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Small perturbation of normally solvable relations

By TERESA ÁLVAREZ (Oviedo)

Abstract. In the present paper we investigate the stability of the index, the nullity

and the deficiency of normally solvable linear relations in paracomplete spaces under

small perturbation. Results of Kato and of Goldberg about operators in complete spaces

are covered.

1. Introduction

A theorem due to Kato [15] proves that if X and Y are Banach spaces, S

and T are operators with domain in X and range in Y such that D(T ) ⊂ D(S),

T is normally solvable with an index and ‖S‖ < γ(T ), then T + S is normally

solvable and the index of T +S coincides with the index of T . Subsequently, this

result was partially generalized by Cross [7] for the case when T is a multivalued

linear operator and S is an operator. In [11], Goldberg proves that if X, Y , T

and S satisfy the hypothesis in Kato’ theorem, then there exists η > 0 such that

α(T + λS) and β(T + λS) are constant in the annulus 0 < |λ| < η.

The purpose of this paper is to extend the results of the type mentioned

above to multivalued linear relations in paracomplete spaces.

To make the paper easily accessible some results from the theory of linear

relations in normed spaces due to Cross [7] are recalled in Section 2. In parti-

cular, results concerning the adjoint and the norm of a linear relation and some

small perturbation results are presented. Section 3 is devoted to the stability of
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normally solvable linear relations satisfying some conditions by small perturba-

tions.

Linear relations made their appearance in Functional Analysis in J. von

Neumann [19] motivated by the need to consider adjoints of non-densely defined

operators used in applications to the theory of generalized equations [6] and also

by the need to consider the inverses of certain operators, used, for example, in

the study of some Cauchy problems associated to parabolic type equations in

Banach spaces [8]. Interesting works on multivalued linear operators include the

treatment of degenerate boundary value problems (see, for instance, [9] and [13]),

the development of fixed point theory for linear relations to the existence of mild

solutions of quasi-linear differential inclusions of evolution and also to many prob-

lems of fuzzy theory (see, for instance, [1] and [12]), the application of multivalued

methods to invariant subspace problem (see, [14] and [20]), the application of the

spectral theory of linear relations to the study of many problems of operators, as,

for example, the spectral theory of ordered pair of operators and of linear bund-

les (see, for instance, [5] and the references therein) and several papers on linear

relations type semiFredholm and other classes related to them (see, for instance,

[3], [4] and [7] among others).

Recall that a normed space (X, ‖.‖) is called paracomplete or operator range

if there exists a stronger norm ‖.‖s on X such that the space Xs := (X, ‖.‖s) is

complete.

There are many motivations for the investigation of paracomplete spaces.

We cited some of them.

1. The notion of paracomplete subspace of a Banach space is a good gene-

ralization of closed subspace. Indeed, the sum of two closed subspaces need not

be closed but the sum of two paracomplete subspaces is again a paracomplete

subspace. Many subspaces of a Banach space are paracomplete; for example, the

domain and the range of a closed linear relation.

2. Many incomplete normed spaces appearing in applications are paracomp-

lete. For example, the space C[0, 1] with the norm of L2[0, 1] or some Sobolev

spaces with suitable L2-norms.

3. Compactness of the spectrum of a bounded operator on a complex para-

complete space. It is very known that if T is a bounded operator on a complex

Banach space X, then its spectrum is a compact set, but this property is not

true if X is incomplete. In [2] it is proved that bounded operators on complex

paracomplete spaces have a compact spectrum.

4. Applications related to reductivity, reflexivity and invariant subspaces

of operators algebras. For example, the famous Burnside theorem on invariant
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subspaces of algebras of operators in finite dimensional spaces admits an adequate

generalization to strongly closed algebras of operators on Hilbert spaces in terms

of invariant paracomplete spaces (see, for instance, [10]).

It is important to remark a recent work of Labrousse, Sandovici, de Snoo

and Winkler [17]. In this interesting paper the authors proves that many of

the results of Labrousse [16] for quasi-Fredholm operators remain valid in the

context of multivalued linear operators in Hilbert spaces. We note that some of

the results of our paper are closely related to results of [17].

2. Preliminary and auxiliary results

In this Section we collect some results of the theory of linear relations needed

in the sequel, in the attempt of making our paper as selfcontained as possible.

Before beginning let us recall some basic definitions following the notation and

terminology of the book [7]. LetX,Y, . . . denote infinite dimensional vector spaces

over K = R or C. A linear relation or multivalued linear operator T : X → Y is a

mapping from a subspace D(T ) ⊂ X, called the domain of T , into the collection

of nonempty subsets of Y such that T (αx1+βx2) = αTx1+βTx2 for all nonzero

scalars α, β and x1, x2 ∈ D(T ). The class of such linear relations T is denoted

by LR(X,Y ). If T maps the points of its domain to singletons, then T is said to

be a single valued or simply an operator. We note that T is single valued if and

only if T (0) = {0}. A linear relation T ∈ LR(X,Y ) is uniquely determined by its

graph, G(T ), which is defined by G(T ) := {(x, y) ∈ X × Y : x ∈ D(T ), y ∈ Tx}.
Let T ∈ LR(X,Y ). The inverse of T is the linear relation T−1 given by

G(T−1) := {(y, x) : (x, y) ∈ G(T )}. The subspace T−1(0), denoted by N(T ), is

called the null space of T and we say that T is injective if N(T ) = {0}. The range
of T is the subspace R(T ) := T (D(T )) and T is say to be surjective if its range

coincides with Y . The quantities α(T ) := dimN(T ) and β(T ) := dimY/R(T )

are called the nullity and the deficiency of T , respectively. We also write β(T ) :=

dimY/R(T ) and the index of T is defined by k(T ) := α(T )−β(T ) provided α(T )

and β(T ) are not both infinite. If α(T ) and β(T ) are both infinite, then T is said

to have no index.

Let M be a subspace of X such that M ∩ D(T ) 6= ∅. Then the restriction

T |M is the linear relation given by G(T |M ) := {(m, y) : m ∈ M, y ∈ Tm}. We

note that T |M ∈ LR(X,Y ) but TJM ∈ LR(M,Y ) where JM denotes the natural

injection map of M into X. Let S, T ∈ LR(X,Y ). The sum T + S is the linear

relation given by G(T + S) := {(x, y + z) : (x, y) ∈ G(T ), (x, z) ∈ G(S)}. Let
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T ∈ L(X,Y ), S ∈ LR(Y, Z) such that R(T ) ∩ D(S) 6= ∅, then the composition

ST is the linear relation given by G(ST ) := {(x, z) : (x, y) ∈ G(T ), (y, z) ∈ G(S)

for some y ∈ Y }.
In the sequel X and Y will denote infinite dimensional normed spaces. For

a given closed subspace M of X let QM denote the natural quotient map from X

onto X/M . If T ∈ LR(X,Y ) then we shall denote Q
T (0)

by QT . Clearly QTT is

single valued. For x ∈ D(T ), ‖Tx‖ := ‖QTTx‖ and the norm of T is defined by

‖T‖ := ‖QTT‖. We note that ‖.‖ is not a true norm since ‖T‖ = 0 does not imply

T = 0. LetM andN be subspaces ofX andX ′ ( the dual space ofX) respectively.

Then M⊥ := {x′ ∈ X ′ : x′(M) = 0} and N> := {x ∈ X : N(x) = 0}. The

adjoint T ′ of T is defined by G(T ′) := G(−T−1)⊥ ⊂ Y ′ ×X ′. This means that

(y′, x′) ∈ G(T ′) if and only if y′(y)− x′(x) = 0 for all (x, y) ∈ G(T ).

Let T ∈ LR(X,Y ). We say that T is closed if its graph is a closed subs-

pace, normally solvable if it is closed with closed range, continuous if for each

neighbourhood V in R(T ), the inverse image T−1(V )is a neighbourhood in D(T ),

open if its inverse is continuous and T is called bounded if D(T ) = X and T is

continuous.

The above classes of linear relations can be characterized as follows:

Lemma 1 ([7, II.3.2 and II.53]). Let T ∈ LR(X,Y ). Then

(i) T is continuous if and only if ‖T‖ < ∞.

(ii) T is open if and only if γ(T ) := sup{λ ≥ 0 : λd(x,N(T )) ≤ ‖Tx‖, x ∈ D(T )}
is a positive number.

(iii) T is closed if and only if QTT is a closed operator and T (0) is a closed

subspace.

There exist closed (respectively, continuous) linear relations S and T such

that ST is not closed (respectively, continuous). We shall use the following result

which gives sufficient conditions for the composition of two closed (respectively,

continuous) linear relations to be closed (respectively, continuous).

Lemma 2 ([7, II.3.13 and II.5.18]). Let T ∈ LR(X,Y ) and S ∈ LR(Y,Z).

We have:

(i) If T (0) ⊂ D(S), then ‖ST‖ ≤ ‖S‖‖T‖.
(ii) If S is closed and T is a bounded single valued, then ST is closed.

We list the following useful properties of the adjoint of a linear relation.

Proposition 3 ([7, III.1.4, III.1.5 and III.4.6]). Let T ∈ LR(X,Y ). We

have:
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(i) T ′ is a closed linear relation such that T ′(0) = D(T )⊥, N(T ′) = R(T )⊥ and

if T is closed then T (0) = D(T ′)>.

(ii) If S ∈ LR(X,Y ) is continuous and D(T ) ⊂ D(S), then (T + S)′ = T ′ + S′.

(iii) T is continuous if and only if D(T ′) = T (0)⊥. In such case T ′ is continuous
and ‖T‖ = ‖T ′‖.

(iv) T is open if and only if R(T ′) = N(T )⊥. In such case γ(T ) = γ(T ′).

We shall make frequent use of the following result which is the multivalued

version of the corresponding result for operators.

Proposition 4 ([7, III.5.3 and III.5.4]). Let T ∈ LR(X,Y ) be closed. We

have:

(i) If X is complete , then γ(T ) = γ(T ′). Moreover, R(T ) is closed if T is open.

(ii) Closed Graph Theorem: If X and Y are complete and D(T ) is closed, then

T is continuous.

(iii) Closed Range Theorem: If X and Y are complete, then T is open if and only

if T ′ is open if and only if R(T ) is closed if and only if R(T ′) is closed.

The next proposition investigates the stability of certain Fredholm type

properties of a linear relation under small perturbation.

Proposition 5 ([7, III.7.4, III.7.5 and III.7.6]). Let S, T ∈ LR(X,Y ) such

that γ(T ) > 0, S(0) ⊂ T (0), D(T ) ⊂ D(S) and ‖S‖ < γ(T ). Then

(i) α(T + S) ≤ α(T ) and β(T + S) ≤ β(T ).

(ii) R(T ) dense implies R(T + S) dense.

(iii) If T is injective, then T + S is open and β(T + S) = β(T ).

Finally, we conclude this Section with a result for future use.

Proposition 6 ([7, I.6.1 and V.15.5]). We have:

(i) Invariance of finite codimensionality: Let T ∈ LR(X,Y ) and let M be a

subspace of X. Then dimR(T )/TM ≤ dimD(T )/D(T ) ∩M ≤ dimX/M .

(ii) Finite dimensional extensions: Let S, T ∈ LR(X,Y ) and let S be an exten-

sion of T (that is, S|D(T ) = T ) such that dimD(S)/D(T ) := n < ∞ and T

has an index. Then k(S) = k(T ) + n.
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3. Small perturbation of a normally solvable linear relation

In this Section we investigate the stability of the index, nullity and the defi-

ciency of a normally solvable linear relation in paracomplete spaces under small

perturbation. For this end, we first prove some auxiliary results.

Let X be a paracomplete space and let ‖.‖s be a stronger norm on X such

that Xs := (X, ‖.‖s) is complete. We will denote the inclusion map from Xs onto

X by αX and the inverse of αX by βX . It is clear that αX and βX are bijective

everywhere defined and closed with αX bounded and βX open.

Lemma 7. Let T ∈ LR(X,Y ). We have:

(i) If X is paracomplete, then R(T ) = R(TαX), α(T ) = α(TαX) and TαX is

closed if so is T .

(ii) If Y is paracomplete, then N(T ) = N(βY T ), β(T ) = β(βY T ) and βY T is

closed if so is T .

Proof. (i) R(TαX) = TαXD(TαX) = TαXα−1
X D(T ) = TD(T ) = R(T ).

N(TαX) = (TαX)−1(0) = α−1
X T−1(0) = βXN(T ) and since βX is bijective and

open we infer that dimN(T ) = dimN(TαX).

Assume now that T is closed. Then, since αX is a bounded operator it follows

from Lemma 2 that TαX is closed.

(ii) N(βY T ) = (βY T )
−1(0) = T−1N(βY ) = N(T ). This last property com-

bined with the equality β(βY T ) + α(T ) + α(βY ) = α(βY T ) + β(T ) + β(βY ) +

dim{T (0) ∩N(βY )} ([7, I.6.11]) leads to β(T ) = β(βY T ).

Suppose now that T is closed equivalently T−1 is closed and thus we infer

from (i) that T−1αY is closed, that is, T−1β−1
Y = (βY T )

−1 is closed equivalently

βY T is closed. ¤

Proposition 8 (Generalized Closed Graph and Open Mapping Theorem).

Let T ∈ LR(X,Y ) be closed. We have:

(i) If X is complete, Y is paracomplete and D(T ) is closed, then T is continuous.

(ii) If X is paracomplete, Y is complete and R(T ) is closed, then T is open.

Proof. (i) By Lemma 7, βY T ∈ LR(Y, Z) is closed, D(T ) = D(βY T ) and

Ys obviously complete. Then by Proposition 4, βY T is continuous and since T =

αY βY T and αY is bounded it follows from Lemma 2 that T is continuous.

(ii) Follows from the part (i) upon substituting T−1 for T . ¤

As an immediate consequence of Proposition 4 we have the following result

of duality
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Corollary 9. Let X be complete and let T ∈ LR(X,Y ) be closed such that

T ′ is normally solvable. Then T is normally solvable.

Example 10 below shows that Corollary 9 fails if X is not complete.

Example 10. LetX = coo be the space of all scalar sequences which at most fi-

nitely many nonzero coordinates normed by the norm ‖(αn)‖ = sup{|αn| : n ∈ N}
and we define S by S : (α1, α2, . . . , αn, . . . )∈ coo→(0, α1, α2/2, . . . , αn/n, . . . )∈ coo.

Then, it is easy to see (see, for instance, [18]) that S is a precompact operator

such that R(I − S) is a proper dense subspace of X. Therefore T := I − S is

not normally solvable and clearly T ′ = I − S′ is normally solvable since S′ is a

bounded compact operator.

Proposition 11. Let T ∈ LR(X,Y ). Then

(i) α(T ′) = β(T ) .

(ii) If X is paracomplete, Y is complete and T is normally solvable then T ′ is
normally solvable and if T has an index then k(T ) = −k(T ′).

Proof. (i) α(T ′) = dimN(T ′) = dimR(T )⊥ (Proposition 3) =

dim(Y/R(T ))′ = dimY/R(T ) = β(T ).

(ii) By Proposition 8, T is open equivalently R(T ′) = N(T )⊥ (Proposit-

ion 3) so that R(T ′) is closed and β(T ′) = dimX ′/R(T ′) = dimX ′/N(T )⊥ =

dimN(T )′ = dimN(T ) = α(T ). This last property together with the part (i)

implies that if k(T ) exists then k(T ) = −k(T ′). ¤

The following example illustrates that the completeness of Y is essential in

the part (ii) of Proposition 11.

Example 12. Let T ∈ LR(X,X) be an injective everywhere defined precom-

pact operator where X is complete, Y := R(S) and let T be the operator S

considered as an element of LR(X,Y ).

It is clear that T is closed, injective and surjective and hence T is normally

solvable with k(T ) = 0. However, T ′ is not normally solvable since clearly T ′ is
compact.

The following lemma is elementary but it is essential to prove Theorem 16.

Lemma 13. Let M and N be subspaces of X such that M ⊂ N and M is

closed. Then

(i) N is closed if and only if N/M is closed.

(ii) If N is closed then X/N ≡ (X/M)/(N/M) and QN = QN/MQM where ≡ is

a canonical isometry.
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Lemma 14. Let T ∈ LR(X,Y ) be closed and let Y be complete. If S ∈
LR(X,Y ) is continuous with S(0) ⊂ T (0) and D(T ) ⊂ D(S), then T+S is closed.

Proof. Suppose S and T single valued and let (xn) be a sequence in

D(T + S) = D(T ) ∩ D(S) = D(T ) (as D(T ) ⊂ D(S)) such that xn → x and

(T + S)xn → y for some x ∈ X and y ∈ Y . Then for m,n ∈ N we have that

‖Txn − Txm‖ ≤ ‖(T + S)(xn − xm)‖+ ‖S‖ ‖xn − xm‖

which implies that (Txn) is a Cauchy sequence in the Banach space Y , and hence

there exists z ∈ Y such that Txn → z. Since T is closed, it follows that x ∈ D(T )

and Tx = z. Since S is continuous with D(T ) ⊂ D(S), we have that Sxn → Sx.

Therefore (T + S)xn → (T + S)x = y, that is, T + S is closed.

Passing to the general case, it follows from Lemma 1 that QTT is a closed

operator and T (0) is a closed subspace. Furthermore, as S(0) ⊂ T (0) = T (0) is

(T + S)(0) = T (0) (so that QT+S = QT ) and we deduce from Lemma 13 that

QT = Q
S(0)/T (0)

QS and thus we deduce from Lemma 1 that QTS is a continuous

single valued . By what has already been shown, QT+S(T + S) = QTT +QTS is

closed. Applying again Lemma 1, T + S is closed, as desired. ¤

Now, we are in the position to give the main theorems of this paper.

Theorem 15. Let X be paracomplete, Y complete and let T ∈ LR(X,Y )

be normally solvable with an index. Then for any S ∈ LR(X,Y ) satisfying

D(T ) ⊂ D(S), S(0) ⊂ T (0) and ‖S‖ < (1/‖αX‖)γ(TαX). Then T +S is normally

solvable and k(T ) = k(T + S).

Proof. By Proposition 4 and Lemma 7, TαX is closed and open with

α(T ) = α(TαX) and β(T ) = β(TαX). Furthermore, T + S is closed by vir-

tue of Lemma 14 and we observe that by Lemma 2, ‖SαX‖ ≤ ‖S‖‖αX‖, so that

SαX is continuous and ‖SαX‖ < γ(TαX). Hence the proof can be reduced to

the case when X and Y are complete.

(i) Let us consider two cases for T :

Case 1: dimN(T ) < ∞. Then there exists a closed finite codimensional

subspace M of D(T ) such that T |M is injective and open. Since M is closed,

T |M is closed and it follows from Proposition 4 that R(T |M ) is closed. We first

deduce the conclusion for the case ‖S‖ < γ(T |M ). Applying Proposition 5 we

obtain that (T + S)|M is injective, open and β((T + S)|M ) = β(T |M ) and thus

since (T + S)|M is closed applying Proposition 4 again, R((T + S)|M ) is closed.
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In consequence

0 = α(T |M ) = α((T + S)|M ) and

β(T |M ) = β(T |M ) = β((T + S)|M ) = β((T + S)|M ).

A combination of these equalities and Proposition 6 leads to

k(T + S) = k((T + S)|M ) + α(T ) = k(T |M ) + α(T ) = k(T )

provided ‖S‖ < γ(T |M ).

Passing to the case ‖S‖ < γ(T ), let I denote the closed interval [0, 1] with the

usual topology and let Z := Z ∪ {−∞,+∞} with the discrete topology. Define

φ : I → Z by φ(λ) := k(T + λS).

It follows from the above that

φ(λ) = k(T + λoS + (λ− λo)S) = k(T + λoS) = φ(λo)

provided λo is sufficiently close to λ.

Therefore, φ is a continuous map. Consequently φ(I) is a connected set and

hence consists of just one point. Hence

k(T ) = φ(0) = φ(1) = k(T + S).

Case 2: dimY/R(T ) < ∞. By Propositions 3 and 4 we have that

T ′ is normally solvable, α(T ′) < ∞, (T + S)′ = T ′ + S′

and ‖S′‖ < γ(T ′). (1)

Furthermore, since S′(0) = D(S)⊥ and T ′(0) = D(T )⊥ (again Proposition 3)

and D(T ) ⊂ D(S) it follows trivially that

S′(0) ⊂ T ′(0). (2)

We note that as S(0) ⊂ T (0) we have that D(T ′) ⊂ (D(T ′))>)⊥ = T (0)⊥ ⊂
S(0)⊥ = D(S′) (again Proposition 3). Hence

D(T ′) ⊂ D(S′). (3)

From (1), (2) and (3) we can apply the Case 1 to T ′ and S′ and then it

follows that R(T ′ + S′) is closed and k(T ′ + S′) = k(T ′). Therefore

k(T ) = −k(T ′) = −k(T ′ + S′) = −k((T + S)′) = k(T + S). ¤
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Theorem 16. Let X, Y , T , and S satisfy the hypothesis in Theorem 15

and suppose that S(0) is closed. Then there exists a number η > 0 such that

α(T + λS) and β(T + λS) are constant in the annulus 0 < |λ| < η.

Proof. Let us consider two possibilities for T :

Case 1: dimN(T ) < ∞. Let λ 6= 0 and let x ∈ N(T + λS). Then

−λSx ⊂ Tx

whence

Sx ⊂ R(T ) := R1 and x ∈ S−1R1 := D1.

Thus

−λSx ⊂ Tx ⊂ TD1 := R2 and x ∈ S−1R2 := D2.

Continuing in this way, we obtain

Rk+1 := TDk where Dk := S−1Rk.

It follows from the construction that

(Rn) and (Dn) are decreasing sequences and N(T + λS) ⊂ ∩∞
k=1Dk. (4)

Now we shall see that

For n ∈ N, Rn and Dn are closed subspaces of X and Y respectively. (5)

Before beginning we recall the following entirely algebraic property due to

Cross [7, I.3.1]

(∗) Let T ∈ LR(X,Y ) where X and Y are vector spaces and let M be a subspace

of X. Then T−1TM = {M ∩D(T )}+N(T ).

The proof of (5) is by induction. Assume that n = 1. Then R1 := R(T ) is closed

(Proposition 4) and we have that QSR1 = (R(T ) + S(0))/S(0) = R(T )/S(0) (

as S(0) = S(0) ⊂ T (0) ⊂ R(T )) and this subspace is closed by virtue of Lemma

13. This last property combined with the fact that QSS is a continuous operator

(Lemma 1) leads to (QSS)
−1QSR1 is closed and since

(QSS)
−1QSR1 = S−1Q−1

S QSR1 = S−1{{R1 ∩D(QS)}+N(QS)} ((∗))
= S−1{R(T ) + S(0)} = S−1R(T ) (as S(0) = S(0) ⊂ T (0) ⊂ R(T )) = S−1R1

we conclude that D1 is closed.
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Suppose now that Rn and Dn are closed. We first prove that Rn+1 is closed.

For this, we show that

T |(N(T )+Dn) is closed. (a)

Indeed, T is closed and N(T )+Dn is closed (since N(T ) is finite dimensional

and Dn is closed by the induction hypothesis).

T |(N(T )+Dn) is open. (b)

It is sufficient to observe that as T and T |(N(T )+Dn) have the same null space,

γ(T ) ≤ γ(T |(N(T )+Dn)).

The properties (a) and (b) combined with Proposition 4 lead to that

R(T |(N(T )+Dn)) is closed. Now, that Rn+1 is closed follows immediately upon

observing that

R(T |(N(T )+Dn)) = T (N(T ) +Dn) = TT−1(0) + TDn = T (0) + TDn

= TDn := Rn+1.

To show that Dn+1 is closed we can proceed exactly as in the case n = 1

using that Rn is closed.

Define

Do := ∩∞
n=1Dn and Ro := ∩∞

n=1Rn

and

To := T |(D(T )∩Do) and So := S|(D(T )∩Do).

By the definitions it follows that R(To) ⊂ Ro and R(So) ⊂ Ro, and since T is

closed and Do is closed, To is a closed linear relation. To see that To is surjective,

let y ∈ Ro = R(T )∩ (∩∞
n=1TDn). Then for each n ≥ 1, there exists xn ∈ Dn such

that y ∈ TDn. Since α(T ) < ∞ and Dn+1 ⊂ Dn, there exists m such that for

n ≥ m,

N(T ) ∩Dm = N(T ) ∩Dn

and for xm ∈ Dm, and xn ∈ Dn,

xn − xm ∈ N(T ) ∩Dm = N(T ) ∩Dn.

From this it follows that

xm ∈ ∩n≥mDn = Do, and y ∈ Txm.

Thus To is surjective and so by Open Mapping Theorem (Proposition 4), To is

open.
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By Theorem 15, there exists a number η > 0 such that for 0 < |λ| < η we

have

k(T + λS) = k(T ). (6)

Since

β(To + λSo) ≤ β(To) = β(To) = 0, it follows that β(To + λSo) = 0, (7)

and hence

α(To + λSo) = k(To + λSo) = k(To) = α(To). (8)

By (4), it follows that for λ 6= 0,

N(T + λS) = N(To + λSo). (9)

By (6), (7), (8) and (9) we conclude that α(T + λS) and β(T + λS) are

constant in the annulus 0 < |λ| < η if dimN(T ) < ∞.

Case 2: dimY/R(T ) < ∞. The result is obtained by passing to the adjoints,

arguing as in the proof of Case 2 of the above Theorem. ¤

Corollary 17. Let X be paracomplete, Y complete and let S, T ∈ LR(X,Y )

such that D(T ) ⊂ D(S), S(0) = S(0) ⊂ T (0) and S is continuous. Define U to be

the set of λ ∈ K for which T + λS is normally solvable and has an index. Then

(i) U is an open set.

(ii) If C is a component of U , then on C, with the possible exception of isolated

points, α(T+λS) and β(T+λS) have constant values n1 and n2, respectively.

At the isolated points,

n1 < α(T + λS) < ∞ and n2 < β(T + λS) < ∞.

Proof. (i) For λ ∈ U , apply Theorem 15 to T + λS in place of T .

(ii) Since any component of an open set in C is open, we have that C is open.

Define α(λ) := α(λ − T ), an choose λo such that α(λo) := n1 is the smallest

nonnegative integer attained by α(λ) on C. Suppose α(λ′) 6= n1. Owing to the

connectivity of C, there exists an arc Γ lying in C with endpoints λo and λ′. It

follows from Theorem 16 and the fact that C is open, that about each η ∈ Γ

there exists an open ball BC(η; r) contained in C such that α(λ) is constant on

BC(η; r) \ {η}.
Since Γ is compact and connected, there exists points λ1, . . . , λn = λ′ on γ

such that

BC(λo; ro), BC(λ1; r1), . . . , BC(λn; rn) cover Γ and
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BC(λi; ri) ∩BC(λi+1; ri+1) 6= ∅, 0 ≤ i ≤ n− 1. (10)

We assert that α(λ) = α(λo) on all of BC(λo; ro). It follows from Theorem 15

that α(λ) ≤ α(λo) for λ suffiently closed to λo. Therefore, since α(λo) is the

minimum of α(λ) on C, α(λ) = α(λo) for λ sufficiently closed to λo. Since α(λ) is

constant for all λ 6= λo in BC(λo; ro), this constant must be α(λo). Now α(λ) is

constant on BC(λi; ri) with the point λi deleted, 1 ≤ i ≤ n. Hence, it follows from

(10) and the observation α(λ) = α(λo) for all λ ∈ BC(λo; ro), that α(λ) = α(λo)

for all λ 6= λ′ in BC(λ
′; rn) and α(λ′) > n1.

To see that the result holds for β(λ − T ), we pass to the adjoint of T and

aplly the above and the equality α(λ− T ′) = β(λ− T ). ¤
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[4] T. Álvarez, R. W. Cross and D. Wilcox, Quantities related to upper and lower semiF-
redholm type relations, Bull. Austr. Math. Soc. 66 (2002), 275–289.

[5] A. G. Baskakov and K. I. Chernyshov, On some questions of the spectral theory of
linear relations, Voronezh State University 1 (2002), 81–94.

[6] E. A. Coddington, Multivalued operators and boundary value problems, Vol. 183, Lecture
Notes in Math., Springer-Verlag, Berlin, 1971.

[7] R. W. Cross, Multivalued Linear Operators, Marcel Dekker, New York, 1998.

[8] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations,
Annal. Mat. Pura. Appl. 163 (1993), 353–384.

[9] A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker,
New York, 1998.

[10] C. Foiss, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887–906.

[11] S. Goldberg, Unbounded Linear Operators, Theory and Applications, McGraw-Hill, New
York, 1966.

[12] L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer, 1999.

[13] M. Gromov, Partial differential relations, Springer-Verlag, Berlin, 1986.

[14] D. Grixti-Cheng, The invariant subspace problem for linear relations in Hilbert spaces,
J. Austr. Math. Anal. Appl. 5 (2008), 1–7.

[15] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators,
J. Anal. Math. 6 (1958), 261–322.
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