral domain. Then the functions f, g : X →
X fulfill functional equation (∗) for all x, y ∈ X, if and only if, there exist two

mappings A1, A2 : X → X and a constant c ∈ X such that A1 and 2A2 are

additive and

4f(x) = 2A1(x) + 2cx2 (x ∈ X), (3.1)

6g(x) = A2(x) + 3xA1(x) + cx3 (x ∈ X). (3.2)

Proof. The if part is a straightforward computation and therefore we will

confine ourselves to the only if part.

First, observe that substitution y → 0 shows that −g(0) = xf(0) for each

x ∈ X which easily implies that

f(0) = g(0) = 0.

Next, apply equation (∗) with y → x to obtain

g(2x)− 2g(x) = 2xf(x) (x ∈ X). (3.3)

Now, let us define four new functions fo, fe, go, ge : X → X by the following

formulas:

fo(x) = f(x)− f(−x), fe(x) = f(x) + f(−x) (x ∈ X) ;

go(x) = g(x)− g(−x), ge(x) = g(x) + g(−x) (x ∈ X) .

Replace in (∗) x by −x and y by −y, respectively, to arrive at

g(−x− y)− g(−x)− g(−y) = −xf(−y)− yf(−x) (x, y ∈ X) .

By adding and subtracting this equality and (∗) side-by-side we deduce the follo-

wing two equalities:

ge(x+ y)− ge(x)− ge(y) = xfo(y) + yfo(x) (x, y ∈ X) ; (3.4)

go(x+ y)− go(x)− go(y) = xfe(y) + yfe(x) (x, y ∈ X) . (3.5)

On the other hand, substitution y → −x in (∗) leads to

ge(x) = xfo(x) (x ∈ X) . (3.6)
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Further, substitution x → 2x and y → −x together with (3.3) gives us the equality

ge(x) + 2xfe(x) = xf(2x) (x ∈ X) .

This and identity (3.6) prove that

f(2x) = 3f(x) + f(−x) (x ∈ X) . (3.7)

Further, this implies the following properties of the functions fo and fe:

fo(2x) = 2fo(x) and fe(2x) = 4fe(x) (x ∈ X) . (3.8)

Now, join (3.4) with (3.6) to deduce

(x+ y)fo(x+ y) = (x+ y)[fo(x) + fo(y)] (x, y ∈ X) ,

which together with the fact that X is an integral domain, imply that fo is

additive. Thus there exists an additive function A1 : X → X such that

fo(x) = A1(x) (x ∈ X) .

Additionally, using (3.6) we also get that

ge(x) = xA1(x) (x ∈ X) .

It remains to solve equation (3.5). For our convenience let us denote the

Cauchy difference of go by C, that is, let

C(x, y) = go(x+ y)− go(x)− go(y) (x, y ∈ X) .

Due to Theorem 2.2 the function C fulfills the co–cycle equation

C(x+ y, z) + C(x, y) = C(x, y + z) + C(y, z) (x, y, z ∈ X) .

Comparing this with the right hand side of (3.5), after some rearrangements we

arrive at

x[fe(y + z)− fe(y)− fe(z)] = z[fe(x+ y)− fe(x)− fe(y)] (x, y, z ∈ X) .

Apply this for for z → y and use the second equality from (3.8) to deduce the

following relation

2xfe(y) = y[fe(x+ y)− fe(x)− fe(y)] (x, y ∈ X) .
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If we multiply both sides of the foregoing formula by x, then the following equality:

2x2fe(y) = xy[fe(x+ y)− fe(x)− fe(y)] (x, y ∈ X)

can be derived. Let us observe that the right hand side of this equation is sym-

metric in x and y. Therefore, so is the left hand side. This implies however

that

2x2fe(y) = 2y2fe(x)

hold for any x ∈ X. If we substitute y → 1 then we see that

2fe(x) = 2cx2

for each x ∈ X, where c = fe(1).

To finish the proof we need to determine the function go. In view of the

above representation of the function fe, equation (3.5) turns into

2[go(x+ y)− go(x)− go(y)] = 2cxy(x+ y) (x, y ∈ X) . (3.9)

Define the function A2 : X → X through the formula

A2(x) = 3go(x)− cx3 (x ∈ X) ,

(the constant c is the same as above). A direct calculation shows that in this case

equation (3.9) yields that the function 2A2 is additive. Therefore

3go(x) = A2(x) + cx3 (x ∈ X) .

To conclude the proof it suffices to use the above results concerning the

functions fo, fe, go and ge jointly with the fact that

2f(x) = fe(x) + fo(x) and 2g(x) = ge(x) + go(x) (x ∈ X) . ¤

If we assume additionally that the ring X appearing in Theorem 3.1 is uni-

quely divisible by 2 and 3 then formulas (3.1) and (3.2) can be simplified. We

have the following corollary.

Corollary 3.1. Let X be an integral domain which is uniquely divisible by 2

and 3 and assume that equation (∗) holds for f, g : X → X. Then, and only then,

there exist two additive mappings A1, A2 : X → X and a constant c ∈ X such

that

f(x) = A1(x) + cx2 (x ∈ X) , (3.10)

g(x) = A2(x) + xA1(x) +
1

3
cx3 (x ∈ X) . (3.11)
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Remark 3.1. We are grateful to Professor Maciej Sablik for a remark that

the foregoing corollary can be deuced from more general lemmas from papers

M. Sablik [18, Lemma 2.3] and A. Lisak, M. Sablik [16, Lemma 1]. More

precisely, these general results imply that each solution of equation (∗) is a poly-

nomial function of some degree. What remains to be done is to calculate the

exact form of this polynomial function. However, unlike to our Theorem 3.1 both

[18, Lemma 2.3] and [16, Lemma 1] require unique divisibility of the target space.

Making use of Corollary 3.1, we can easily derive a criteria on the functions

f and g to be the alien solutions of equation (∗). By Lemma 2.1 if f and g are

alien then f = 0 and g is additive.

Corollary 3.2. Let X be an integral domain which is uniquely divisible by 2

and 3 and consider the functions f, g : X → X and assume that equation (∗)
holds. Then the following statements are equivalent:

(i) f = 0 and g is additive;

(ii) the function f is even and f(1) = 0;

(iii) the function g is odd and g(2) = 2g(1).

Proof. The proof is a direct calculation based on Corollary 3.1. ¤

Finally, we investigate the case when the functions occurring in equation (∗)
are the same. In this case we prove the following.

Corollary 3.3. Let X be an integral domain which is uniquely divisible by 2

and 3. Assume that the function f : X → X fulfills

f(x+ y)− f(x)− f(y) = xf(y) + yf(x)

for any x, y ∈ X. Then and only then, the function f is identically zero.

Proof. Follows immediately from Corollary 3.1. ¤

4. Functional inequality (∗∗)

We will apply Corollaries 2.1 and 2.2 to obtain two analogues of Theorem 3.1

for inequality (∗∗) under some additional assumptions.

Theorem 4.1. Assume that the functions f, g : R→ R fulfill inequality (∗∗)
for each x, y ∈ R. If f is odd and f(2x) = 2f(x) for each x ∈ R then f is additive

and there exists a subadditive mapping A : R→ R such that

g(x) = xf(x)−A(x),
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for all x ∈ R.
Proof. Let us define

φ(x, y) = xf(y) + yf(x) (x, y ∈ R) .

One may calculate that thanks to our assumptions upon f we have

φ(x,−y) = φ(−x, y) = −φ(x, y) (x, y ∈ R)
and

φ(2x, 2y) = 4φ(x, y) (x, y ∈ R) .
This implies that assumptions of Corollary 2.1 are satisfied by g and φ. Therefore,

we obtain the existence of a subadditive mapping A : R→ R such that

g(x) =
1

2
φ(x, x)−A(x) (x ∈ R)

and additionally we get that φ is biadditive. Using the latter assertion we may

calculate that

xf(y + z) + (y + z)f(x) = φ(x, y + z) = φ(x, y) + φ(x, z)

= xf(y) + yf(x) + xf(z) + zf(x)

for all x, y ∈ R and this applied for x = 1 gives us the additivity of f . To finish

the proof note that φ(x, x) = 2xf(x) for all x ∈ R. ¤

Theorem 4.2. Under assumptions of Theorem 4.1, if additionally for each

x ∈ R there exists k0 ∈ N such that for every k ≥ k0 we have

g
( x

2k

)
+ g

(
− x

2k

)
≥ 0,

then the map A : R→ R postulated by Theorem 4.1 is additive.

Proof. Preserving notations and using some calculations from the previous

proof one can check that all assumptions of Corollary 2.2 are satisfied by g and

φ and the assertion follows from this result. ¤

Remark 4.1. One may easily observe that the alienation effect for inequality

(∗∗) does not hold under assumptions of the foregoing two theorems, except in

the trivial case f = 0. Indeed, assume that assertion of Theorem 4.1 holds. To

get the alienation effect we expect that

g(x+ y)− g(x)− g(y) ≥ 0
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and

xf(y) + yf(x) ≤ 0

for each x, y ∈ R. The second inequality applied for y = 1 implies that

f(x) ≤ −f(1)x (x ∈ R)

and this easily gives us that f(x) = −f(1)x for each x ∈ R and consequently

f(1) = 0 and thus f = 0.
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