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Construction of pseudorandom binary sequences over elliptic
curves using multiplicative characters

By LÁSZLÓ MÉRAI (Budapest)

Abstract. In this paper a large family of pseudorandom binary sequences is pro-

posed by using multiplicative characters and elliptic curves. The construction gener-

alize several earlier ones and both the well-distribution and correlation measures are

estimated.

1. Introduction

Pseudorandom sequences play a crucial role in many areas (e.g. in cryptog-

raphy and communication systems). There are many definitions for pseudoran-

domness depending on specific application, see [15]. However, we will apply the

definition of pseudorandomness given in [14].

It is well known than elliptic curves over finite fields have good pseudorandom

properties thus they are widely used for generating pseudorandom sequences (see

[3], [4], [5], [6], [8], [7], [12], [24]).

In 1994 Hallgren [11] proposed the linear congruent generator from elliptic

curves. The linear congruent generator builds a sequence of points on the curve

E by the rule s0 = P0 for some P0 ∈ E and

sn = P ⊕ sn−1 = nP ⊕ P0

By using the definition of pseudorandomness given in [14], Chen [3], and Chen,
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Li and Xiao [4] studied binary sequences derived from this generator where they

used the Legendre symbol and the discrete logarithm of finite fields.

In this paper we extend this study by using general multiplicative character

over finite field and sufficient conditions will be given to guarantee the good pseu-

dorandom properties. In Section 2 we summarize some basic facts about elliptic

curves, in Section 3 we recall the definition of pseudorandomness introduced in

[14], analyze the constructions proposed in [3], [4], and introduce the new con-

struction. In Section 4 we prove that the construction has strong pseudorandom

properties, and in Section 5 we give some conditions for the applicability of the

theorems proved in the previous section.

2. Elliptic curves

Let p be an odd prime, Fp be the finite field of p elements which we represent

by the elements {0, 1, . . . , p− 1}, F∗p be the set of non-zero elements and Fp is the

algebraic closure of Fp.
Let E be an elliptic curve over Fp defined by the Weierstrass equation

y2 = x3 +Ax+B

with coefficients A,B ∈ Fp and non-zero discriminant (see [25]). The Fp-rational
points E(Fp) of E form an Abelian group with the point in infinity O as the neutral

element, where the group operation is denoted by ⊕ (and its inverse operation

is denoted by ª). For a rational point R ∈ E(Fp), a multiple of R is defined by

nR =
⊕n

i=1 R.

Let Fp(E) be the function field of E over Fp. For a rational function f ∈ Fp(E)
and point R ∈ E(Fp), R is a zero (resp. pole) of f if f(R) = 0 (resp. f(R) = ∞).

Any function of Fp(E) has finitely many zeros and poles. The divisor of f is

defined by

div(f) =
∑

R∈E(Fp)
ordR(f)[R],

where ordR(f) is the order of f in R.

The set of zeros and poles of f

Supp(f) = {R ∈ E(Fp) | ordR(f) 6= 0}
is the support of div(f).

The translation map by W ∈ E(Fp) on E(Fp) is defined by

τW : E(Fp) → E(Fp),
P 7→ P ⊕W.
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We define the exponential sum respect to a multiplicative character of Fp by

S(ω, χ, f) =
∑

R∈E(Fp)
ω(R)χ(f(R))

where ω is a character of E(Fp), χ is a multiplicative character of Fp, f ∈ Fp(E)
is a rational function, and R runs on the Fp-rational points except the zeros and

poles of f . S(ω, χ, f) was investigated in [2], [21], [22]. The incomplete sum was

studied in [4]:

Lemma 1. Let Q ∈ E(Fp) be a rational point of order N , χ 6= χ0 non-

principal multiplicative character of Fp, f ∈ Fp(E) rational function which is

f(x, y) 6= zd(x, y) for all z ∈ Fp(E). Then for any a, b, t ∈ N with 1 ≤ a ≤
a+ (t− 1)b ≤ N the following bound holds:

∣∣∣∣∣
t−1∑
x=0

χ(f((a+ bx)Q))

∣∣∣∣∣ < | Supp(f)|p1/2(1 + logN).

We note that originally the condition f(x, y) 6= zl(x, y) was required for any

factor l of p− 1. However it can be easily shown that it is enough to ensure it for

l = d (see for example Theorem 4 in [20])

3. Measures of pseudorandomness, the construction

In this paper we follow the approach of Mauduit and Sárközy [14]: For a

given binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N

the well-distribution measure of EN is defined by

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

ea+jb

∣∣∣∣∣∣
,

where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a+(t−1)b ≤ N ,

and the correlation measure of order ` of EN is defined as

C`(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣ ,
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where the maximum is taken over all D = (d1, . . . , d`) and M such that 0 ≤ d1 <

d2 < · · · < d` ≤ N −M .

The sequence EN is considered as a “good” pseudorandom sequence if both

these measures W (EN ) and C`(EN ) (at least for small `) are “small” in terms

of N (in particular, both are o(N) as N → ∞). This terminology is justified since

for a truly random sequence EN each of these measures is ¿ √
N logN . (For a

more precise version of this result see [1].)

Using the Legendre symbol, Goubin, Mauduit and Sárközy [9] showed

(extending a result of Mauduit and Sárközy [14]) that the sequence Ep =

{e1, . . . , ep} defined by

en =





(
f(n)

p

)
if f(n) 6= 0

+1 otherwise,

(1)

has strong pseudorandom properties:

W (Ep−1) ¿ deg fp1/2 log p, C`(Ep−1) ¿ deg f`p1/2 log p.

if f satisfies certain conditions.

In [10] Gyarmati (generalizing [23]) introduced the following sequence:

en =




+1 if 1 ≤ ind f(n) ≤ p/2

−1 if p/2 < ind f(n) < p or p | f(n),
(2)

where ind is the index (discrete logarithm) in Fp with respect to a given primitive

root g. She proved, that if f satisfies certain conditions, then the sequence also

has strong pseudorandom properties.

In [3], Chen adapted the Legendre symbol construction to elliptic curves.

He defined a binary sequence in the following way: let p be a prime, E(Fp) be the
Fp-rational points of an elliptic curve which is cyclic, let G be a generator of E(Fp)
with order T , and finally let f ∈ Fp(E). Then the sequence ET = {e1, . . . , eT } is

defined by:

en =





(
f(nG)

p

)
if nG 6∈ Supp(f)

+1 otherwise.

(3)

He proved that its well-distribution measure is small and he also studied its

linear complexity profile.
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In [4], Chen, Li and Xiao extended the discrete logarithm construction to

elliptic curves: they defined the sequence ET = {e1, . . . , eT } by

en =




+1 if 1 ≤ ind f(nG) ≤ p/2

−1 if p/2 < ind f(nG) < p or f(nG) ∈ Supp(f).
(4)

As in the classical case [16] we can extend construction (3) and (4) by using

arbitrary multiplicative character in (3) instead of the Legendre symbol. More

precisely let χ be a multiplicative character of Fp and define the sequence ET =

(e1, . . . , eT ) by

en =




+1 if arg(χ(f(nG))) ∈ [0, π) for nG 6∈ Supp(f),

−1 otherwise,
(5)

where arg z is the argument of z

If χ is the Legendre symbol we get construction (3), while if we define χ by

χ(g) = e2πi/(p−1) (where g is a generator), then we get construction (4).

In order to use these constructions one need further conditions to the rational

function f as the following example shows:

Example 3.1. Consider the elliptic curve defined by

y2 = x3 − 2x

over F19. This curve has 20 points and (2, 2) is a generator. Let f(x, y) = x.

Then the sequence defined as in (3) is

n nG en
1 (2,2) -1

2 (7,14) +1

3 (15,1) -1

4 (11,6) +1

5 (13,10) -1

6 (5 ,1 ) +1

7 (10 ,7 ) -1

8 (16 ,13 ) +1

9 (18 ,18 ) -1

10 (0 ,0) -1

n nG en
11 (18 ,1 ) -1

12 (16 ,6 ) +1

13 (10,12) -1

14 (5,18) +1

15 (13,9) -1

16 (11,13) +1

17 (15,18) -1

18 (7,5) +1

19 (2,17) -1

20 O -1
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The second order correlation C2(E20) is large:

en · en+10 =

(
f(nG)

19

)
·
(
f((n+ 10)G)

19

)
=

(
f(nG) · f(nG+ 10G)

19

)

=

(
f(nG) · f(nG+ (0, 0))

19

)
=


x ·

((
y
x

)2 − x
)

19


 = 1,

since the function x · (( yx )2 − x
)
is the constant −2 function over the curve.

Similar examples can be given if the order of E(Fp) has small prime divisor.

As in [9], in order to describe the “good” rational functions, we will need the

definition of admissibility:

Definition 2. Let A and B be multisets of elements of Zm such that the

multiplicities of the elements of A and B are less than d. If A + B represents

every element of Zm with multiplicity divisible by d, i.e., for all c ∈ Zm the

number of solution of

a+ b = c, a ∈ A, b ∈ B (6)

(the a’s and b’s are counted with their multiplicities) is divisible by d, then A+B
is said to have property P (d).

Definition 3. If k, `,m, d ∈ N and k, ` ≤ m, then (k, `,m) is said to be d-

admissible triple, if there are no multisets A and B of elements of Zm such that

the number of distinct elements of A is less than or equal to k, the number of

distinct elements of B is less than or equal to `, all multiplicities of elements a ∈ A
are co-prime to d and A+ B possesses property P (d).

Theorem 1. Let p be an odd prime, χ be a multiplicative character of Fp
of even order d, E(Fp) be cyclic group of order T , f ∈ Fp(E) which is not an l-th

power for l | d in Fp(E). If we define the binary sequence ET = {e1, . . . , eT } by

(5) then we have

W (ET ) ≤ 2|Supp(f)|p1/2(1 + log T ) log d+ |Supp(f)| (7)

Theorem 2. Let p, χ, d, f and ET be as in Theorem 1. Let us assume that

the order of zeros and poles of f which are not divisible by d are co-prime to d,

and ` ∈ N such that the triple (| Supp(f)|, `, T ) is d-admissible, then we have

C`(ET ) ≤ 4`|Supp(f)|p1/2(1 + log T )(log d)` + `|Supp(f)| (8)
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Remark 1. For odd d it can be shown that

W (ET ) ≤ 2| Supp(f)|p1/2(1 + log T ) log d+ | Supp(f)|+ T

d

and

C`(ET ) ≤ 5`|Supp(f)|p1/2(1 + log T )(log d)` + `|Supp(f)|+ M

d`
.

These bounds are trivial if d is small however there is no nontrivial upper bound

in this case as it was shown by an example in [16] in a similar situation.

This construction is perhaps less elementary and natural than some other

modular constructions but perhaps this is compensated by the fact that this

construction provides large new families of binary sequences which are proved to

possess strong pseudorandom properties. Besides this sequences can be generated

relatively fast, there are many program language (e.g. SAGE) which include fast

elliptic curve computation algorithm and e.g. the Legendre symbol can be also

computed fast via Jacobi symbol.

4. Proofs

Since the proof of Theorems 1 and 2 are slightly elementary we just sketch

the proof.

Throughout the paper χ0 denotes the principal character and to avoid any

confusion we denote the general multiplicative character by γ.

We will need the following result (see [17], [23]):

Lemma 4. Let g be a generator of Fq, then
∑∗

γd=χ0

1

|1− γ(g)| < d log d,

where γ runs over the non-principal characters of Fq such that γd = χ0.

Lemma 5. Let χ be a multiplicative character of even order d and let n 6= 0.

Then we have

2

d

∑∗

γd=χ0

1− γ̄(g)d/2

1− γ̄(g)
· γ(n) =




+1 if arg

(
χ(n)

) ∈ [0, π)

−1 otherwise,

where γ runs over the non-principal characters of Fq such that γd = χ0, and g is

a generator such that χ(g) = e(1/d).
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Proof. The statement of this lemma is a part of the proof of Theorem 1

in [17], although it was not formulated there a form of a lemma. ¤

Proof of Theorem 1. To prove the theorem consider a ∈ Z and b, t ∈ N
such that

1 ≤ a ≤ a+ (t− 1)b ≤ T, b < T. (9)

If we define the set N by

N = {n | nG 6∈ Supp(f)},
then by Lemma 5 we have

|U(ET , t, a, b)| ≤ 2

d

∑∗

γd=χ0

∣∣∣∣∣∣∣∣

∑

0≤j<t
a+jb∈N

γ(f((a+ jb)G))

∣∣∣∣∣∣∣∣

∣∣∣∣∣
1− γ(g)

d
2

1− γ(g)

∣∣∣∣∣+ | Supp(f)|.

and since f is not a l-th power for l | d, by Lemmas 1 and 4 we have

∑∗

γd=χ0

∣∣∣∣∣∣∣∣

∑

0≤j<t
a+jb∈N

γ(f((a+ jb)G))

∣∣∣∣∣∣∣∣

∣∣∣∣∣
1− γ(g)

d
2

1− γ(g)

∣∣∣∣∣

≤ | Supp(f)| p1/2(1 + log t)
∑∗

γd=χ0

2

|1− γ(g)|

which implies the theorem. ¤

Proof of Theorem 2. In order to prove the theorem consider any M < T

and D = (d1, . . . , d`) such that 0 ≤ d1 < · · · < d` ≤ T −M . Then by Lemma 5

we have

|V (ET ,M,D)| ≤ 2`

d`

∑∗

γd
1=χ0

. . .
∑∗

γd
` =χ0

∣∣∣∣∣
1− γ1(g)

d
2

1− γ1(g)
. . .

1− γ`(g)
d
2

1− γ`(g)

∣∣∣∣∣

·
∣∣∣∣∣

∑

1≤n≤M :
n+di∈N
i=1,...,`

γ1(f((n+ d1)G)) . . . γ`(f((n+ d`)G))

∣∣∣∣∣+ `|Supp(f)|. (10)

Let us define δu for u = 1, . . . , ` by

γu = χδu ,
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where

0 ≤ δu < d for u = 1, . . . , `.

Using this notation we have

γ1(f((n+ d1)G)) . . . γ`(f((n+ d`)G)) = χ
(
fδ1 ◦ τd1G(nG) . . . fδ` ◦ τd`G(nG)

)
,

if n+ di ∈ N for i = 1, . . . , `.

Write Fγ1,...,γ`
= Fδ1,...,δ` = fδ1 ◦ τd1G · · · · · fδ` ◦ τd`G. It suffices to show:

Lemma 6. If f , k, ` are defined as in Theorem 2 and not all of the δi’s are

zeros, then Fδ1,...,δ` is not a d-th power.

Indeed, by separating the main term with δ1 = · · · = δ` = 0, by (10),

Lemmas 1 and 4, we have

|V (ET ,M,D)| ≤ 2`

d`
`| Supp(f)|p1/2(1 + logM)


 ∑∗

γd=χ0

2

|1− γ(g)|




`

+ `| Supp(f)|

≤ 2`

d`
`| Supp(f)|p1/2(1 + logM)(2d log d)` + `| Supp(f)|,

which implies the theorem. ¤

It remains to prove Lemma 6.

Proof of Lemma 6. In order to prove that the function Fδ1,...,δ` is not a

d-th power, it is enough to show that at least one of the coefficients of its divisor

is not divisible by d.

Let R be a co-set of E(Fp) in E(Fp). Since E(Fp) is cyclic, R has the form

R = {S ⊕ aG | a = 1, . . . , T}
with arbitrary S ∈ R.

For a given co-set R let the divisor of f respect to this co-set be

divR(f) =
∑

R∈R
ordR(f)[R]

where now

div(f) =
∑

R
divR(f).
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If R ∈ R is a zero (or a pole) of f , then all of the zeros (and poles) of Fδ1,...,δ`

in R have the form R ⊕ aG ª diG (a ∈ {1, . . . , T}, i ∈ {1, . . . , `}) and no other

zero (and pole) belongs to this R. Thus the divisor of Fδ1,...,δ` respect to R is

divR(Fδ1,...,δ`) = divR(fδ1 ◦ τd1G . . . fδ` ◦ τd`G) =
∑

R∈R

∑̀

i=1

δi ordR(f)[Rª diG]

=

T∑
a=1

∑̀

i=1

δi ordS⊕aG(f)[S ⊕ aGª diG]. (11)

where S is a fixed element of R.

Let us fix a co-set R such that it contains at least one zero or pole of f

whose order is co-prime to d, and let A be the multiset of a’s (a = 1, . . . , T ) with

multiplicity ordR⊕aG(f) modulo d and B be the multiset of −di’s with multiplicity

δi (i = 1, . . . , `). All of the orders ordR(f) R ∈ Supp(f) are co-prime to d, the

number of distinct elements of B is less than or equal to ` and (| Supp(f)|, `, T ) is
d-admissible, then there is an Q whose multiplicity in A+B is not divisible by d,

so its coefficient in the divisor of Fδ1,...,δ` is not divisible by d. ¤

5. Admissibility

In order to use Theorem 2 one needs criteria for a triple (k, `, T ) being d-

admissible.

Theorem 3. Let us denote the least prime factor of m by p(m). Then

(i) If k,m, d ∈ N, k < p(m) then the triple (k, 2,m) is d-admissible.

(i) If k, `,m, d ∈ N, k < m and

(4`)k < p(m), (12)

then the triple (k, `,m) is d-admissible.

(i) If T is prime, all of the prime factors of d are primitive roots modulo m, then

for every pair k, ` ∈ N with k < m, ` < m, the triple (k, `,m) is d-admissible.

Throughout this section we will denote the multiplicity of a in A by mA(a).
First we show that it is enough to prove the theorem, when d is a prime

number:

Lemma 7. If for all of the prime divisors p of d (k, `,m) is p-admissible,

then (k, `,m) is d-admissible.



Pseudorandom binary sequences over elliptic curves 209

Proof. Assume that there are multisets A, B such that A + B possess

property P (d).

Let d = pα1
1 . . . pαr

r , and let pi be a prime divisor such that pαi
i does not

divide all of the multiplicities mB(b) (b ∈ B).
If there is an element b ∈ B such that pi - mB(b) then let us define A′

(resp. B′) by taking the element a ∈ A with multiplicity mA(a) mod pi (resp.

b ∈ B with multiplicity mB(b) mod pi). Clearly A′ and B′ are not empty (i.e.

not all of the multiplicities mA(a), mB(b) are divisible by pi) and A′ + B′ has
property P (pi).

If all the multiplicities mB(b) are divisible by pi, then let βi be the largest

power such that

pβi

i | gcd{mB(b) : b ∈ B}
Clearly βi < αi. Let A′ = A and let B′ be the multiset of elements b ∈ B with

multiplicity mB(b)p−βi . Now not all of the multiplicities mB′(b′) are divisible by

pi and A′ + B′ has property P (d/pβi

i ). By using the argument above there are

A′′ and B′′ such that A′′ + B′′ has property P (pi). ¤

Proof of Theorem 3. By Lemma 7, we can assume, that d is a prime

number. Since the proof is similar to the proof of the original version of this

lemma [9], we will leave some of the details to the reader.

Proof of (1) in Theorem 3. Assume that contrary to the assertion, there are

k,m, d ∈ N with k < p(m) such that the triple (k, 2,m) is not d-admissible, i.e.

there are multisets A,B ⊂ Zm such that the number of distinct elements of A is

k, the number of distinct elements of B is 2 and the number of solutions of (6) is

divisible by d for all c ∈ Zm.

Let the two distinct elements of B be r, r+ s (where now s 6= 0). Every ele-

ment of A+ r has at least two representations in form (6) whence {a+ r | a∈A}=
{a+r+s | a ∈ A} as sets. Therefore {a+r | a ∈ A} = {a+r+st | a ∈ A} for any

t ∈ N. Hence A + r contains a co-set of a non-trivial subgroup of Zm generated

by s thus the number of distinct elements of A is greater or equal to p(m).

Proof of (2) in Theorem 3. Assume that k, `,m satisfy (12), and we have A,B ⊂
Zm, such that the number of distinct elements of A is k and the number of distinct

elements of B is `.

If s ∈ N, (s,m) = 1, then (6) and

sa+ sb = sc, a ∈ A, b ∈ B
have the same solutions, and if c runs over the element of Zm, then here c′ = sc

does the same. Thus it suffices to show, that there are s ∈ N, c ∈ Zm, (s,m) = 1
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such that the number of the solution of the equation

sa+ sb = c, a ∈ A, b ∈ B (13)

is not divisible by d.

For a ∈ Z, let r(a) denote the absolute least residue of a modulo m, i.e.

define r(a) ∈ Z by

r(a) ≡ a mod m, −m

2
< r(a) ≤ m

2

We need the analogue of Lemma 3 in [9]:

Lemma 8. If k, `, m, A are defined as above, and the distinct elements

of A are represented by a1, . . . , ak, then there is an s such that (s,m) = 1 and

|r(sai)| ≤ 1

2

[m
`

]
for i = 1, . . . , k. (14)

Proof. Let J = {1, . . . , p(m)}. Clearly, if i, j ∈ J , then (i − j,m) = 1

and there is no other set of indices with this property whose cardinality is greater

than |J | .
Consider the p(m) k-tuples

uj = (r(ja1), . . . , r(jak)), j ∈ J . (15)

Write D = 1
2

[
m
`

]
+ 1 and Z =

[
m
D

]
+ 1. Then DZ > m, thus for all j ∈ J

there are non-negative integers t1 = t1(j), . . . , tk = tk(j) such that

r(jai) ∈
{
−
[m
2

]
+ tiD,−

[m
2

]
+ tiD + 1, . . . ,−

[m
2

]
+ (ti + 1)D − 1

}

where

ti ∈ {0, 1, . . . , Z − 1} (16)

for i = 1, . . . , k.

The number of the possible k-tuples t1, . . . , tk with (16) is, by (12),

Zk =
([m

D

]
+ 1

)k

<
(
2
m

D

)k

<

(
2

m

m/2`

)k

= (4`)k < p(m),

thus there are at least two different indices j1, j2 ∈ J such that

t1 = t1(j1) = t1(j2), . . . , tk = tk(j1) = tk(j2).

Then we have

−
[m
2

]
+ tiD ≤ r(j1ai), r(j2ai) <

[m
2

]
+ (ti + 1)D

whence

|r(j1ai)− r(j2ai)| < D for i = 1, . . . , k.

Finally we can define s by s = |j1 − j2|, so that (s,m) = 1. ¤
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In order to complete the proof of (2), consider an s which satisfies (14). Let

b1, . . . , b` denote the distinct elements of B, and let 1 ≤ i, j ≤ ` be indices such

that

sbl 6∈ {sbi + 1, . . . , sbj − 1} for l = 1, . . . , `.

By the pigeon hole principle the maximum distance of two consecutive sbl’s is at

least [m/`] + 1.

Let us denote the values of r(sa1), . . . , r(sak), ordered increasingly, by

r1, . . . , rk:

−1

2

[m
`

]
≤ r1 ≤ · · · ≤ rk ≤ 1

2

[m
`

]
.

By (14) we have

(sbj + r1)− (sbi + rk) = (sbj − sbi) + r1 − rk

≥
([m

`

]
+ 1

)
− 1

2

[m
`

]
− 1

2

[m
`

]
= 1 > 0.

Consider u, v such that r(sau) = r1, r(sav) = rk, then the numbers of

representation of the numbers

sav + sbi and sau + sbj

is the number of pairs (a, b) = (av, bi) and (a′, b′) = (au, bj) resp., and this is

mA(av)mB(bi) and mA(au)mB(bj) which are co-prime to d.

Proof of (3) of Theorem 3. For any multiset C ⊂ Zm let us consider the poly-

nomial PC(x) ∈ Zd[x] defined by

PC(x) =
∑

c∈C
xrm(c).

As in the classical case for any multisets A,B ⊂ Zd, A+ B has property P (d) if

and only if

PA(x)PB(x) ≡ 0 mod xm − 1.

If xm−1 + · · · + 1 is reducible in Zd[x], say P1(x)P2(x) = xm−1 + · · · + 1,

then let us define A,B by P1(x) =
∑

a∈A xrm(a) and P2(x)(x−1) =
∑

b∈B xrm(b).

Thus clearly A+ B has property P (d).

Conversely if xm−1 + · · ·+ 1 is irreducible in Zd[x], and A+ B has property

P (d) then xm−1 + · · ·+ 1 must divide PA(x) or PB(x) thus A or B contains Zm.

Finally by Theorem 2.47 (in [13] p.65) the polynomial xm−1 + · · · + 1 is

irreducible in Zd[x] if and only if m is prime and d is a primitive root modulo T .

¤
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As in [9] we can define the analogue of “good” numbers:

Definition 9. A positive integer m is said to be good respect to d if for any

pair k, ` ∈ N with k < m, ` < m, the triple (k, `,m) is d-admissible.

By Theorem 3 we can characterize the good numbers:

Corollary 10. The number m is good respect to d, if and only if it is prime

and all of the prime factors of d are primitive roots modulo m.

Proof. It remains to show that if for every numbers k, ` ∈ N the triple

(k, `,m) is d-admissible, then for each prime divisor p of d and numbers k′, `′ ∈ N
the triple (k′, `′,m) is p-admissible.

Let p be a prime factor of d and α be a power such that pα‖d. Furthermore

let A, B be multisets which posses property P (p). Then let A′ be a multiset which

consists the element a ∈ A with multiplicity mA′(a) (0 ≤ mA′(a) < d) satisfying

mA′(a) ≡ mA(a) mod pα

mA′(a) ≡ 1 mod d/pα,

and let B′ be a multiset which contains the elements b ∈ B with multiplicity

mB(b) · d
p .

Then the multiplicity of elements a ∈ A′ are co-prime to d and A′+B′ possess
property P (d) ¤
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[19] S. M. Oon, On pseudo-random properties of certain Dirichlet series, Ramanujan J. 15
(2008), 19–30.

[20] G. I. Perel’muter, On certain character sums, Uspehi Mat. Nauk 18 (1963), 145–149.

[21] M. Perret, Multiplicative Characters Sums and Nonlinear Geometric Codes, Eurocode
’90, Springer-Verlag, Berlin – Heidelberg – New York, 1991, 158-165.

[22] M. Perret, Multiplicative characters sums and Kummer coverings, Acta Arith. 59 (1991),
279-290.
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