Publ. Math. Debrecen
80/1-2 (2012), 169-177
DOI: 10.5486/PMD.2012.4994

On Berwald m-th root Finsler metrics

By DOUKOU ZU (Ningbo), SHUJIE ZHANG (Ningbo) and BENLING LI (Ningbo)

Abstract. In this paper, we study m-th root Finsler metrics. For these metrics,
we find the necessary and sufficient condition to be Berwaldian. By this result, we
construct some special Berwaldian m-th root metrics. Then we prove that every m-th
root Douglas metrics reduces to a Berwald metric.

1. Introduction

The Berwald metrics are very important in Finsler geometry. They were first
investigated by L. Berwald. The geodesics of a Finsler metric F'(x,y) on a smooth
manifold M are determined by the systems of second order differential equations

d?ax? , dx
— 4+ 2G" (x, = ) = 1
e <x dt) 0. 1)
where 1
G' = Zng{[FQ]xkylyk - [FQ}IZ}' (2)
The local functions G* = G*(z,y) define a global vector field G = y* 8‘2‘,@ —2G¢ 62,-

on TM\{0}, which is called the spray coeffcients. By definition, F is called a
Berwald metric if G* = G*(x,y) are quadratic in y € T, M at every point z, i.e.
1

G = §F§;h(x)yhyk- (3)
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It can be shown that Berwald manifolds are modeled on a single norm space, i.e.,
all the tangent spaces T, M with the induced norm F, are linearly isometric to
each other. Obviously, every Riemannian metric is a Berwald metric. In fact, the
geodesics of any Berwald metric are the geodesics of some Riemannian metric [8].

A Finsler metric is said to be locally projectively equivalent to a Riemannian
metric g if at every point x, there is a local coordinate neighborhood in which
the geodesics of F' coincide with that of g as point sets. In this case, the spray
coefficients G* are in the following form

1 , .
G'= fﬁ(fﬂ)yjyk + P(z,y)y". (4)

Finsler metrics with this property are called Douglas metrics. Obviously, the
Douglas metrics are more generalized than Berwald metrics. The local structure
of Berwald metrics are shown by Z. I. SzABO [8]. The local metric structure of
Douglas metrics remain unknown.

In this paper, we will discuss the following class of reversible Finsler metrics.

F=Am, (5)

where A = a;,4,. 5. (2)y"y™ ...y*. A Finsler metric in this form is called an m-
th root metric. These metrics were first studied by M. MATsumoT0O, K. OKUBO
and H. SHIMADA ([4], [5], [6], [7]). Tensorial connections for such metrics have
been studied by L. TAMAssY [9]. It’s easily to see that when m = 2, it is a
Riemannian metric. When m = 4, it is called a fourth root metric [7]. The
special fourth root metric in the form F = {/yly2y3y? is called the Berwald
Moore metric. This metric is singular in y.

In this paper, we consider the condition of m > 4. Obviously, by the defini-
tion of Finsler metric m must be even.

We prove the following.

Theorem 1.1. Let F = Aw be an m-th root Finsler metric on an open
subset U C R™. Then F is a Berwald metric if and only if there exist local
functions i, = i, (z) such that

. L, 0A  0A
i,k
el . 6
TelY oyt~ Ozl ©
In this case, G = %’Y;ihykllh-

By this theorem, we can construct some non-Riemannian and non-Minkows-
kian Berwaldian m-th root Finsler metrics. Let us see the following examples.
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Ezxample 1.1. Let F = Aw be an m-th root Finsler metric on an open subset
U C R™. The spray coefficients

1
G' =Sy
where 7}, = ~},(z) are local functions. Let

; ¢ (constant) if i =k =1,
Vet =

0 otherwise.

By (6), we get
cAiyt +0+--+0=A,. (7)

By (7), we obtain a special class of Berwaldian m-th root Finsler metrics as
following.

F= ”\L/(ylyQ coyn)2ete(@iteattan),

where m = 2n. But these metric are singular in y. It is easy to see that F' is a
Berwald—Moore metric when n =4 and ¢ = 0.

The following example is regular.

Ezxample 1.2. Let F = A be an m-th root Finsler metric on an open subset
UcCR" )
G' = 571iclykyl7

where v}, = ~},(z) are local functions. Let

R [ ACI AT
Vi =g ™ filz)
0 otherwise,

where f;(x) are positive smooth functions satisfying ag"w(f L =0, (i # j).

We can obtain a special solution of (6) as following.

A= f@)y)" + fa) )" + -+ ful@) (™)™

Then we get a special class of Berwaldian m-th root Finsier metrics

F =%/ fil@)(y)™ + fal2) (@)™ + -+ fale) ()™
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On the other hand, one can verify it is a Berwald metric by a direct computation
as following.

fi(@) (™2 o 0
0 fa(x m= 0
(Ay) = m(m — 1) ) L ®)
0 0 (@) (y™) ™2
ol R (0 | 0
ij 1 0 fa(z) Y 0
0 0 f#(m)(ym)Qfm
Agj = mf;(z)(y)™, (10)
Agi = fil@) ()™, (11)

Plugging (8),(9),(10),(11) into (13) yields,
i_ if; (), 2
&= om fi(z) "

So, G are quadratic in y and F is a Berwald metric.

For Douglas metrics, we prove the following

Theorem 1.2. Let F = Aw be an m-th root Finsler metric on an open
subset U C R™, where m > 4. Assume that A is irreducible. F' is a Douglas
metric, if and only if it is a Berwald metric.

When m = 2, it is Riemannian. Obviously, it is also Berwald. When m = 4,
the result is same as in [3]. Therefore this theorem is an extension of the case
when m = 4.

2. Berwald m-th root Finsler metrics

In this section, we are going to consider Berwald m-th root metric F' = Awm
on an open subset U C R™. For simplicity, we let

0A 0?A 0A 0?A
5‘yi = A, W = Aij7 Agr = W’ Axkyi = 9.k

Oxkdyt’
Axkyk = Ao, Axkyiyk = AOi-
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Assume that A = A(z,y) > 0 for any y # 0. Then the Hessian g;; := £[F?],:,; is
given by

A2

9ij = 7’/7742 [mAA” + (2 — m)AZAJ] (12)
First we have the following
Lemma 2.1 ([10]). The spray coefficients of F' is given by
i1 ij
G = i(AOj — Ai)AY. (13)

Proor. We claim that A;; is positive definite. If there is a vector field
¢ = {¢'} such that
A <0,
then by (12)

L AR o ,
9i;€'¢ = - [MAAGEE + (2 —m)(A4:£)% <0. (14)

2

Here we used m > 2. It is a contradiction to the positive definiteness of g;;. Thus
A;j is positive definite.

By (12) and
iy 1 iy 1 ; 1 ;
ATA = —— AT Ayt = —— 6y = g
m—1 L — m—17"
we have 5
g7 = mATE A £ ATy, (15)
Then by (2) we have
| -
G'= §(Aoj — A )AY. (16)

PROOF OF THEOREM 1.1. If F is a Berwald metric, then

1.
G'= QW’ih(i’?)ykyh,

where 7}, (x) are local scalar functions.
Plugging above equation into (13), we get

Veny y" = (Aoj — Agy) AV,
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Contracting above equation with A;; and A; respectively, we have
Veny"y" A = Ao — Ay (17)
and
i ok hogl
Viny Y Ai = Ao. (18)
Differentiate (18) with respect to y' yields
Yy y" A + 277y Ai = Ao + A (19)

(19)—(17) yields
Yy A = Ay (20)

If (6) holds, then differentiate (6) with respect to y" and contract with !
yields
Yy Ai + Yay™y Ain = Aon-
Substituting (6) into the above equation, we have
’)/]ilykylAih = A()h - Awh,.
Contracting it with A", we get
Yyt = (Aon — Agn) A",

By (13), F is a Berwald metric. O

3. Douglas m-th root Finsler metrics

In this section, we discuss Douglas m-th root Finsler metrics. Douglas metrics
are characterized by (4). From (4) it’s easy to see that Douglas metrics also satisfy
the following equations ([1]):

Gy = Gy’ = STy’ = Ty 'y (21)
We first have the following lemma.

Lemma 3.1. Let F = Am be an m-th root Finsler metric on an open subset
U C R™, where m > 4. Assume that A is irreducible. If F is a Douglas metric,

then it satisfies
—Ao + Thyy" Ay = nA, (22)

where 7 is a 1-form and T, =T, (z) are scalar functions in (4).
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PRrOOF. By a direction computation , we have

Aw AAge AW Agey 2A%A¢Axk

F?% . =4 2
zky m2A2 mA mA2 (23)
An A
2 _ z
F2 =2 — (24)

By (2), (23), (24) yields

Gu = gy = §(Fhy — F2) = g0t 700 QAT S0 S AT e

m2A2 2mA 2 mA2 2 mA
2 _9
By (12), and
Ayt = (m—1)4;, A’ =mA,
we have
2 2 2 2
m 2A™ Am A Am
l l 1 %
= guy! = 224, 2Ar A ) Ay = . 26
i =gay = = zly+<m2A2 mA2) Ay =~ (26)
By (21), we can obtain
1
Giy; — Gjyi — i(rihguyj — Dhngsoya)y™y" = 0. (27)
Plugging (25),(26) into (27), yields
AT (Agi — Aye — TL byl A A,
m (Aoi zt end " Ai)A;
2m?2
—2(m=2) U k. h
AT (Agy — Aw — Tyt A As _
2m? ’

i.e.
Aj(Agi — Ay = Tipy"y" Au) — Ai(Aoj — Ayi — Tipy™y" Aj) = 0.

Contracting above equation with 3° by
Aiyi =mA, Ailyi = (m—1)A, AOiyi = mAo,
we have
Aj(m —1)(Ao = Tipy*y" Ar) = m(Agj — Ays = Tipy*y" Aj)A. - (28)

Since A is irreducible and deg(A;) = m — 1, by (28), one can conclude that
—Ao + T, y*y" A; is divisible by A, that is, there is a 1-form 1 such that

—Ao + Tjy*y" A = nA. O
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PROOF OF THEOREM 1.2. Let F' be a Douglas metric. Then by (12) and
(25), we have

AmAgA; | AwAy  1AmA Ay 1 Am A,

m2A2 ImA 2 mA2 2 mA
Am A A, AwmAy  AwAA N (1
- { m2A? mA  mA? }{Qr;hykyh + Pyl} =0. (29)

Simplifying above equation, yields
(2—m)AgA; +mAAg; —mAAL: —{(2—m)A; A +mAA; T, yFy" —2mAA P = 0.
Contracting above equation with ¢, we get
Ao — T,y y" A = 2mAP.
Then L e
_1 7140 + Fkhy y Al

2 mA

By Lemma 3.1 and above equation,

P =

1
P=——1n. 30
57 (30)

We see that G* = %F;k(a:)yjyk — 5ny' are quadratic in y. Therefore F is a
Berwald metric.

Sufficiency is obvious. O
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