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Operators shrinking the Arveson spectrum

By JERÓNIMO ALAMINOS (Granada), JOSÉ EXTREMERA (Granada)
and ARMANDO R. VILLENA (Granada)

Abstract. Let σ and τ be representations of a locally compact abelian group G on

complex Banach spaces X and Y , respectively. This paper is devoted to study whether

every continuous linear operators A : X → Y with the property that sp(τ, Ax) ⊂ sp(σ, x)

(x ∈ X) intertwines σ and τ . We are also concerned with those operators satisfying the

shrinking property only approximately.

1. Introduction and preliminaries

1.1. Introduction. In a variety of situations we find operators A : X → Y

between complex Banach spaces, which have the property of shrinking the Arveson

spectrum with respect to appropriate actions of a locally compact abelian group G

on X and Y . This means that there exist representations τX and τY of G on X

and Y , respectively, such that

sp
(
τY , Ax

) ⊂ sp
(
τX , x

)
(x ∈ X). (1.1)

As a matter of fact, this works in any of the following cases:

(1) G is a locally compact abelian group and A : L1(G) → L1(G) has the

property that

supp
(
Âf

) ⊂ supp
(
f̂
)

(f ∈ L1(G)).
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(2) H is a complex Hilbert space and A : H → H shrinks the support of the

spectral measures ES and ET corresponding to self-adjoint operators S and

T on H, i.e.

supp
(ET

Ax

) ⊂ supp
(ES

x

)
(x ∈ H).

(3) X and Y are complex Banach spaces and A : X → Y shrinks the local

spectrum, i.e.

sp
(
T,Ax

) ⊂ sp
(
S, x

)
(x ∈ X)

for some invertible operators S ∈ B(X) and T ∈ B(Y ).

The standard example of an operator satisfying (1.1) is one intertwining τX and

τY , i.e.

A ◦ τX(t) = τY (t) ◦A (t ∈ G).

It turns out that in many important cases these are the only operators shrinking

the Arveson spectrum. This paper grew out of a desire to determine whether every

operator satisfying (1.1) necessarily intertwines the given representations. On the

other hand, strongly motivated by the paper by G. R. Allan and T. J. Rans-

ford [8], we are also addressing the problem of providing quantitative estimates

for such a phenomenon.

The question of describing the operators satisfying (1.1) fits in the so-called

linear preserver problems (we refer the reader to [18] for a full account of the

theory). Particularly, the problem of describing the general form of the operators

appearing in the example (3) above have some similarity with the problem of

characterising the operators on B(X) preserving some local spectral quantities

initiated by A. Bourhim and T. J. Ransford in [11] and continued by several

authors (see [10] and the references given therein).

In Section 2 we show that if A satisfies (1.1) for representations τX and τY
having polynomial growth of degree α, then the following binomial identity holds

N∑
n=0

(−1)n
(
N

n

)
τN−n
Y (t)AτnX(t) = 0 (t ∈ G) (1.2)

for each N > 2α. In particular, if τX and τY are bounded representations, then

A ◦ τX(t) = τY (t) ◦A (t ∈ G).

Section 3 is concerned with a quantitative estimate of the above mentioned

result that (1.1) implies (1.2). Let K be a compact neighbourhood of the identity

in G and ε > 0. If

sp
(
τY , Ax

) ⊂ sp
(
τX , x

)
U(K, ε) (x ∈ X), (1.3)
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where

U(K, ε) =
{
γ ∈ Ĝ : γ(K) ⊂ {eiθ : |θ| < ε}},

then ∥∥∥∥∥
N∑

n=0

(−1)n
(
N

n

)
τN−n
Y (t)AτnX(t)

∥∥∥∥∥ ≤ φN (t, ε) (t ∈ K), (1.4)

where lim
ε→0

φN (t, ε) = 0.

In order to prove this result, we give rise, in a natural way, to a bilinear

map ϕ on the weighted Fourier algebra Aα(T) which encodes the personality

of the operator A. Specifically, the map ϕ has the property that ϕ(f, g) = 0

whenever f, g ∈ Aα(T) are such that supp(f) ∩ supp(g) = ∅. The maps enjoying

the above-mentioned property were investigated in [5] in connection with the

problem of describing the operators preserving zero products on Banach algebras

of Lipschitz functions. It is worth pointing out that such maps have proved to

be a powerful tool for analysing the operators preserving the zero products on a

wide class of Banach algebras and for analysing the reflexivity of their derivation

spaces as well [1], [2], [3], [4], [5], [6], [7], [19]. The key property is that such a

bilinear map necessarily satisfies the identity

N∑
n=0

(−1)n
(
N

n

)
ϕ(zN−n, zn) = 0 (1.5)

for each N > 2α, and this will give (1.2). By using [8] we now obtain quantitative

estimates of (1.5) which allow us to derive (1.4) from (1.3).

Finally, we emphasise that we apply all the preceding results to analyse a gi-

ven operator through its local spectrum. For instance, we reprove the well-known

Gelfand–Hille theorem and we provide quantitative estimates for that result in

the vein of [8]. Similarly we proceed with a result by Colojoară–Foiaş (see [13,

Theorem 4.5], [17, Corollary 3.4.5]). We leave it to the reader to apply the ge-

neral results concerning operators shrinking the Arveson spectrum to some other

contexts. It is worth mentioning some works which are in the same spirit, namely,

local versions of Gelfand–Hille theorem [14], [15] and a sort of quantitative version

of that theorem [16].

1.2. Preliminaries. All Banach spaces and Banach algebras which we consider

throughout this paper are assumed to be complex.

Let X be a non-zero Banach space. Let X∗ denote the topological dual space

of X. We write 〈·, ·〉 for the dual pairing of X and X∗. If X∗ is any linear subspace

of X∗, then σ(X,X∗) stands for the coarsest topology on X for which each of the
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functionals in X∗ are continuous. For a Banach space Y , let B(X,Y ) denote the

space of all continuous linear operators from X into Y . As usual, we write B(X)

instead of B(X,X).

We are given, along with a complex Banach space X, a linear subspace X∗
of the dual X∗ of X. Assume further

‖x‖ = sup{|〈x, ϕ〉| : ϕ ∈ X∗, ‖ϕ‖ ≤ 1} (x ∈ X), (1.6)

and

the σ(X,X∗)-closed convex hull of every σ(X,X∗)-compact set in X

is σ(X,X∗)-compact. (1.7)

For example, if we take X∗ = X∗, then (1.6) holds by the Hahn-Banach theorem

and (1.7) follows from the Krein–Smulian theorem on weak compactness. For

a second example, if X is the dual of a Banach space X∗, then (1.6) holds by

definition and (1.7) holds by the Banach-Alaoglu theorem. In [9] there are some

other examples.

Throughout this paper, G stands for a locally compact abelian group with

dual group Ĝ. By a representation of G on X we mean a group homomorphism

τ from G into the group of all invertible σ(X,X∗)-continuous linear operators on
X such that

the map t 7→ 〈τ(t)x, ϕ〉 is continuous for all x ∈ X and ϕ ∈ X∗. (1.8)

We will restrict our attention to those representations with polynomial growth.

This means that

‖τ(kt)‖ = O(|k|α) as |k| → ∞ (t ∈ G) for some α ≥ 0. (1.9)

Let us also recall that τ is said to be bounded if supt∈G ‖τ(t)‖ < ∞.

Let τ be a representation of G on X satisfying all the preceding requirements

(1.6)–(1.9). Then the map ω : G → R defined by ω(t) = ‖τ(t)‖ (t ∈ G) gives a

non-quasianalytic weight on G. The corresponding Beurling algebra consists of

the Banach space L1(G,ω) of those (equivalence classes of) Borel functions on G

for which ‖f‖ :=
∫
G
|f(t)|ω(t)dt < ∞ endowed with convolution as multiplication.

This Banach algebra can be thought of as a closed ideal of the Banach algebra

M(G,ω) of all locally finite regular Borel measures µ on G for which the weighted

measure ωµ is of finite variation. Moreover, the representation τ gives rise to a

norm-decreasing algebra homomorphism τ̃ : M(G,ω) → B(X) which is defined by

〈τ̃(µ)x, ϕ〉 =
∫

G

〈τ(t)x, ϕ〉 dµ(t) (µ ∈ M(G,ω), x ∈ X, ϕ ∈ X∗)
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(see [17, pp. 446–448]). For every x ∈ X, the Arveson spectrum of τ at x is defined

as

sp(τ, x) =
{
γ ∈ Ĝ : f̂(γ) = 0 for each f ∈ L1(G,ω) such that τ̃(f)x = 0

}
.

The basics of the theory of the Arveson spectrum may be found in [9], [12,

Section 3.2.3], and [17, Section 4.12].

Examples 1.1.

1. Let G be a locally compact abelian group and let τ be the so-called regular

representation of G on L1(G) which is defined by
(
τ(t)f)(s) = f(s− t) (s, t ∈ G, f ∈ L1(G)).

From [17, Example 4.12.2] we deduce that

sp(τ, f) = suppf̂ (f ∈ L1(G)).

2. In the case where τ is a strongly continuous unitary representation of R on a

Hilbert space H, then Stone’s theorem provides a projection-valued measure

E on R such that

τ(t) =

∫ +∞

−∞
e−ist dE(s) (t ∈ R).

In this case, if x ∈ H, then sp(τ, x) is the smallest closed set C of R such

that E(C)x = x. See [12, Section 3.2.3]. The map ∆ 7→ ‖E(∆)x‖2 defines a

measure Ex on the Borel subsets of R and sp(τ, x) = supp(Ex).
3. Let X be a complex Banach space. Given an operator T ∈ B(X), the local

resolvent set ρ(T, x) of T at the point x ∈ X is defined as the union of all

open subsets U of C for which there is an analytic function f : U → X which

satisfies (T − z)f(z) = x for each z ∈ U . The local spectrum sp(T, x) of T at

x is then defined as sp(T, x) = C \ ρ(T, x). Of course, sp(T, x) is contained

in the spectrum sp(T ) of T for each x ∈ X. We refer the reader to [17] for a

full account of the local spectral theory.

Let T ∈ B(X) be an invertible operator with polynomial growth, in the

sense that

‖T k‖ = O(|k|α) as |k| → ∞
for some α ≥ 0. Then T gives rise to a representation of Z on X by

τT (k) = T k (k ∈ Z)
and [17, Example 4.12.7] shows that

sp(T, x) = sp(τT , x) (x ∈ X).
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2. Operators shrinking the Arveson spectrum: the seminal version

2.1. Bilinear maps on weighted Fourier algebras. Through a series of

papers [1], [2], [3], [4], [5], [6], [7] we have pointed out that the analysis of the be-

haviour of operators satisfying certain properties may be reduced to the analysis

of bilinear maps on the weighted Fourier algebra on the circle group which have

the property of taking functions with disjoint support to zero. We have realised

that this method still works for dealing with operators which shrink the Arveson

spectrum.

For n ∈ N and α ≥ 0, let Aα(Tn) denote the weighted Fourier algebra con-

sisting of all functions f ∈ C(Tn) such that

‖f‖Aα(Tn) :=
∑

k∈Zn

∣∣∣f̂(k)
∣∣∣
(
1 + |k|)α < ∞,

where for k ∈ Zn we write |k| = |k1|+ · · ·+ |kn|. We abbreviate A0(Tn) to A(Tn).

From now on, z stands for the function in A(T) defined by z(z) = z (z ∈ T).
For n ∈ N and j ∈ {1, . . . , n} we will denote by zj the function in A(Tn) given by

zj(z) = zj (z ∈ Tn).

Given f ∈ C(Tm) and g ∈ C(Tn) we define f ⊗ g ∈ C(Tm+n) by

(f ⊗ g)(z) = f(z1, . . . , zm)g(zm+1, . . . , zm+n) (z ∈ Tm+n).

It is straightforward to check that, if f ∈ Aα(Tm) and g ∈ Aα(Tn), then f ⊗ g ∈
Aα(Tm+n) with

‖f ⊗ g‖Aα(Tm+n) ≤ ‖f‖Aα(Tm)‖g‖Aα(Tn).

We now introduce the key result. It is just the ultimate result of the above-

mentioned series of papers.

Theorem 2.1. [5, Theorem 2.2] Let α ≥ 0 and let ϕ : Aα(T)×Aα(T) → X

be a continuous bilinear map into some Banach space X with the property that

f, g ∈ Aα(T), supp(f) ∩ supp(g) = ∅ ⇒ ϕ(f, g) = 0. (2.1)

Then
N∑

n=0

(−1)n
(
N

n

)
ϕ(zN−n, zn) = 0

for each N > 2α.
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2.2. Operators shrinking the Arveson spectrum. Theorem 2.1 can be im-

mediately applied for analysing the operators shrinking the Arveson spectrum.

Theorem 2.2. Let G be a locally compact abelian group. Let X and Y be

Banach spaces and let X∗ and Y∗ be linear subspaces of the duals X∗ and Y ∗,
respectively, satisfying (1.6) and (1.7). Suppose that τX and τY are representa-

tions of G on X and Y , respectively, and that

‖τX(kt)‖, ‖τY (kt)‖ = O(|k|α) as |k| → ∞ (t ∈ G)

for some α ≥ 0. If A ∈ B(X,Y ) is such that

sp(τY , Ax) ⊂ sp(τX , x) (x ∈ X),

then
N∑

n=0

(−1)n
(
N

n

)
τN−n
Y (t)AτnX(t) = 0 (t ∈ G)

for each N > 2α. Accordingly, if τX and τY are bounded representations, then

τY (t)A = AτX(t) (t ∈ G).

Proof. Pick t ∈ G. We define a continuous linear map Φt : Aα(T) →
M(G,ω) by

Φt(f) =

+∞∑

k=−∞
f̂(k)δkt (f ∈ Aα(T)),

where δt stands for the Dirac measure concentrated at the point t. It is immediate

to check that

Φ̂t(f)(γ) = f(γ(t)) (f ∈ Aα(T), γ ∈ Ĝ)

and so

supp
(
Φ̂t(f)

) ⊂ {
γ ∈ Ĝ : γ(t) ∈ supp(f)

}
. (2.2)

We now define a continuous bilinear map ϕt : Aα(T)×Aα(T) → B(X,Y ) by

ϕt(f, g) = τ̃Y
(
Φt(f)

) ◦A ◦ τ̃X
(
Φt(g)

)
(f, g ∈ Aα(T)).

Let f, g ∈ Aα(T) and x ∈ X. On account of [17, Lemma 4.12.6] and (2.2),

we have

sp
(
τY , ϕt(f, g)x

)
) ⊂ supp

(
Φ̂t(f)

) ∩ sp

(
τY , A

(
τ̃X

(
Φt(g)

)
x
))



242 Jerónimo Alaminos, José Extremera and Armando R. Villena

⊂ supp
(
Φ̂t(f)

) ∩ sp
(
τX , τ̃X

(
Φt(g)

)
x
)

⊂ supp
(
Φ̂t(f)

) ∩ supp
(
Φ̂t(g)

) ∩ sp(τX , x)

⊂ {
γ ∈ sp(τX , x) : γ(t) ∈ supp(f) ∩ supp(g)

}
.

Accordingly, if f, g ∈ A(T) are such that supp(f)∩ supp(g) = ∅, then we see that

sp(τY , ϕt(f, g)x) = ∅ and [17, Proposition 4.12.4] now yields ϕt(f, g)x = 0 for

each x ∈ X.

Theorem 2.1 then gives

N∑
n=0

(−1)n
(
N

n

)
ϕt(z

N−n, zn) = 0.

for each N > 2α. On the other hand, it is easily seen that

ϕt(z
j , zk) = τ jY (t)AτkX(t) (t ∈ G, j, k ∈ Z),

which completes the proof. ¤

2.3. Determining operators through the spectrum. LetX and Y be comp-

lex Banach spaces. Given operators S ∈ B(X) and T ∈ B(Y ), the commutator

C(T, S) is defined as the mapping

C(T, S) : B(X,Y ) → B(X,Y ), C(T, S)(A) = TA−AS, (A ∈ B(X,Y )).

The iterates C(T, S)n are often called higher order commutators and it is easily

seen that

C(T, S)n(A) =

n∑

k=0

(−1)k
(
n

k

)
Tn−kASk, (A ∈ B(X,Y )).

The following special case is worth noting: if X = Y , and if S, T , and A are

pairwise commuting operators on X, then the last formula reduces to

C(T, S)n(A) = (T − S)nA, (n ∈ N).

The next two corollaries are in the vein of Colojoară-Foiaş theorem (see [13,

Theorem 4.5]).
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Corollary 2.3. Let X and Y be complex Banach spaces and let S ∈ B(X)

and T ∈ B(Y ) be invertible operators with

‖Sk‖, ‖T k‖ = O(|k|α) as |k| → ∞
for some α ≥ 0. If A ∈ B(X,Y ) is such that

sp(T,Ax) ⊂ sp(S, x) ∀x ∈ X,

then

C(T, S)N (A) = 0

for each N > 2α. Consequently,

(1) If S and T are doubly power bounded, i.e. sup{‖T k‖ : k ∈ Z} < ∞, then

TA = AS.

(2) If X = Y , and if S, T , and A are pairwise commuting operators, then

(T − S)NA = 0.

Proof. It suffices to apply Theorem 2.2 by considering the representations

τX = τS and τY = τT , which are given as in Example 1.1.3. ¤
Corollary 2.4. Let X be a complex Banach space and let S, T ∈ B(X) be

invertible operators with

‖Sk‖, ‖T k‖ = O(|k|α) as |k| → ∞
for some α ≥ 0. If

sp(T, x) ⊂ sp(S, x) ∀x ∈ X,

then

C(T, S)N (IX) = 0

for each N > 2α. Consequently,

(1) If S and T are doubly power bounded, then T = S.

(2) If S and T commute, then (T − S)N = 0.

Proof. We only need to apply Corollary 2.3 with Y = X and A being the

identity operator on X. ¤

By applying the preceding corollary with S = IX , we arrive at the classical

Gelfand–Hille theorem. This theorem has been proved in a number of different

ways, but for a particularly brief and elementary proof we refer the reader to [8].

Corollary 2.5. Let X be a complex Banach space and let T ∈ B(X) inver-

tible and such that sp(T ) = {1}.
(1) If T is doubly power bounded, then T = IX .

(2) If ‖T k‖ = O(|k|α) as |k| → ∞ for some α ≥ 0, then (T − IX)N = 0 for each

N > 2α.
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3. Operators shrinking the Arveson spectrum: quantitative estimates

The purpose of this section is to obtain quantitative estimates for the bino-

mial relation provided in Theorem 2.2 in the same vein as in [8]. To this end we

will restrict our attention to the binomial relation provided with the minimal N

with N > 2α.

3.1. Bilinear maps on weighted Fourier algebras: quantitative estima-

tes. Our method for obtaining quantitative estimates of Theorem 2.2 consists in

applying a quantitative version of Theorem 2.1 which will be given after several

lemmas.

Throughout this paper we shall consider sets of the form

Eε = {eiθ ∈ T : |θ| ≤ ε},

where 0 ≤ ε < π. Given a nonempty closed set S ⊂ Tn we define

IAα(Tn)(S) = {f ∈ Aα(Tn) : f(S) = {0}}.

Then IAα(Tn)(S) is a closed ideal of Aα(Tn).

Lemma 3.1. Let N ∈ Z with N ≥ 0 and 0 ≤ ε < π
N+1 . Then

dist
(
(z− 1)N+1, IAN (T)(Eε)

)
≤ 2 tan

(
N + 1

2
ε

)
C1(N),

where, here and subsequently,

C1(N) = 3N
N+1∑
n=1

(
N + 1

n

)
nN .

Proof. Our starting point is the property

dist
(
z− 1, IA(T)(Eε)

)
≤ 2 tan(ε/2), (3.1)

which is shown in the proof of [8, Corollary 3.3]. This gives the assertion in the

lemma for N = 0. From now on we restrict our attention to the case N ≥ 1.

Let α > 2 tan
(
N+1
2 ε

)
. On account of (3.1), there exists a function g ∈

IA(T)(E(N+1)ε) such that

‖z− 1− g‖A(T) < α. (3.2)
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For n ∈ N and f ∈ C(T), let δnf stand for the function defined by

(δnf)(z) = f(zn) (z ∈ T).

It is clear that ‖δnf‖A(T) = ‖f‖A(T) and that δnf ∈ IA(T)(Eε) (n = 1, . . . , N +1),

whenever f ∈ IA(T)(E(N+1)ε). According to the preceding observation and (3.2),

we have

‖zn − 1− δng‖A(T) < α (n = 1, . . . , N + 1)

and therefore

∥∥∥∥∥
N+1∑
n=1

(−1)N+1−n

(
N + 1

n

)
(in)N (zn − 1− δng)

∥∥∥∥∥
A(T)

< α

N+1∑
n=1

(
N + 1

n

)
nN .

(3.3)

We now observe that

N+1∑
n=1

(−1)N+1−n

(
N + 1

n

)
(in)j = 0 (j = 1, . . . , N), (3.4)

because the number in the left side is nothing but the jth derivative at zero of

the function x 7→ (eix − 1)N+1. From (3.4), the inequality (3.3) turns into

‖F −G‖A(T) < α

N+1∑
n=1

(
N + 1

n

)
nN , (3.5)

where F,G ∈ A(T) are the functions given by

F (z) =

N+1∑
n=1

(−1)N+1−n

(
N + 1

n

)
(in)Nzn (z ∈ T)

and

G(z) =

N+1∑
n=1

(−1)N+1−n

(
N + 1

n

)
(in)N (δng)(z) (z ∈ T).

Since δng ∈ IA(T)(Eε) for each n = 1, . . . , N + 1, it follows that G ∈ IA(T)(Eε).

For every f ∈ C(T) with f̂(0) = 0, we define V f ∈ C(T) by

(
V f

)
(eix) =

∫ x

0

f(eit) dt (x ∈ R).
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If f ∈ A(T) and f̂(0) = 0, then a standard fact of the classical Fourier analysis is

that
(
V f

)
(z) =

∑

k 6=0

f̂(k)

ik
zk −

∑

k 6=0

f̂(k)

ik
(z ∈ T),

where the right side of the equality is the Fourier series of the function on the left

side. Accordingly, if f ∈ An(T) for some n ≥ 0 and f̂(0) = 0, then V f ∈ An+1(T)
and it is easily checked that

‖V f‖An+1(T) ≤ 3‖f‖An(T). (3.6)

It is also immediate to see that

f ∈ C(T), f̂(0) = 0, n ∈ N⇒ V δnf =
1

n
δnV f (3.7)

and that

f ∈ IAn(T)(Eε), f̂(0) = 0 ⇒ V f ∈ IAn+1(T)(Eε). (3.8)

We now intend to iterate the operator V in (3.5) to get

‖V NF − V NG‖AN (T) ≤ αC1(N). (3.9)

In order to do that we are required to check that

V̂ jF (0) = V̂ jG(0) = 0, j = 0, . . . , N − 1.

It is a simple matter to compute V jF and (3.4) entails that V̂ jF (0) = 0 for

j = 0, . . . , N − 1. On the other hand, from the fact that δ̂ng(0) = ĝ(0) for

n = 1, . . . , N + 1, together with (3.4) and (3.8) we obtain that V̂ jG(0) = 0 for

j = 0, . . . , N − 1.

Finally, we observe that (V NF )(z) = (z − 1)N+1 (z ∈ T) and that V NG ∈
IAN (T)(Eε). Consequently, (3.9) yields

dist
(
(z− 1)N+1, IAN (T)(Eε)

)
≤ αC1(N)

and finally we take the limit as α → 2 tan
(
N+1
2 ε

)
. ¤

Lemma 3.2. Let N ∈ Z with N ≥ 0 and 0 ≤ ε < π
N+1 . Then

dist
(
(z1 − z2)

N+1, IAN (T2)(E
2
ε )
)
≤ 2 tan

(
N + 1

2
ε

)
C2(N),

where E2
ε = {(z1, z2) ∈ T2 : z1z

−1
2 ∈ Eε}. Here and subsequently,

C2(N) = C1(N)(N + 2)N ,

where C1(N) is the constant obtained in the previous lemma.
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Proof. We define the continuous linear operator

Ψ : AN (T) → AN (T2), (Ψf)(z1, z2) = f(z1z
−1
2 )zN+1

2 (z1, z2 ∈ T).
If f ∈ AN (T), then

(Ψf)(z1, z2) =

+∞∑

k=−∞
f̂(k)zk1z

N+1−k
2

and so

‖Ψf‖AN (T2) =
+∞∑

k=−∞

∣∣∣f̂(k)
∣∣∣ (1 + |k|+ |N + 1− k|)N

≤
+∞∑

k=−∞

∣∣∣f̂(k)
∣∣∣ (2 + 2|k|+N)N =

+∞∑

k=−∞

∣∣∣f̂(k)
∣∣∣

N∑
n=0

(
N

n

)
2n(1 + |k|)nNN−n

≤
+∞∑

k=−∞

∣∣∣f̂(k)
∣∣∣ (1 + |k|)N

N∑
n=0

(
N

n

)
2nNN−n = ‖f‖AN (T)(N + 2)N .

This shows that ‖Ψ‖ ≤ (N + 2)N . On the other hand, it is clear that

Ψ
(
IAN (T)(Eε)

) ⊂ IAN (T2)(E
2
ε )

and that

(z1 − z2)
N+1 = Ψ(z− 1).

From this we deduce that

dist
(
(z1 − z2)

N+1, IAN (T2)(E
2
ε )
)
≤ dist

(
(z1 − z2)

N+1,Ψ
(
IAN (T)(Eε)

))

= dist
(
Ψ(z− 1),Ψ

(
IAN (T)(Eε)

)) ≤ (N + 2)Ndist
(
(z− 1)N+1, IAN (T)(Eε)

)

and finally Lemma 3.1 establishes the required inequality. ¤

Now, we are in a position to prove a quantitative version of Theorem 2.1.

Theorem 3.3. Let α ∈ Z with α ≥ 0, and let ϕ : Aα(T)×Aα(T) → X be a

continuous bilinear map into some Banach space X with the property that

f, g ∈ Aα(T), supp(f)
(
supp(g)

)−1 ∩ Eε = ∅ ⇒ ϕ(f, g) = 0 (3.10)

for some 0 ≤ ε < π
2α+1 . Then

∥∥∥∥∥
N∑

n=0

(−1)n
(
N

n

)
ϕ(zN−n, zn)

∥∥∥∥∥ ≤ 2 tan

(
N

2
ε

)
‖ϕ‖C2(N − 1) (3.11)

for N = 2α+ 1.
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Proof. The map ϕ gives rise to a continuous linear operator Φ :A2α(T2)→X

by defining

Φ(f) =
∑

k1,k2∈Z
f̂(k1, k2)ϕ(z

k1 , zk2) (f ∈ A2α(T2)).

If f ∈ A2α(T2), then

‖Φ(f)‖≤
∑

k1,k2∈Z

∣∣∣f̂(k1, k2)
∣∣∣ ‖ϕ(zk1, zk2)‖≤

∑

k1,k2∈Z

∣∣∣f̂(k1, k2)
∣∣∣ ‖ϕ‖(1+|k1|)α(1+|k2|)α

≤ ‖ϕ‖
∑

k1,k2∈Z

∣∣∣f̂(k1, k2)
∣∣∣ (1 + |k1|+ |k2|)2α = ‖ϕ‖‖f‖A2α(T2)

and therefore ‖Φ‖ ≤ ‖ϕ‖.
Furthermore, on account of the continuity of ϕ, we have

Φ(f ⊗ g) =
∑

k1∈Z

∑

k2∈Z
f̂(k1)ĝ(k2)ϕ(z

k1 , zk2)

= ϕ

(∑

k1∈Z
f̂(k1)z

k1 ,
∑

k2∈Z
ĝ(k2)z

k2

)
=ϕ(f, g) (f, g ∈ A2α(T)). (3.12)

We claim that Φ has the following property

δ > 0, f ∈ IA2α(T2)(E
2
ε+δ) ⇒ Φ(f) = 0. (3.13)

Let δ > 0 and f ∈ IA2α(T2)(E
2
ε+δ). For every z ∈ T let Uz = {zeiθ : |θ| < δ/4}.

By compactness, there exist z1, . . . , zm ∈ T such that T = ∪m
p=1Uzj . There are

functions ω1, . . . , ωm ∈ C∞(T) with ω1 + · · · + ωm = 1 and supp(ωp) ⊂ Uzp for

p = 1, . . . ,m. Since
m∑

p,q=1

ωp ⊗ ωq = 1,

it follows that

f =

m∑
p,q=1

f (ωp ⊗ ωq) =
∑

UzpU
−1
zq ∩Eε=∅

f (ωp ⊗ ωq) +
∑

UzpU
−1
zq ∩Eε 6=∅

f (ωp ⊗ ωq).

Assume that UzpU
−1
zq ∩ Eε 6= ∅ and let z0 ∈ Uzp , w0 ∈ Uzq with z0w

−1
0 ∈ Eε. If

z ∈ Uzp and w ∈ Uzq , then

zw−1 = (zz−1
0 )(ww−1

0 )(z0w
−1
0 ) ∈ Eδ/2Eδ/2Eε ⊂ Eε+δ.
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This implies that ∑

UzpU
−1
zq ∩Eε 6=∅

f (ωp ⊗ ωq) = 0

and so

f =
∑

UzpU
−1
zq ∩Eε=∅

f (ωp ⊗ ωq).

On the other hand, we have

f =
∑

j,k∈Z
f̂(j, k)zj ⊗ zk.

We thus get

f =
∑

UzpU
−1
zq ∩Eε=∅

∑

j,k∈Z
f̂(j, k)(zjωp)⊗ (zkωq).

On account of the continuity of Φ we arrive at

Φ(f) =
∑

UzpU
−1
zq ∩Eε=∅

∑

j,k∈Z
f̂(j, k)Φ

(
(zjωp)⊗ (zkωq)

)
.

We can apply (3.12) to get

Φ(f) =
∑

UzpU
−1
zq ∩Eε=∅

∑

j,k∈Z
f̂(j, k)ϕ(zjωp, z

kωq) = 0,

because of (3.10) and the fact that

supp(zjωp)
(
supp(zkωq)

)−1 ∩ Eε ⊂ UzpU
−1
zq ∩ Eε = ∅

for all the terms appearing in the preceding identity for Φ(f).

Since IA2α(T2)(E
2
ε+δ) ⊂ kerΦ, it follows that Φ drops to a continuous linear

operator on the quotient A2α(T2)/IA2α(T2)(E
2
ε+δ)

Φ̄δ : A2α(T2)/IA2α(T2)(E
2
ε+δ) → X, Φ̄δ(f) = Φ(f), (f ∈ A2α(T2)),

with the property that ‖Φ̄δ‖ ≤ ‖Φ‖ ≤ ‖ϕ‖. This implies that

‖Φ(f)‖ ≤ ‖ϕ‖distA2α(T2)
(
f, IA2α(T2)(E

2
ε+δ)

)
, (f ∈ A2α(T2)). (3.14)

It is a simple matter to check that

Φ
(
(z1 − z2)

N
)
=

N∑
n=0

(
N

n

)
(−1)nϕ(zN−n, zn).

According to (3.14) and Lemma 3.2, we arrive at∥∥∥∥∥
N∑

n=0

(
N

n

)
(−1)nϕ(zN−n, zn)

∥∥∥∥∥ ≤ 2 tan

(
N

2
(ε+ δ)

)
‖ϕ‖C2(N − 1),

whenever δ > 0 is such that ε + δ < π
N . Finally, taking δ → 0 in the preceding

inequality we arrive at (3.11). ¤



250 Jerónimo Alaminos, José Extremera and Armando R. Villena

3.2. Operators shrinking the Arveson spectrum: quantitative estima-

tes. Throughout this section we shall consider the sets of the form

U(K, ε) = {γ ∈ Ĝ : γ(K) ⊂ Eε},

where 0 ≤ ε < π and K is a compact neighbourhood of the identity in G. It is

worth pointing out that the family consisting of all those U(K, ε) is a basis of

neighbourhoods of the identity in Ĝ.

Analysis similar to that in the proof of Theorem 2.2 with Theorem 2.1 rep-

laced by Theorem 3.3 gives the following quantitative version of Theorem 2.2.

Theorem 3.4. Let G be a locally compact abelian group. Let X and Y be

Banach spaces and let X∗ and Y∗ be linear subspaces of the duals X∗ and Y ∗,
respectively, satisfying (1.6) and (1.7). Suppose that τX and τY are representa-

tions of G on X and Y , respectively, and that

‖τX(kt)‖, ‖τY (kt)‖ = O(|k|α) as |k| → ∞ (t ∈ G)

for some α ∈ Z with α ≥ 0. If A ∈ B(X,Y ) is such that

sp(τY , Ax) ⊂ sp(τX , x)U(K, ε) (x ∈ X),

for some 0 ≤ ε < π
2α+1 and some K ⊂ G compact neighbourhood of the identity

in G. Then

∥∥∥∥∥
N∑

n=0

(−1)n
(
N

n

)
τN−n
Y (t)AτnX(t)

∥∥∥∥∥

≤ 2 tan

(
N

2
ε

)
C2(N − 1)η(t)‖A‖ (t ∈ K) (3.15)

for N = 2α+ 1, where

η(t) = sup
k∈Z

‖τX(kt)‖
(1 + |k|)α sup

k∈Z

‖τY (kt)‖
(1 + |k|)α (t ∈ G).

Accordingly, if τX and τY are bounded representations, then

‖τY (t)A−AτX(t)‖ ≤ 2 tan(ε/2)‖τX‖‖τY ‖‖A‖ (t ∈ K).
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Proof. This follows by the same method as in the proof of Theorem 2.2.

Pick t ∈ K. We define a continuous linear map Φt : Aα(T) → M(G,ω) and a

continuous bilinear map ϕ : Aα(T)×Aα(T) → B(X,Y ) by

Φt(f) =

+∞∑

k=−∞
f̂(k)δkt (f ∈ Aα(T))

and

ϕt(f, g) = τ̃Y
(
Φt(f)

) ◦A ◦ τ̃X
(
Φt(g)

)
(f, g ∈ Aα(T)),

respectively. It is immediate to check that ‖ϕt‖ ≤ η(t)‖A‖.
By using [17, Lemma 4.12.6] and (2.2), we can prove as in the proof of

Theorem 2.2 that, if f, g ∈ Aα(T) and x ∈ X, then

sp
(
τY , ϕt(f, g)x

)
) ⊂ {

γ ∈ Ĝ : γ(t) ∈ supp(f) ∩ (
supp(g)Eε

)}
.

Accordingly, if f, g ∈ Aα(T) are such that supp(f)
(
supp(g)

)−1 ∩Eε = ∅, then we

see that sp(τY , ϕt(f, g)x) = ∅ and [17, Proposition 4.12.4] now yields ϕt(f, g)x = 0

for each x ∈ X. Theorem 3.3, completes the proof. ¤

3.3. Determining operators through the spectrum: quantitative est-

imates. We now apply Theorem 3.4 for obtaining quantitative versions of the

results showed in Subsection 2.2.

Corollary 3.5. Let X and Y be complex Banach spaces and let S ∈ B(X)

and T ∈ B(Y ) invertible operators with

‖Sk‖, ‖T k‖ = O(|k|α) as |k| → ∞

for some α ∈ Z with α ≥ 0. If A ∈ B(X,Y ) is such that

sp(T,Ax) ⊂ sp(S, x)Eε ∀x ∈ X,

for some 0 ≤ ε < π
2α+1 , then

∥∥C(T, S)NA
∥∥ ≤ 2 tan

(
N

2
ε

)
sup
k∈Z

‖Sk‖
(1 + |k|)α sup

k∈Z

‖T k‖
(1 + |k|)α ‖A‖C2(N − 1)

for N = 2α+ 1. Consequently,

(1) If S and T are doubly power bounded, then

‖TA−AS‖ ≤ 2 tan (ε/2) sup ‖Sk‖ sup ‖T k‖ ‖A‖.
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(2) If X = Y , and if S, T , and A are pairwise commuting, then

∥∥(T − S)NA
∥∥ ≤ 2 tan

(
N

2
ε

)
sup
k∈Z

‖Sk‖
(1 + |k|)α sup

k∈Z

‖T k‖
(1 + |k|)α ‖A‖C2(N − 1).

Proof. It suffices to apply Theorem 3.4 by considering the representations

τX = τS and τY = τT , which are given as in Example 1.1.3. ¤

Corollary 3.6. Let X be a complex Banach space and let S, T ∈ B(X)

invertible operators with

‖Sk‖, ‖T k‖ = O(|k|α) as |k| → ∞

for some α ∈ Z with α ≥ 0. If

sp(T, x) ⊂ sp(S, x)Eε ∀x ∈ X,

for some 0 ≤ ε < π
2α+1 , then

∥∥C(T, S)N (IX)
∥∥ ≤ 2 tan

(
N

2
ε

)
sup
k∈Z

‖Sk‖
(1 + |k|)α sup

k∈Z

‖T k‖
(1 + |k|)αC2(N − 1)

for N = 2α+ 1. Consequently,

(1) If S and T are doubly power bounded, then

‖T − S‖ ≤ 2 tan (ε/2) sup
k∈Z

‖Sk‖ sup
k∈Z

‖T k‖.

(2) If S and T commute, then

∥∥(T − S)N
∥∥ ≤ 2 tan

(
N

2
ε

)
sup
k∈Z

‖Sk‖
(1 + |k|)α sup

k∈Z

‖T k‖
(1 + |k|)αC2(N − 1).

Corollary 3.7. Let X be a complex Banach space and let T ∈ B(X) inver-

tible and such that sp(T ) ⊂ Eε for some ε ≥ 0.

(1) If T is doubly power bounded and ε < π, then

‖T − IX‖ ≤ 2 tan(ε/2) sup
k∈Z

‖T k‖.

(2) If ‖T k‖ = O(|k|α) as |k| → ∞ for some α ∈ Z with α ≥ 0 and ε < π
2α+1 ,

then ∥∥(T − IX)N
∥∥ ≤ 2 tan

(
N

2
ε

)
sup
k∈Z

‖T k‖
(1 + |k|)αC2(N − 1)

for N = 2α+ 1.
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