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Some generalizations of the Stone Duality Theorem

By GEORGI D. DIMOV (Sofia)

Abstract. In this paper we obtain some extensions of the Stone Duality Theorem

to the categories BoolSp and PerfBoolSp of zero-dimensional locally compact Hausdorff

spaces and continuous (respectively, perfect) maps. We also prove some new Stone-

type duality theorems for the cofull subcategories of the category BoolSp determined,

respectively, by the skeletal maps, quasi-open perfect maps, open maps and open perfect

maps.

Introduction

In this paper we develop further the ideas from the papers [5], [6], [3], [4] and

obtain some extensions of the famous Stone Duality Theorem [18]. Recall that in

1937, M. Stone [18] proved that there exists a bijective correspondence S bet-

ween the class of all (up to homeomorphism) zero-dimensional locally compact

Hausdorff spaces (briefly, Boolean spaces) and the class of all (up to isomorphism)

generalized Boolean algebras (briefly, GBAs) (or, equivalently, Boolean rings with

or without unit). In the class of compact Boolean spaces (briefly, Stone spaces)

this bijection can be extended to a duality St : Stone −→ BoolAlg between the

category Stone of Stone spaces and continuous maps and the category BoolAlg

of Boolean algebras and Boolean homomorphisms; this is the classical Stone Du-

ality Theorem. In 1964, H. P. Doctor [7] showed that the Stone bijection S
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can be extended even to a duality between the category PerfBoolSp of all Boolean

spaces and all perfect maps between them and the category GenBoolAlg of all

GBAs and suitable morphisms between them. It is natural to ask whether there

exists such an extension over the category BoolSp of all Boolean spaces and all

continuous functions between them. Let me mention that it is even not easy to

obtain a duality for the category PerfBoolSp. Indeed, to every Boolean space X,

M. Stone juxtaposed the generalized Boolean algebra CK(X) of all compact open

subsets of X and reconstructed from it the space X (up to homeomorphism). If

f : X −→ Y is a continuous map between two Stone spaces then its dual map

ϕ = St(f) : CO(Y ) −→ CO(X) (where, for every topological space Z, CO(Z)

is the set of all clopen subsets of Z) is defined by the formula ϕ(G) = f−1(G),

for every G ∈ CO(Y ). If, however, f : X −→ Y is a continuous map between

two Boolean spaces and at least the space X is not compact then the preimages

f−1(G) of the elements G of CK(Y ) are not obliged to be elements of the set

CK(X). These preimages will belong to CK(X) iff the map f is perfect; then it

is natural to expect that the category of GBAs and pseudolattice homomorphisms

preserving zero elements (or, equivalently, the category BoolRng of Boolean rings

and ring homomorphisms) will be the dual category of the category PerfBoolSp of

Boolean spaces and perfect maps. However it is not the case. For example, if X

and Y are two non-empty Boolean non-compact spaces and the 0-pseudolattice

homomorphism ϕ0 : CK(Y ) −→ CK(X) is defined by ϕ0(G) = 0(= ∅) for every
G ∈ CK(Y ), then there is no function f : X −→ Y such that ϕ0(G) = f−1(G),

for every G ∈ CK(Y ). Hence, even in the case of perfect maps, the mentioned

homomorphisms are too much. In fact, as it is proved by D. Hofmann [11], the

category BoolRng is dually equivalent to the category pStone of pointed Stone spa-

ces and continuous maps preserving the fixed points. Thus, if one looks for a dual

category to the category PerfBoolSp, having GBAs as objects, then this category

has to have as morphisms some subclass of the class of pseudolattice homomorp-

hisms preserving zero elements. Such a category was described by H. P. Doctor

[7] and here it is named GenBoolAlg (see Theorem 2.13 below where two duality

functors Θt
g : PerfBoolSp −→ GenBoolAlg and Θa

g : GenBoolAlg −→ PerfBoolSp

are defined). If we want to find a dual category to the category BoolSp then it is

clear that in this case the preimages of the compact open sets are clopen sets but

they are not obliged to be compact sets. In [18], M. Stone proved that clopen

subsets of a Boolean space X correspond to simple ideals of the GBA CK(X)

(i.e., those ideals of CK(X) which have a complement in the frame Idl(CK(X))

of all ideals of CK(X)). Therefore one has to use the simple ideals of GBAs.
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As it is proved by M. Stone, the set of all simple ideals of a GBA forms a Bo-

olean algebra. Here we describe the objects of the desired dual category to the

category BoolSp as pairs (B, I), where B is a Boolean algebra and I is a dense

(proper or non proper) ideal of it, satisfying a condition of completeness type;

this condition is the following: for every simple ideal J of I, the join
∨

B J exists;

it is fulfilled for every pair (B,B), where B is a Boolean algebra because, as it

is shown by M. Stone, an ideal of a Boolean algebra is simple iff it is principal.

In this way we build a category named ZLBA and we prove that it is dually

equivalent to the category BoolSp (see Theorem 2.7 where two duality functors

Θt
d : BoolSp −→ ZLBA and Θa

d : ZLBA −→ BoolSp are defined). The idea of the

construction of the category ZLBA comes from the ideas and results obtained in

[5]. However, the proof that the categories BoolSp and ZLBA are dually equiva-

lent will be carried out independently from the results of [5] because this is the

more economical way. In fact, we first construct a category LBA containing as a

subcategory the category ZLBA and find a contravariant adjunction between the

categories LBA and BoolSp which leads to the mentioned above duality between

the categories BoolSp and ZLBA. We define also two more categories PZLBA and

PLBA which are dual to the category PerfBoolSp and obtain in a natural way the

Doctor’s category GenBoolAlg and a new proof of his Duality Theorem mentioned

above. Finally, we define two subcategories DZHLC and DPZHLC of the category

DHLC, which was constructed in [5] as a dual category to the category HLC of

locally compact Hausdorff spaces and continuous maps; these subcategories are

dual, respectively, to the categories BoolSp and PerfBoolSp. We obtain also many

other results. The main of them are listed below, where we describe the structure

of the paper.

We start with a section containing some preliminary results. The results

which we discussed above are presented in the second section. In the third section

of this paper, we prove some Stone-type duality theorems for some subcategories

of the category BoolSp. These theorems are new even in the compact case (see

Theorems 3.1, 3.2(b),(c), 3.4, 3.5(b), 3.6(b), 3.8). They concern the cofull subca-

tegories SkelBoolSp, QOpenPerfBoolSp, OpenBoolSp and OpenPerfBoolSp of the

category BoolSp determined, respectively, by the skeletal maps (defined by Mi-

oduszewski and Rudolf in [15]), by the quasi-open (defined by S. Mardešic

and P. Papic in [13]) perfect maps, by the open maps, and by the open per-

fect maps. Since the categories QOpenPerfBoolSp and OpenPerfBoolSp are cofull

subcategories simultaneously of the categories BoolSp and PerfBoolSp, we find

their images by the both functors Θt
d and Θt

g (see Corollary 3.2(b), Theorem 3.4

and Corollary 3.8). For the compact case, these theorems give the following
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results: (a) The category QOpenStone of compact zero-dimensional Hausdorff

spaces and quasi-open maps is dually equivalent to the category CBool of Boo-

lean algebras and complete Boolean homomorphisms (see Corollary 3.2(c)), and

(b) The category OpenStone of compact zero-dimensional Hausdorff spaces and

open maps is dually equivalent to the category OBool of Boolean algebras and

Boolean homomorphisms ϕ having lower adjoint ψ (i.e., the pair (ψ,ϕ) forms a

Galois connection) (see Corollary 3.7(b)). Let us notice also the following re-

sult (see Theorem 3.4): the category QOpenPerfBoolSp is dually equivalent to

the cofull subcategory QGBA of the category GenBoolAlg whose morphisms, in

addition, preserve all meets that happen to exist. Note also that Theorem 3.1

and Corollary 3.2(b),(c) are zero-dimensional analogues of the Fedorchuk Duality

Theorem [10] and its generalization presented in [4]. From the mentioned above

Corollary 3.2(c) and Fedorchuk’s Duality Theorem [10], we obtain, as an imme-

diate application, the following assertion which is a special case of a much more

general theorem of Monk [14]: a Boolean homomorphism can be extended to a

complete homomorphism between the corresponding minimal completions iff it is

a complete homomorphism.

In the fourth section we characterize the dual maps of the injective and

surjective morphisms of the category BoolSp and its subcategories PerfBoolSp,

OpenBoolSp. Such investigations were done by M. Stone in [18] for surjective

continuous maps and for closed embeddings. Analogous results are obtained here

for the homeomorphic embeddings and dense embeddings.

In the last fifth section, the connections between the dual object of a space

X ∈ |BoolSp| and the dual objects of the closed, regular closed and open subsets

of X are found. It seems that the obtained result for regular closed subsets is

new even in the compact case.

We now fix the notation.

If C denotes a category, we write X ∈ |C| if X is an object of C, and f ∈
C(X,Y ) if f is a morphism of C with domain X and codomain Y . We will say that

a subcategory B of a category A is a cofull subcategory if |B| = |A|. As usual,

we denote by IdC the identity functor of C, and by idA the identity morphism of

A ∈ |C|.
If f : X −→ Y is a function and M ⊆ X then f¹M is the restriction of f

having M as a domain and f(M) as a codomain.

If (X, τ) is a topological space and M is a subset of X, we denote by

cl(X,τ)(M) (or simply by cl(M) or clX(M)) the closure of M in (X, τ) and by

int(X,τ)(M) (or briefly by int(M) or intX(M)) the interior of M in (X, τ).
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The set of all clopen (= closed and open) subsets of a topological space X will

be denoted by CO(X) and the set of all compact open subsets of X by CK(X).

The closed maps, as well as open maps, between topological spaces are as-

sumed to be continuous but are not assumed to be onto.

All lattices are with top (= unit) and bottom (= zero) elements, denoted

respectively by 1 and 0. We do not require the elements 0 and 1 to be distinct.

Since we follow Johnstone’s terminology from [12], we will use the term pseudo-

lattice for a poset having all finite non-empty meets and joins; the pseudolattices

with a bottom will be called {0}-pseudolattices.
If (A,≤) is a poset and a ∈ A, we set ↓A (a) = {b ∈ A | b ≤ a} (we will write

even “ ↓ (a)” instead of “ ↓A (a)” when there is no ambiguity); if B ⊆ A then we

set ↓ (B) =
⋃{↓ (b) | b ∈ B}.

If A is a Boolean algebra then the set of all ultrafilters of A will be denoted

by Ult(A).

The operation “complement” in Boolean algebras will be denoted by “*”.

We denote by St : Stone −→ BoolAlg and Sa : BoolAlg −→ Stone the Stone

duality functors between the categories Stone of compact zero-dimensional Ha-

usdorff spaces (= Stone spaces) and continuous maps and BoolAlg of Boolean

algebras and Boolean homomorphisms.

The positive natural numbers will be denoted by N+.

1. Preliminaries

1.1. Recall that if (A,≤) is a poset and B ⊆ A then B is said to be a dense

subset of A if for any a ∈ A \ {0} there exists b ∈ B \ {0} such that b ≤ a; when

(B,≤1) is a poset and f : A −→ B is a map, then we will say that f is a dense

map if f(A) is a dense subset of B.

1.2. Recall that the Stone space Sa(A) of a Boolean algebra A is the set

X = Ult(A) endowed with a topology T having as an open base the family

{λS
A(a) | a ∈ A}, where λS

A(a) = {u ∈ X | a ∈ u} for every a ∈ A; then

Sa(A) = (X,T) is a compact Hausdorff zero-dimensional space, λS
A(A) ⊆ CO(X)

and the map

λS
A : A −→ CO(X), a 7→ λS

A(a),

is a Boolean isomorphism.

1.3. Recall that a frame is a complete lattice L satisfying the infinite dist-

ributive law a ∧∨
S =

∨{a ∧ s | s ∈ S}, for every a ∈ L and every S ⊆ L.
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Let A be a distributive {0}-pseudolattice and Idl(A) be the frame of all

ideals of A. If J ∈ Idl(A) then we will write ¬AJ (or simply ¬J) for the pseu-

docomplement of J in Idl(A) (i.e., ¬J =
∨{I ∈ Idl(A) | I ∧ J = {0}}). Note

that ¬J = {a ∈ A | (∀b ∈ J)(a ∧ b = 0)} (see Stone [17]). Recall that an ideal

J of A is called simple (Stone [17]) if J ∨ ¬J = A. As it is proved in [17], the

set Si(A) of all simple ideals of A is a Boolean algebra with respect to the lattice

operations in Idl(A). Recall also that the regular elements of the frame Idl(A)

(i.e., those J ∈ Idl(A) for which ¬¬J = J) are called normal ideals (Stone [17]).

1.4. Let us recall the notion of lower adjoint for posets. Let ϕ : A −→ B be

an order-preserving map between posets. If ψ : B −→ A is an order-preserving

map satisfying the following condition

(Λ) for all a ∈ A and all b ∈ B, b ≤ ϕ(a) iff ψ(b) ≤ a

(i.e., the pair (ψ,ϕ) forms a Galois connection between posets B and A) then we

will say that ψ is a lower adjoint of ϕ. It is easy to see that condition (Λ) is

equivalent to the following condition:

(Λ′) ∀a ∈ A and ∀b ∈ B, ψ(ϕ(a)) ≤ a and ϕ(ψ(b)) ≥ b.

Note that if ϕ : A −→ B is an (order-preserving) map between posets, A has

all meets and ϕ preserves them then, by the Adjoint Functor Theorem (see, e.g.,

[12]), ϕ has a lower (or left) adjoint which will be denoted by ϕΛ.

1.5. Recall that:

(a) a map is perfect if it is compact (i.e., point inverses are compact sets) and

closed;

(b) a continuous map f : X −→ Y is called quasi-open ([13]) if for every non-

empty open subset U of X, int(f(U)) 6= ∅ holds;

(c) a function f : X −→ Y is called skeletal ([15]) if

int(f−1(cl(V ))) ⊆ cl(f−1(V )) (1)

for every open subset V of Y . It is well known that a function f : X −→ Y

is skeletal iff int(cl(f(U))) 6= ∅ for every non-empty open subset U of X.

1.6. Recall that a subset F of a topological space (X, τ) is called regular

closed if F = cl(int(F )). Clearly, F is regular closed ff it is the closure of an open

set.

For any topological space (X, τ), the collection RC(X, τ) (we will often write

simply RC(X)) of all regular closed subsets of (X, τ) becomes a complete Boolean

algebra (RC(X, τ), 0, 1,∧,∨, ∗) under the following operations:

1 = X, 0 = ∅, F ∗ = cl(X \ F ), F ∨G = F ∪G, F ∧G = cl(int(F ∩G)).
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The infinite operations are given by the following formulas:
∨{Fγ | γ ∈ Γ} =

cl(
⋃{Fγ | γ ∈ Γ}), and ∧{Fγ | γ ∈ Γ} = cl(int(

⋂{Fγ | γ ∈ Γ})).
A subset U of a topological space (X, τ) is called regular open if the set X \U

is regular closed.

For all notions and notation not defined here see [1], [12], [9], [8], [16].

2. Generalizations of the Stone Duality

In this section we obtain some generalizations of the Stone Duality The-

orem [18]. A category LBA is constructed and a contravariant adjunction between

it and the category BoolSp of Boolean spaces (= zero-dimensional locally compact

Hausdorff spaces) and continuous maps is obtained. The fixed objects of this ad-

junction give us a duality between the category BoolSp and the subcategory ZLBA

of the category LBA. As it was already mentioned, H. P. Doctor [7] introduced

a category GenBoolAlg and proved that it is dual to the category PerfBoolSp of

Boolean spaces and perfect maps. Here two new categories PZLBA and PLBA dual

to the category PerfBoolSp are described and a new proof of the Doctor Duality

Theorem is given. The restrictions of the obtained duality functors to the cate-

gory Stone coincide with the Stone duality functor St : Stone −→ BoolAlg. We

describe as well two subcategories DZHLC and DPZHLC of the category DHLC,

constructed in [5] as a dual category to the category HLC of locally compact Haus-

dorff spaces and continuous maps, which are dual, respectively, to the categories

BoolSp and PerfBoolSp.

Definition 2.1. A pair (A, I), where A is a Boolean algebra and I is an ideal

of A (possibly non proper) which is dense in A (shortly, dense ideal), is called a

local Boolean algebra (abbreviated as LBA). An LBA (A, I) is called a prime local

Boolean algebra (abbreviated as PLBA) if I = A or I is a prime ideal of A. Two

LBAs (A, I) and (B, J) are said to be LBA-isomorphic (or, simply, isomorphic)

if there exists a Boolean isomorphism ϕ : A −→ B such that ϕ(I) = J .

Let LBA be the category whose objects are all LBAs and whose morphisms

are all functions ϕ : (A, I) −→ (B, J) between the objects of LBA such that

ϕ : A −→ B is a Boolean homomorphism satisfying the following condition:

(LBA) For every b ∈ J there exists a ∈ I such that b ≤ ϕ(a);

let the composition between the morphisms of LBA be the usual composition

between functions, and the LBA-identities be the identity functions.
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Remark 2.1. Note that by Stone’s result about the existence of a bijective

correspondence between the ideals and open sets, any LBA (A, I) determines a

pair (X,L) (we will write (X,L) = p(A, I)), where X = Sa(A) (and hence X

is a Stone space) and L =
⋃{λS

A(a) | a ∈ I} (and thus L is an open subset

of X). Moreover, since I is dense in A, it is easy to see that L is dense in X (see,

e.g., Lemma 2.3 below). Therefore, X is a 0-dimensional compactification of L.

Clearly, by the results of M. Stone, X is the one-point compactification of L iff I

is a prime ideal iff (A, I) is a PLBA and I 6= A. It can be shown that the category

LBA is dually equivalent to the category of pairs (X,L), where X is a Stone space

and L is a dense open subset of X, having as morphisms the continuous maps

between pairs (this assertion was noted by the referee).

Remark 2.2. Note that two LBAs (A, I) and (B, J) are LBA-isomorphic

iff they are LBA-isomorphic. Indeed, let ϕ : (A, I) −→ (B, J) be an LBA-

isomorphism. Then, obviously, ϕ : A −→ B is a Boolean isomorphism. We have

to show that ϕ(I) = J . Let ψ ∈ LBA((B, J), (A, I)) be such that ϕ ◦ ψ = idB
and ψ ◦ ϕ = idA. Let a ∈ I. Then, by condition (LBA), there exists b ∈ J

such that a ≤ ψ(b). Thus ϕ(a) ≤ b; this implies that ϕ(a) ∈ J . So, ϕ(I) ⊆ J .

Analogously, we get that ψ(J) ⊆ I. Let b ∈ J . Then a = ψ(b) ∈ I and ϕ(a) = b.

Hence, ϕ(I) = J . Therefore, (A, I) and (B, J) are LBA-isomorphic. The converse

implication is obvious.

Remark 2.3. Note that a prime (= maximal) ideal I of a Boolean algebra A

is a dense subset of A iff I is a non-principal ideal of A. For proving this, observe

first that if I is a prime ideal, a ∈ A \ {1} and I ≤ a then a ∈ I. (Indeed, if a 6∈ I

then a∗ ∈ I and hence a∗ ≤ a, i.e., a = 1.) Let now I be dense in A. Suppose

that I =↓ (a) for some a ∈ A \ {1}. Then a∗ 6= 0. There exists b ∈ I \ {0}
such that b ≤ a∗. Since b ≤ a, we get that b = 0, a contradiction. Hence, I is

a non-principal ideal. Conversely, let I be a non-principal ideal and b ∈ A \ {0}.
Suppose that b ∧ a = 0, for every a ∈ I. Then I ≤ b∗. Hence I =↓ (b∗), a

contradiction. Thus, there exists a ∈ I such that a ∧ b 6= 0. Then a ∧ b ∈ I \ {0}
and a ∧ b ≤ b. Therefore, I is a dense subset of A.

Recall that a distributive {0}-pseudolattice A is called a generalized Boolean

algebra (briefly, GBA) if it satisfies the following condition:

(GBA) for every a ∈ A and every b, c ∈ A such that b ≤ a ≤ c there exists x ∈ A

with a∧x = b and a∨x = c (i.e., x is the relative complement of a in the interval

[b, c]).

Fact 2.1. (a) A distributive {0}-pseudolattice A is a generalized Boolean

algebra iff every principal ideal of A is simple.
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(b) If A is a generalized Boolean algebra then the correspondence

eA : A −→ Si(A), a 7→↓ (a),

is a dense {0}-pseudolattice embedding of A in the Boolean algebra Si(A)

and the pair (Si(A), eA(A)) is an LBA.

(c) (M. Stone [17]) An ideal of a Boolean algebra is simple iff it is principal.

Proof. (a) (⇒) Let A be a generalized Boolean algebra and a ∈ A. We

have to prove that ↓ (a)∨¬(↓ (a)) = A. Let b ∈ A. Then c = a∧ b ∈ [0, b]. Hence

there exists d ∈ A such that d ∧ c = 0 and d ∨ c = b. Thus d ≤ b, i.e., d ∧ b = d.

Therefore, d ∧ a = d ∧ b ∧ a = d ∧ c = 0. We obtain that d ∈ ¬(↓ (a)), c ∈↓ (a)

and c ∨ d = b. So, ↓ (a) ∨ ¬(↓ (a)) = A.

(⇐) Let a, b, c ∈ A and a ∈ [b, c]. Since ↓ (a) ∨ ¬(↓ (a)) = A, we get that there

exists y ∈ ¬(↓ (a)) such that c = a∨ y. Set x = y ∨ b. Then x∧ a = (y ∨ b)∧ a =

b∧a = b and x∨a = y∨ b∨a = y∨a = c. So, A is a generalized Boolean algebra.

(b) By (a), for every a ∈ A, ↓ (a) ∈ Si(A). Further, it is easy to see that eA
is a {0}-pseudolattice embedding and I = eA(A) is dense in Si(A). Let us show

that I is an ideal of Si(A). Since I is closed under finite joins, it is enough to

prove that I is a lower set. Let J ∈ Si(A), a ∈ A and J ⊆↓ (a). We need to show

that J is a principal ideal of A. Since J ∈ Si(A), there exist b ∈ J and c ∈ ¬J
such that a = b ∨ c. We will prove that J =↓ (b). Note first that if b′ ∈ J and

a = b′ ∨ c then b = b′. Indeed, we have that b′ = a ∧ b′ = (b ∨ c) ∧ b′ = b ∧ b′ and
b = a ∧ b = (b′ ∨ c) ∧ b = b ∧ b′; thus b = b′. Let now d ∈ J . Then d ≤ a and

hence a = a ∨ d = (b ∨ d) ∨ c. Since b ∨ d ∈ J , we get that b ∨ d = b, i.e., d ≤ b.

So, J =↓ (b), and hence J ∈ I. Thus (Si(A), eA(A)) is an LBA.

(c) Let B be a Boolean algebra and J ∈ Si(B). Then there exist a ∈ J

and b ∈ ¬J such that 1 = a ∨ b. Now we obtain, as in the proof of (b), that

J =↓ (a). So, every simple ideal of B is principal. Thus, using (a), we complete

the proof. ¤

Notation 2.1. Let I be a proper ideal of a Boolean algebra A. We set

BA(I) = I ∪ {a∗ | a ∈ I}.

When there is no ambiguity, we will often write “B(I)” instead of “BA(I)”.

It is clear that BA(I) is a Boolean subalgebra of A and I is a prime ideal of

BA(I) (see, e.g., [8]).

Fact 2.2. Let (A, I) be an LBA. Then:
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(a) I is a generalized Boolean algebra;

(b) If (B, J) is a PLBA and there exists a poset-isomorphism ψ : J −→ I then

ψ can be uniquely extended to a Boolean embedding ϕ : B −→ A (and

ϕ(B) = BA(I)); in particular, if (A, I) is also a PLBA then ϕ is a Boolean

isomorphism and an isomorphism between LBAs (A, I) and (B, J);

(c) There exists a bijective correspondence between the class of all (up to isomor-

phism) generalized Boolean algebras and the class of all (up to isomorphism)

PLBAs.

Proof. (a) Obviously, for every a ∈ I, ¬I(↓ (a)) = I∩ ↓A (a∗); then, clearly,
↓ (a) ∨ ¬I(↓ (a)) = I. Now apply Fact 2.1(a).

(b) By [16, Theorem 12.5], ψ can be uniquely extended to a Boolean isomor-

phism ψ′ : B −→ BA(I). Now, define ϕ : B −→ A by ϕ(b) = ψ′(b), for every

b ∈ B.

(c) For every PLBA (A, I), set f(A, I) = I. Then, by (a), I is a generalized

Boolean algebra. Conversely, if I is a generalized Boolean algebra then there

exists a dense embedding e : I −→ Si(I) (see Fact 2.1(b)). Thus, setting g(I) =

(BSi(I)(e(I)), e(I)), we get that g(I) is a PLBA. Now, using (b), we obtain that

for every PLBA (A, I), g(f(A, I)) is isomorphic to (A, I). Finally, it is clear that

for every generalized Boolean algebra I, f(g(I)) is isomorphic to I. ¤

We will need a simple lemma.

Lemma 2.3. Let A be a Boolean algebra, M ⊆ A, X = Sa(A) and

LM = {u ∈ X | u ∩M 6= ∅}

(sometimes we will write LA
M instead of LM ). Then:

(a) LM =
⋃{λS

A(a) | a ∈ M};
(b) LM is an open subset of X and hence the subspace LM of X is a zero-

dimensional locally compact Hausdorff space; LM 6= ∅ iff M 6⊆ {0};
(c) λS

A(M) ⊆ CK(LM );

(d) If M is dense in A then LM is dense in X;

(e) If M is a lower set and LM is dense in X then M is dense in A;

(f) If LM is dense in X then the map

λ(A,M) : A −→ CO(LM ), a 7→ LM ∩ λS
A(a), (2)

is a Boolean monomorphism;
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(g) If M is an ideal of A then λS
A(M) = CK(LM ) and hence

λS
A(M)(= {λS

A(a) | a ∈ M}) is a base of LM ;

(h) If (A,M) is an LBA then λ(A,M) : A −→ CO(LM ) is a dense Boolean

embedding;

(i) If M1,M2 ⊆ A then LM1
= LM2

iff the ideals of A generated by M1 and M2

coincide.

Proof. Assertions (a)–(c) and (i) are obvious, and (h) follows from (b), (d),

(f), (g).

(d) It is enough to prove that λS
A(a)∩LM 6= ∅, for every a ∈ A \ {0}. So, let

a ∈ A \ {0}. Then there exists b ∈ M \ {0} such that b ≤ a. There exists u ∈ X

such that b ∈ u. Then a ∈ u. Thus u ∈ λS
A(a) ∩ LM .

(e) Let M be a lower set and LM be dense in X. Let a ∈ A \ {0}. Then, by
(b), λS

A(a)∩LM is an open non-empty subset of X. Hence, there exists b ∈ A\{0}
such that λS

A(b) ⊆ LM ∩ λS
A(a). Let u ∈ λS

A(b). Then there exists c ∈ u ∩ M .

Since M is a lower set, we get that b ∧ c ∈ u ∩M . Thus b ∧ c 6= 0, b ∧ c ∈ M and

b∧ c ≤ a (because, by the Stone Duality Theorem, b ≤ a). Therefore, M is dense

in A.

(f) Since, by the Stone Duality Theorem, the map λS
A : A −→ CO(X),

a 7→ λS
A(a), is a Boolean isomorphism, it is clear that the map λ(A,M) is a Boolean

homomorphism. Further, since LM is dense in X, we have that if a ∈ A \ {0}
then λ(A,M)(a) 6= ∅. Therefore, λ(A,M) is a Boolean monomorphism.

(g) Let M be an ideal of A and U ∈ CK(LM ). For every u ∈ U there exists

bu ∈ M ∩u, and hence u ∈ λS
A(bu) ⊆ LM . Thus U ⊆ ⋃{λS

A(bu) | u ∈ U}. Since U
is compact, there exist {ui ∈ U | i = 1, . . . , n}, where n is some natural number,

such that U ⊆ ⋃{λS
A(bui) | i = 1, . . . , n}. Let b0 =

∨{bui | i = 1, . . . , n}. Then

b0 ∈ M and λS
A(b0) =

⋃{λS
A(bui) | i = 1, . . . , n} ⊇ U . Now, for every u ∈ U there

exists au ∈ A such that u ∈ λS
A(au) ⊆ U and thus λS

A(au) ⊆ λS
A(b0). Therefore,

for every u ∈ U , au ≤ b0, and hence, au ∈ M . Using again the compactness of U ,

we get that there exists a0 ∈ M such that U = λS
A(a0). So, λS

A(M) ⊇ CK(LM ).

This fact together with (c) imply that λS
A(M) = CK(LM ). ¤

Notation 2.2. Let X be a topological space. For every x ∈ X, we set

uCO(X)
x = {F ∈ CO(X) | x ∈ F}.

When there is no ambiguity, we will write “uC
x ” instead of “u

CO(X)
x ”.
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Recall that a contravariant adjunction (T, S, ε, η) : A −→ B between two

categories A and B consists of two contravariant functors T : A −→ B and S :

B −→ A and two natural transformations η : IdB −→ T ◦S and ε : IdA −→ S ◦T
such that T (εA) ◦ ηTA = idTA and S(ηB) ◦ εSB = idSB , for all A ∈ |A| and
B ∈ |B|. The pair (T, S) is a duality iff η and ε are natural isomorphisms.

Theorem 2.4. There exists a contravariant adjunction (Θa,Θt, λC , tC) :

LBA −→ BoolSp, where BoolSp is the category of locally compact zero-dimensio-

nal Hausdorff spaces and continuous maps.

Proof. We will first define two contravariant functors Θa : LBA −→ BoolSp

and Θt : BoolSp −→ LBA.

Let X ∈ |BoolSp|. Define

Θt(X) = (CO(X), CK(X)).

Obviously, Θt(X) is an LBA.

Let f ∈ BoolSp(X,Y ). Define Θt(f) : Θt(Y ) −→ Θt(X) by the formula

Θt(f)(G) = f−1(G), ∀G ∈ CO(Y ). (3)

Set ϕf = Θt(f). Clearly, ϕf is a Boolean homomorphism between CO(Y ) and

CO(X). If F ∈ CK(X) then f(F ) is a compact subset of Y . Since CK(Y ) is

an open base of the space Y and CK(Y ) is closed under finite unions, we get

that there exists G ∈ CK(Y ) such that f(F ) ⊆ G. Then F ⊆ f−1(G) = ϕf (G).

So, ϕf satisfies condition (LBA). Therefore ϕf is an LBA-morphism, i.e., Θt(f)

is well-defined.

Now we get easily that Θt is a contravariant functor.

For every LBA (A, I), set

Θa(A, I) = LA
I (4)

(see Lemma 2.3 for the notation LA
I ). Then Lemma 2.3 implies that L = Θa(A, I)

is a zero-dimensional locally compact Hausdorff space and λ(A,I)(I) is an open

base of L (see (2) for the notation λ(A,I)). So, Θ
a(A, I) ∈ |BoolSp|.

Let ϕ ∈ LBA((A, I), (B, J)). We define the map

Θa(ϕ) : Θa(B, J) −→ Θa(A, I)

by the formula

Θa(ϕ)(u′) = ϕ−1(u′), ∀u′ ∈ Θa(B, J). (5)
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Set fϕ = Θa(ϕ), L = Θa(A, I) and M = Θa(B, J).

By Lemma 2.3, if (A′, I ′) is a LBA then the set Θa(A′, I ′) consists of all

bounded ultrafilters in (A′, I ′) (i.e., those ultrafilters u in A′ for which u∩ I ′ 6= ∅).
Since any LBA-morphism is a Boolean homomorphism, we get that the inverse

image of an ultrafilter is an ultrafilter.

So, let u′ ∈ M . Then u′ is a bounded ultrafilter in (B, J). Set u = fϕ(u
′).

Then, as we have seen, u is an ultrafilter in A. We have to show that u is bounded

in (A, I). Indeed, since u′ is bounded, there exists b ∈ u′∩J . By condition (LBA),

there exists a ∈ I such that ϕ(a) ≥ b. Then ϕ(a) ∈ u′, and hence, a ∈ u. Thus

a ∈ u ∩ I. Therefore, fϕ : M −→ L.

We will show that fϕ is a continuous function. Let u′ ∈ M and u = fϕ(u
′).

Let a ∈ A and u ∈ λ(A,I)(a)(= int(λ(A,I)(a))). Then a ∈ u. Hence ϕ(a) ∈ u′, i.e.,
u′ ∈ λB,J (ϕ(a)). We will prove that

fϕ(λ(B,J)(ϕ(a))) ⊆ λ(A,I)(a). (6)

Indeed, let v′ ∈ λ(B,J)(ϕ(a)). Then ϕ(a) ∈ v′. Thus a ∈ fϕ(v
′), i.e., fϕ(v′) ∈

λ(B,J)(a). So, (6) is proved. Since {λ(A,I)(a) | a ∈ A} is an open base of L, we

get that fϕ is a continuous function. So,

Θa(ϕ) ∈ BoolSp(Θa(B, J),Θa(A, I)).

Now it becomes obvious that Θa is a contravariant functor.

Let X ∈ |BoolSp|. Then it is easy to see that for every x ∈ X, uC
x is an

ultrafilter in CO(X) and hence, using the fact that uC
x contains always elements

of CK(X), we get that uC
x ∈ Θa(CO(X), CK(X)). We will show that the map

tCX : X −→ Θa(Θt(X)), x 7→ uC
x , (7)

is a homeomorphism. Set L = Θa(Θt(X)) and A = CO(X), I = CK(X). We will

prove that tCX is a continuous map. Let x ∈ X, F ∈ I and uC
x ∈ λ(A,I)(F ). Then

F ∈ uC
x and hence, x ∈ F . It is enough to show that tCX(F ) ⊆ λ(A,I)(F ). Let

y ∈ F . Then F ∈ uC
y = tCX(y). Hence tCX(y) ∈ λ(A,I)(F ). So, tCX(F ) ⊆ λ(A,I)(F ).

Since λ(A,I)(I) is an open base of L, we get that tCX is a continuous map. Let us

show that tCX is a bijection. Let u ∈ L. Then u is a bounded ultrafilter in (A, I).

Hence, there exists F ∈ u∩ I. Since F is compact, we get that
⋂
u 6= ∅. Suppose

that x, y ∈ ⋂
u and x 6= y. Then there exist Fx, Fy ∈ I such that x ∈ Fx, y ∈ Fy

and Fx∩Fy = ∅. Since, clearly, Fx, Fy ∈ u, we get a contradiction. So,
⋂
u = {x}

for some x ∈ X. It is clear now that u = uC
x , i.e., u = tCX(x) and u 6= tCX(y),
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for y ∈ X \ {x}. So, tCX is a bijection. For showing that (tCX)−1 is a continuous

function, let uC
x ∈ L. Then (tCX)−1(uC

x ) = x. Let F ∈ I and x ∈ F . Then

F ∈ uC
x and thus uC

x ∈ λ(A,I)(F ). We will prove that (tCX)−1(λ(A,I)(F )) ⊆ F .

Since I is a base of X, this will imply that (tCX)−1 is a continuous function. So,

let y ∈ (tCX)−1(λ(A,I)(F )). Then tCX(y) ∈ λ(A,I)(F ), i.e., F ∈ uC
y . Then y ∈ F .

Therefore, tCX is a homeomorphism.

We will show that

tC : IdBoolSp −→ Θa ◦Θt,

defined by tC(X) = tCX , ∀X ∈ |BoolSp|, is a natural isomorphism.

Let f ∈ BoolSp(X,Y ) and f̂ = Θa(Θt(f)). We have to show that f̂ ◦ tCX =

tCY ◦ f . Let x ∈ X. Then f̂(tCX(x)) = f̂(u
CO(X)
x ) and (tCY ◦ f)(x) = u

CO(Y )
f(x) . Set

y = f(x), ux = u
CO(X)
x and uy = u

CO(Y )
f(x) . We will prove that

f̂(ux) = uy.

Let ϕ = Θt(f). Then f̂ = Θa(ϕ)(= fϕ). Hence, f̂(ux) = ϕ−1(ux) = {G ∈
CO(Y ) | ϕ(G) ∈ ux} = {G ∈ CO(Y ) | x ∈ ϕ(G)} = {G ∈ CO(Y ) | x ∈
f−1(G)} = {G ∈ CO(Y ) | f(x) ∈ G} = uy. So, t

C is a natural isomorphism.

Let (A, I) be an LBA and L = Θa(A, I). Then, by Lemma 2.3(h), λ(A,I) :

A −→ CO(L) is a dense Boolean embedding. Also, by Lemma 2.3(g), λ(A,I)(I) =

CK(L). We denote by λC
(A,I) the map λC

(A,I) : (A, I) −→ (CO(L), CK(L)), where

λC
(A,I)(a) = λ(A,I)(a), for every a ∈ A; we will write sometimes “λC

A” instead of

“λC
(A,I)”. Note that

λC
(A,I) : (A, I) −→ Θt(Θa(A, I)).

We will prove that

λC : IdLBA −→ Θt ◦Θa, where λC(A, I) = λC
(A,I), ∀(A, I) ∈ |LBA|,

is a natural transformation.

Let ϕ ∈ LBA((A, I), (B, J)) and ϕ̂ = Θt(Θa(ϕ)). We have to prove that

λC
B ◦ ϕ = ϕ̂ ◦ λC

A. Set f = Θa(ϕ) and M = Θa(B, J). Then ϕ̂ = Θt(f)(= ϕf ).

Let a ∈ A. Then ϕ̂(λC
A(a)) = f−1(λC

A(a)) = {u ∈ M | f(u) ∈ λC
A(a)} = {u ∈ M |

a ∈ f(u)} = {u ∈ M | a ∈ ϕ−1(u)} = {u ∈ M | ϕ(a) ∈ u} = λC
B(ϕ(a)). So, λ

C is

a natural transformation.

Let us show that Θt(tCX) ◦λC
Θt(X) = idΘt(X), for every X ∈ |BoolSp|. Indeed,

let X ∈ |BoolSp| and Y = Θa(Θt(X)). Then Θt(tCX) : Θt(Y ) −→ Θt(X), G 7→
(tCX)−1(G), for every G ∈ Θt(Y ) = (CO(Y ), CK(Y )). Let F ∈ CO(X). Then
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(Θt(tCX) ◦ λC
Θt(X))(F ) = (tCX)−1(λC

Θt(X)(F )) = H. We have to show that F = H.

Since tCX(H) = λC
Θt(X)(F ), we get that {uC

x | x ∈ H} = {u ∈ Y | F ∈ u}. Thus

x ∈ H ⇐⇒ F ∈ uC
x ⇐⇒ x ∈ F . Therefore, F = H.

Finally, we will prove that Θa(λC
(A,I))◦ tCΘa(A,I) = idΘa(A,I) for every (A, I) ∈

|LBA|. So, let (A, I) ∈ |LBA| and X = Θa(A, I). We have that

f = Θa(λC
(A,I)) : Θ

a(CO(X), CK(X)) −→ X

is defined by

u 7→ (λC
(A,I))

−1(u),

for every bounded ultrafilter u in (CO(X), CK(X)). Let x ∈ X. Then f(tCX(x)) =

f(uC
x ) = (λC

(A,I))
−1(uC

x ) = y. We have to show that x = y. Indeed, for every

a ∈ A, we get that a ∈ y ⇐⇒ a ∈ (λC
(A,I))

−1(uC
x ) ⇐⇒ λC

(A,I)(a) ∈ uC
x ⇐⇒

x ∈ λC
(A,I)(a) ⇐⇒ a ∈ x. Therefore, x = y.

We have proved that (Θa,Θt, λC , tC) is a contravariant adjunction between

the categories LBA and BoolSp. Moreover, we have even shown that tC is a

natural isomorphism. Hence Θt is a full and faithful contravariant functor and,

thus, it reflects isomorphisms. ¤

Definition 2.2. An LBA (A, I) is called a ZLB-algebra (briefly, ZLBA) if, for

every J ∈ Si(I), the join
∨

A J(=
∨

A{a | a ∈ J}) exists.
Let ZLBA be the full subcategory of the category LBA having as objects all

ZLBAs.

Example 2.1. Let B be a Boolean algebra. Then the pair (B,B) is a ZLBA.

This follows from Fact 2.1(c).

Remark 2.4. Note that if A and B are Boolean algebras then any Boolean

homomorphism ϕ : A −→ B is a ZLBA-morphism between the ZLBAs (A,A) and

(B,B). Hence, the full subcategory B of the category ZLBA whose objects are

all ZLBAs of the form (A,A) is isomorphic (it can be even said that it coincides)

with the category BoolAlg of Boolean algebras and Boolean homomorphisms.

We will need the following result of M. Stone [18]:

Proposition 2.5 (M. Stone [18, Theorem 5(3)]). Let X ∈ |BoolSp|. Then
the map Σ : Si(CK(X)) −→ CO(X), J 7→ ∨

RC(X) J , is a Boolean isomorphism.

Proof. For completeness of our exposition, we will verify this fact. Let

J ∈ Si(CK(X)). Set U =
⋃{F | F ∈ J} and V =

⋃{G | G ∈ ¬J}. Obviously, U

and V are disjoint open subsets of X. We will show that U ∪ V = X. Indeed, let
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x ∈ X. Then there exists H ∈ CK(X) such that x ∈ H. Since J ∨¬J = CK(X),

we get that there exist F ∈ J and G ∈ ¬J such that H = F ∪ G. Thus x ∈ F

or x ∈ G, and hence, x ∈ U or x ∈ V . So, U is a clopen subset of X. Thus

U ∈ CO(X) and U =
∨

RC(X) J =
∨

CO(X) J . Conversely, it is easy to see that if

U ∈ CO(X) then J = {F ∈ CK(X) | F ⊆ U} ∈ Si(CK(X)). This implies easily

that Σ is a Boolean isomorphism. ¤

Proposition 2.6. Let (A, I) be an LBA and L = Θa(A, I). Then (A, I) is

a ZLBA iff λ(A,I)(A) = CO(L) (see (2) for the notation λ(A,I)).

Proof. Let (A, I) be a ZLBA. We will prove that λ(A,I)(A) = CO(L). Let

U ∈ CO(L) and J ′ = {F ∈ CK(L) | F ⊆ U}. Then J ′ is a simple ideal of

CK(L) and
∨

RC(L) J
′ = U . Since the restriction ϕ : I −→ CK(L) of λ(A,I) is

a {0}-pseudolattice isomorphism, we get that J = ϕ−1(J ′) is a simple ideal of I.

Set bJ =
∨

A J and C = λ(A,I)(A) (note that the join
∨

A J exists because (A, I)

is a ZLBA). Now, the restriction ψ : A −→ C of λ(A,I) is a Boolean isomorphism,

and hence λ(A,I)(bJ) = ψ(bJ) = ψ(
∨

A J) =
∨

C ψ(J) =
∨

C J ′. The fact that C is

a dense Boolean subalgebra of the Boolean algebra CO(L), and hence of RC(L),

implies that C is a regular subalgebra of RC(L). Thus
∨

C J ′ =
∨

RC(L) J
′ = U .

Therefore, λ(A,I)(bJ) = U . So, we have proved that λ(A,I)(A) = CO(L).

Let now (A, I) be an LBA and λ(A,I)(A) = CO(L). Set, for short, ψ = λ(A,I).

Then the map ψ : A −→ CO(L) is a Boolean isomorphism. Let J ∈ Si(I).

Since the restriction of ψ to I is a 0-pseudolattice isomorphism between I and

CK(L), we get that ψ(J) ∈ Si(CK(L)). Then, by the proof of Proposition 2.5,

U =
⋃{F | F ∈ ψ(J)}(= ⋃{ψ(a) | a ∈ J}) is a clopen subset of L. Therefore, the

join
∨

CO(L){ψ(a) | a ∈ J} exists. Since ψ−1 : CO(L) −→ A is a Boolean isomor-

phism, we obtain that ψ−1(U)=ψ−1(
∨

CO(L){ψ(a) | a∈ J})= ∨
A{ψ−1(ψ(a)) |

a∈ J} =
∨

A{a | a ∈ J}. Hence, the join∨
A J exists. Thus, (A, I) is a ZLBA. ¤

Remark 2.5. Note that, by Lemma 2.3(h), if (A, I) is an LBA then λ(A,I)(A)

is isomorphic to A and is a Boolean subalgebra of CO(L), where L = Θa(A, I)

(see (4) for the notation Θa). If (A, I) is an LBA and (X,L) = p(A, I) (see

Remark 2.1 for this notation) then, by Lemma 2.3(a), L = Θa(A, I)); thus,

by Proposition 2.6, (A, I) is a ZLBA iff A is mapped isomorphically by λ(A,I)

to CO(L); since the Banaschewski compactification β0L of L (see [2] and [8,

Theorem 13.1]) is constructed as Sa(CO(L)) (i.e., it is the Stonification of L),

we get that (A, I) is a ZLBA iff p(A, I) = (β0L,L), where L is defined as in

Remark 2.1 (i.e., L =
⋃{λS

A(a) | a ∈ I}).
Theorem 2.7. The categories BoolSp and ZLBA are dually equivalent.
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Proof. In Theorem 2.4, we constructed a contravariant adjunction

(Θa,Θt, λC , tC)

between the categories LBA and BoolSp, where tC was even a natural isomor-

phism. Let us check that the functor Θt is in fact a functor from the cate-

gory BoolSp to the category ZLBA. Indeed, let X ∈ |BoolSp|. Then Θt(X) =

(CK(X), CO(X)). As it follows from Proposition 2.5, for every J ∈ Si(CK(X)),∨
CO(X) J exists. Hence, Θt(X) ∈ |ZLBA|. So, the restriction

Θt
d : BoolSp −→ ZLBA

of the contravariant functor Θt : BoolSp −→ LBA is well-defined. Further, by

Proposition 2.6, the natural transformation λC becomes a natural isomorphism

exactly on the subcategory ZLBA of the category LBA. We will denote by

Θa
d : ZLBA −→ BoolSp

the restriction of the contravariant functor Θa to the category ZLBA. All this

shows that there is a duality between the categories BoolSp and ZLBA. ¤

Corollary 2.8 (The Stone Duality Theorem [18]). The categories BoolAlg

and Stone are dually equivalent.

Proof. Obviously, the restriction of the contravariant functor Θa
d to the sub-

category B of the category ZLBA (see Remark 2.4 for the notation B) produces

a duality between the categories B and Stone. ¤

Corollary 2.9. For every ZLBA (A, I), the map Σ(A,I) : Si(I) −→ A, where

Σ(A,I)(J) =
∨

A{a | a ∈ J} for every J ∈ Si(I), is a Boolean isomorphism.

Proof. Let L = Θa
d(A, I) (see the proof of Theorem 2.7 for the nota-

tion Θa
d). Then, as it was shown in the proof of Theorem 2.7, the map λC

A :

(A, I) −→ (CO(L), CK(L)), where λC
A(a) = λ(A,I)(a) for every a ∈ A, is a ZLBA-

isomorphism. By Proposition 2.5, the map

Σ = Σ(CO(L),CK(L)) : Si(CK(L)) −→ CO(L), J 7→
∨

CO(L)

J,

is a Boolean isomorphism. Define a map λ′
A : Si(I) −→ Si(CK(L)) by the

formula λ′
A(J) = λC

A(J), for every J ∈ Si(I). Then, obviously, λ′
A is a Boolean

isomorphism and Σ(A,I) = (λC
A)

−1◦Σ◦λ′
A. Thus Σ(A,I) is a Boolean isomorphism.

¤
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Definition 2.3. Let PZLBA be the cofull subcategory of the category ZLBA

whose morphisms ϕ : (A, I) −→ (B, J) satisfy the following additional condition:

(PLBA) ϕ(I) ⊆ J .

Theorem 2.10. The category PerfBoolSp of all locally compact Hausdorff

zero-dimensional spaces and all perfect maps between them is dually equivalent

to the category PZLBA.

Proof. Let f ∈ PerfBoolSp(X,Y ). Then, as we have seen in the proof of

Theorem 2.7, Θt
d(f) : Θt

d(Y ) −→ Θt
d(X) is defined by the formula Θt

d(f)(G) =

f−1(G), ∀G ∈ CO(Y ). Set ϕf = Θt
d(f). Since f is a perfect map, we have that

for any K ∈ CK(Y ), ϕf (K) = f−1(K) ∈ CK(X). Hence, ϕf satisfies condition

(PLBA). Thus, ϕf is a PZLBA-morphism. So, the restriction Θt
p of the duality

functor Θt
d to the subcategory PerfBoolSp of the category BoolSp is a contravariant

functor from PerfBoolSp to PZLBA.

Let ϕ ∈ PZLBA((A, I), (B, J)). The map Θa
d(ϕ) : Θ

a
d(B, J) −→ Θa

d(A, I) was

defined in Theorem 2.7 by the formula Θa
d(ϕ)(u

′) = ϕ−1(u′), ∀u′ ∈ Θa
d(B, J). Set

fϕ = Θa
d(ϕ), L = Θa

d(A, I) and M = Θa
d(B, J).

Let a ∈ I. We will show that f−1
ϕ (λ(A,I)(a)) is compact. We have, by

(PLBA), that ϕ(a) ∈ J . Let us prove that

λ(B,J)(ϕ(a)) = f−1
ϕ (λ(A,I)(a)). (8)

Let u′ ∈ f−1
ϕ (λ(A,I)(a)). Then u = fϕ(u

′) ∈ λ(A,I)(a), i.e., a ∈ u. Thus ϕ(a) ∈ u′,
and hence u′ ∈ λ(B,J)(ϕ(a)). Therefore, λ(B,J)(ϕ(a)) ⊇ f−1

ϕ (λ(A,I)(a)). Now, (6)

implies that λ(B,J)(ϕ(a)) = f−1
ϕ (λ(A,I)(a)). Since λ(B,J)(ϕ(a)) is compact, we

get that f−1
ϕ (λ(A,I)(a)) is compact. Let now K be a compact subset of L. Since

λ(A,I)(I) is an open base of L and λ(A,I)(I) is closed under finite unions, we get

that there exists a ∈ I such that K ⊆ λ(A,I)(a). Then f−1
ϕ (K) ⊆ f−1

ϕ (λ(A,I)(a)),

and hence, as a closed subset of a compact set, f−1
ϕ (K) is compact. This implies

that fϕ is a perfect map (see, e.g.,[9]). Therefore, the restriction Θa
p of the duality

functor Θa
d to the subcategory PZLBA of the category ZLBA is a contravariant

functor from PZLBA to PerfBoolSp. The rest follows from Theorem 2.7. ¤

The above theorem can be stated in a better form. We will do this now.

Definition 2.4. Let PLBA be the subcategory of the category LBA whose

objects are all PLBAs and whose morphisms are all LBA-morphisms

ϕ : (A, I) −→ (B, J)

between the objects of PLBA satisfying condition (PLBA).
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Remark 2.6. It is obvious that PLBA is indeed a category. Note also that

any Boolean homomorphism ϕ : A −→ B is a PLBA-morphism between the

PLBAs (A,A) and (B,B). Hence, the full subcategory B of the category PLBA

whose objects are all PLBAs of the form (A,A) is isomorphic (it can be even said

that it coincides) with the category BoolAlg of Boolean algebras and Boolean

homomorphisms.

Theorem 2.11. The categories PerfBoolSp and PLBA are dually equivalent.

Proof. In virtue of Theorem 2.10, it is enough to show that the categories

PLBA and PZLBA are equivalent.

Let (B, I) be a ZLBA. Set A = BB(I) (see Notation 2.1 for this notation).

Then, obviously, (A, I) is a PLBA. Set Ez(B, I) = (A, I).

If ϕ ∈ PZLBA((B1, I1), (B2, I2)) then let Ez(ϕ) be the restriction of ϕ to

Ez(B1, I1). Then, clearly, Ez(ϕ) ∈ PLBA(Ez(B1, I1), E
z(B2, I2)). It is evident

that Ez is a (covariant) functor from PZLBA to PLBA.

Let (A, I) be a PLBA. Then, by Fact 2.2(a), I is a generalized Boolean

algebra. Hence, according to Fact 2.1(b), the map eI : I −→ Si(I), where

eI(a) =↓ (a), is a dense embedding of I in the Boolean algebra Si(I) and the

pair (Si(I), eI(I)) is an LBA. Set I ′ = eI(I) and Ep(A, I) = (Si(I), I ′). Then,

for every J ∈ Si(I),
∨

Si(I) eI(J) =
∨

Si(I){↓ (a) | a ∈ J} = J . This implies that

(Si(I), I ′) ∈ |PZLBA|.
Let ϕ ∈ PLBA((A1, I1), (A2, I2)). Let the map ϕ′ = Ep(ϕ) be defined by

the formula ϕ′(J1) =
⋃{↓ (ϕ(a)) | a ∈ J1}, for every J1 ∈ Si(I1). We will show

that ϕ′ is a PZLBA-morphism between Ep(A1, I1) and Ep(A2, I2). Obviously,

ϕ′({0}) = {0} and, thanks to conditions (LBA) and (PLBA), ϕ′(I1) = I2. Let

J1 ∈ Si(I1). Set J2 = ϕ′(J1). Then condition (PLBA) and the fact that ϕ is a

homomorphism imply that J2 is an ideal of I2. Let us show that J2 ∨ ¬J2 = I2.

Indeed, let a2 ∈ I2. Then condition (LBA) implies that there exists a1 ∈ I1
such that a2 ≤ ϕ(a1). Since J1 ∨ ¬J1 = I1, there exist a′1 ∈ J1 and a′′1 ∈ ¬J1
such that a1 = a′1 ∨ a′′1 . Then a2 = (ϕ(a′1) ∧ a2) ∨ (ϕ(a′′1) ∧ a2). Obviously,

(ϕ(a′1) ∧ a2) ∈ J2. We will prove that (ϕ(a′′1) ∧ a2) ∈ ¬J2. It is enough to show

that ϕ(a′′1) ∈ ¬J2. Let b2 ∈ J2. Then, by the definition of J2, there exists b1 ∈ J1
such that b2 ≤ ϕ(b1). Since b1 ∧ a′′1 = 0, we get that ϕ(b1) ∧ ϕ(a′′1) = 0. Thus

ϕ(a′′1) ∧ b2 = 0. Therefore, ϕ(a′′1) ∈ ¬J2. So, J2 ∈ Si(I2). Note that this implies

that ϕ′(J1) =
∨

Si(I2)
{↓ (ϕ(a)) | a ∈ J1}. The above arguments show also that

ϕ′(¬J1) ⊆ ¬ϕ′(J1), for every J1 ∈ Si(I1). In fact, there is an equality here,

i.e., ϕ′(¬J1) = ¬ϕ′(J1). Indeed, let b2 ∈ ¬ϕ′(J1). Then b2 ∧ a2 = 0, for every

a2 ∈ ϕ′(J1). By condition (LBA), there exists a1 ∈ I1 such that b2 ≤ ϕ(a1). We
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have again that there exist a′1 ∈ J1 and a′′1 ∈ ¬J1 such that a1 = a′1 ∨ a′′1 . Then

b2 = (ϕ(a′1)∧ b2)∨ (ϕ(a′′1)∧ b2) = ϕ(a′′1)∧ b2. Thus, b2 ≤ ϕ(a′′1). This shows that
b2 ∈ ϕ′(¬J1). Further, if J, J ′ ∈ Si(I1) then ϕ′(J) ∧ ϕ′(J ′) = ϕ′(J) ∩ ϕ′(J ′) =⋃{↓ (a)∧ ↓ (b) | a ∈ J, b ∈ J ′} =

⋃{↓ (a) | a ∈ J ∩ J ′} = ϕ′(J ∩ J ′) = ϕ′(J ∧ J ′).
Therefore, ϕ′ : Si(I1) −→ Si(I2) is a Boolean homomorphism. Since, for every

a ∈ I1, ϕ′(↓ (a)) =↓ (ϕ(a)), we have that eI2 ◦ ϕ|I1 = ϕ′ ◦ eI1 . This shows

that ϕ′ ∈ PZLBA(Ep(A1, I1), E
p(A2, I2)). Now one can easily see that Ep is a

(covariant) functor between the categories PLBA and PZLBA.

Finally, we have to verify that the compositions Ep ◦ Ez and Ez ◦ Ep are

naturally isomorphic to the corresponding identity functors.

Let us start with the composition Ez ◦ Ep.

Let (A, I) be a PLBA. Then, as we have seen above, the map eI : I −→ Si(I),

where eI(a) =↓ (a), is a dense embedding of I in the Boolean algebra Si(I) and the

pair (Si(I), eI(I)) is an LBA. Now Fact 2.2(b) implies that the map (eI)¹I : I −→
eI(I) can be extended to a Boolean isomorphism e(A,I) : A −→ BSi(I)(eI(I)).

(Note that A = I ∪I∗ and BSi(I)(eI(I)) = eI(I)∪ (eI(I))
∗, so that the map e(A,I)

is defined by the following formula: for every a ∈ I, e(A,I)(a
∗) = (eI(a))

∗.) Set

I ′ = eI(I) andA′ = e(A,I)(A). Then the map e(A,I) : (A, I) −→ (A′, I ′) is a PLBA-
isomorphism. Note that (A′, I ′) = (Ez ◦ Ep)(A, I). Hence, e(A,I) : (A, I) −→
(Ez◦Ep)(A, I) is a PLBA-isomorphism. We will show that e : IdPLBA −→ Ez◦Ep,

defined by e(A, I) = e(A,I) for every (A, I) ∈ |PLBA|, is the required natural

isomorphism. Indeed, if ϕ ∈ PLBA((A, I), (B, J)) and ϕ′ = (Ez ◦Ep)(ϕ) then we

have to prove that e(B,J) ◦ ϕ = ϕ′ ◦ e(A,I). Clearly, for doing this it is enough to

show that eJ ◦ (ϕ|I) = (ϕ′)|eI(I) ◦ eI . Since this is obvious, we obtain that the

functors IdPLBA and Ez ◦ Ep are naturally isomorphic.

Let us proceed with the composition Ep ◦Ez. Let (B, I) be a ZLBA. Then,

by Corollary 2.9, the map Σ(B,I) : Si(I) −→ B, where Σ(B,I)(J) =
∨

B{a |
a ∈ J} for every J ∈ Si(I), is a Boolean isomorphism. We will show that s :

IdPZLBA −→ Ep ◦Ez, defined by s(B, I) = (Σ(B,I))
−1 for every (B, I) ∈ |PZLBA|,

is the required natural isomorphism. Indeed, if ϕ ∈ PZLBA((A, I), (B, J)) and

ϕ′ = (Ep ◦ Ez)(ϕ) then we have to prove that Σ(B,J) ◦ ϕ′ = ϕ ◦ Σ(A,I). Let I1 ∈
Si(I). Then (ϕ ◦Σ(A,I))(I1) = ϕ(

∨
A I1) and (Σ(B,J) ◦ϕ′)(I1) = Σ(B,J)(ϕ

′(I1)) =
Σ(B,J)(

∨
Si(J){↓ (ϕ(a)) | a ∈ I1}) =

∨
B{Σ(B,J)(↓ (ϕ(a))) | a ∈ I1} =

∨
B ϕ(I1).

So, we have to prove that ϕ(
∨

A I1) =
∨

B ϕ(I1). Set b = ϕ(
∨

A I1) and c =∨
B ϕ(I1). Since a ≤ ∨

A I1, for every a ∈ I1, we have that ϕ(a) ≤ b for every

a ∈ I1. Hence c ≤ b. We will now prove that b ≤ c. Since J is dense in B, we

get that b =
∨

B{d ∈ J | d ≤ b}. By condition (LBA), for every d ∈ J there

exists ed ∈ I such that d ≤ ϕ(ed). So, let d ∈ J and d ≤ b. Since I1 ∨ ¬I1 = I,
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there exist e1d ∈ I1 and e2d ∈ ¬I1 such that ed = e1d ∨ e2d. Now we obtain that

d≤ϕ(ed)∧ b=ϕ(ed∧
∨

A I1)=ϕ(
∨

A{ed∧a | a∈ I1}) = ϕ(
∨

A{e1d∧a | a ∈ I1}) =
ϕ(e1d ∧∨

A I1) ≤ ϕ(e1d) ≤ c. Thus b =
∨

B{d ∈ J | d ≤ b} ≤ c. So, the functors

IdPZLBA and Ep ◦ Ez are naturally isomorphic. ¤

Corollary 2.12. There exists a bijective correspondence between the classes

of all (up to PLBA-isomorphism) PLBAs, all (up to ZLBA-isomorphism) ZLBAs

and all (up to homeomorphism) locally compact zero-dimensional Hausdorff spa-

ces.

We can even express Theorem 2.11 in a more simple form; in this way we

will obtain a new proof of the Doctor Duality Theorem [7].

Definition 2.5 ([7]). Let GenBoolAlg be the category whose objects are all

generalized Boolean algebras and whose morphisms are all {0}-pseudolattice ho-

momorphisms ϕ : I −→ J between its objects satisfying condition (LBA) (i.e.,

∀b ∈ J ∃a ∈ I such that b ≤ ϕ(a)).

Theorem 2.13 ([7]). The categories PerfBoolSp and GenBoolAlg are dually

equivalent.

Proof. By virtue of Theorem 2.11, it is enough to show that the categories

PLBA and GenBoolAlg are equivalent.

Define a functor El : PLBA −→ GenBoolAlg by setting El(A, I) = I, for

every (A, I) ∈ |PLBA|, and for every ϕ ∈ PLBA((A, I), (B, J)), put El(ϕ) = ϕ|I :

I −→ J . Using Fact 2.2(a) and condition (PLBA), we get that El is a well-defined

functor.

Define a functor Eg : GenBoolAlg −→ PLBA by setting

Eg(I) = (BSi(I)(eI(I)), eI(I))

for every I ∈ |GenBoolAlg| (see Fact 2.1(b) and Notation 2.1 for the notation), and

for every ϕ ∈ GenBoolAlg(I, J) define Eg(ϕ) : BSi(I)(eI(I)) −→ BSi(J)(eJ(J)) to

be the obvious extension of the map ϕe : eI(I) −→ eJ(J) defined by

ϕe(↓ (a)) =↓ (ϕ(a)).

Then, using Facts 2.1(a) and 2.2(b), it is easy to see that Eg is a well-defined

functor.

Finally, it is almost obvious that the compositions Eg ◦ El and El ◦ Eg are

naturally isomorphic to the corresponding identity functors. So, the functors

Θt
g = El ◦ Ez ◦ Θt

p : PerfBoolSp −→ GenBoolAlg and Θa
g = Θa

p ◦ Ep ◦ Eg :
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GenBoolAlg −→ PerfBoolSp (see Theorems 2.11 and 2.10 for the notation) are the

desired duality functors. Note that Θt
g(X) = CK(X), for every X ∈ |PerfBoolSp|,

and if f ∈ PerfBoolSp(X,Y ) then ϕ = Θt
g(f) : CK(Y ) −→ CK(X) is defined by

the formula ϕ(G) = f−1(G), for every G ∈ CK(Y ). ¤

The definition of the functor Θt
g is very simple but that of Θa

g is more comp-

licated. We will recall the definition of the contravariant functor

Θa
s : GenBoolAlg −→ PerfBoolSp

of H. P. Doctor [7] where the original Stone construction (see [18]) of the

dual space of a GBA is used. Then the pair (Θt
g,Θ

a
s) will be a duality between

the categories GenBoolAlg and PerfBoolSp. This will imply that Θa
g and Θa

s are

naturally isomorphic; hence, we will obtain that the spaces Θa
g(I) and Θa

s(I) are

homeomorphic for any GBA I (the last assertion can be proved directly as well).

Let I be a GBA. Set Θa
s(I) to be the set X of all prime ideals of I endowed

with a topology O having as an open base the set {γI(b) | b ∈ I} where, for every

b ∈ I, γI(b) = {i ∈ X | b 6∈ i} (see M. Stone [18]). Then, as it is proved in [18],

(X,O) is a Boolean space and γI : I −→ CK(X,O), b 7→ γI(b), is a 0-pseudolattice

isomorphism and hence, a GenBoolAlg-isomorphism. If ϕ ∈ GenBoolAlg(I, J) then

set X = Θa
s(I), Y = Θa

s(J) and define a map f = fϕ : Y −→ X by the formula

f(j) = ϕ−1(j), for every j ∈ Y . Since ϕ is a GenBoolAlg-morphism, we get that

this definition is correct and, for every b ∈ I,

f−1
ϕ (γI(b)) = γJ(ϕ(b)). (9)

This implies easily that f is a perfect map. It becomes now clear that Θa
s is a

contravariant functor, and also, it is not difficult to show that the pair (Θt
g,Θ

a
s)

is a duality between the categories GenBoolAlg and PerfBoolSp (see [7]).

Corollary 2.14 (M. Stone [18]). There exists a bijective correspondence

between the class of all (up to 0-pseudolattice isomorphism) generalized Boo-

lean algebras and all (up to homeomorphism) locally compact zero-dimensional

Hausdorff spaces.

Note that in [17], M. Stone proved that there exists a bijective correspon-

dence between generalized Boolean algebras and Boolean rings (with or without

unit).

In [5], a category DHLC dual to the category HLC of locally compact Haus-

dorff spaces and continuous maps was described. Obviously, the categories BoolSp

and PerfBoolSp are subcategories of the category HLC. In the next theorem we
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will find the subcategories of the category DHLC which are dual to the categories

BoolSp and PerfBoolSp. All notions and notation used in it can be found in [5].

We do not recall them here because they are used only in this theorem.

Definition 2.6. Let DZHLC (resp., DPZHLC) be the full subcategory of the

category DHLC (resp., D1PHLC) having as objects all CLCAs (A, ρ, IB) such that

if a, b ∈ IB and a ¿ρ b then there exists c ∈ IB with c ¿ρ c and a ≤ c ≤ b.

Theorem 2.15. The following categories are dually equivalent:

(a) BoolSp and DZHLC;

(b) PerfBoolSp and DPZHLC.

Proof. We will show that the contravariant functors Λt
z = (Λt)|BoolSp and

Λa
z = (Λa)|DZHLC are the required duality functors (see [5, the text immediately

after Theorem 3.12] for Λt and Λa) for the first pair of categories. Indeed, if

X ∈ |BoolSp| then
Λt(X) = (RC(X), ρX , CR(X))

(see [5, 2.3 and 2.15] for the notation) and, obviously, (RC(X), ρX , CR(X)) ∈
|DZHLC|. Conversely, if (A, ρ, IB) ∈ |DZHLC| then X = Λa(A, ρ, IB) is a locally

compact Hausdorff space. For proving that X is a zero-dimensional space, let

x ∈ X and U be an open neighborhood of x. Then there exist open sets V,W in

X such that x ∈ V ⊆ cl(V ) ⊆ W ⊆ cl(W ) ⊆ U and cl(V ), cl(W ) are compacts.

Then there exist a, b ∈ IB such that λg
A(a) = cl(V ) and λg

A(b) = cl(W ) (see [5,

(16)] for the notation λg
A) . Obviously, a ¿ρ b. Thus, there exists c ∈ IB such that

c ¿ρ c and a ≤ c ≤ b. Then F = λg
A(c) is a clopen subset of X and x ∈ F ⊆ U .

So, X is zero-dimensional. Now, all follows from [5, Theorem 3.12].

The restrictions of the obtained above duality functors to the categories of the

second pair give, according to [3, Theorem 3.10], the desired second duality. ¤

3. Some other Stone-type Duality Theorems

Recall that a homomorphism ϕ between two Boolean algebras is called comp-

lete if it preserves all joins (and, consequently, all meets) that happen to exist;

this means that if {ai} is a family of elements in the domain of ϕ with join a,

then the family {ϕ(ai)} has a join and that join is equal to ϕ(a).

Definition 3.1. We will denote by SkelBoolSp the category of all zero-dimen-

sional locally compact Hausdorff spaces and all skeletal maps between them

(see 1.5 for the definition of a skeletal map).
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Let SZLBA be the cofull subcategory of the category ZLBA whose morphisms

are, in addition, complete homomorphisms.

Theorem 3.1. The categories SkelBoolSp and SZLBA are dually equivalent.

Proof. Having in mind Theorem 2.7, it is enough to prove that if f is

a morphism of the category SkelBoolSp then Θt
d(f) is complete, and if ϕ is a

SZLBA-morphism then Θa
d(ϕ) is a skeletal map.

So, let f ∈ SkelBoolSp(X,Y ) and ϕ = Θt
d(f). Then

ϕ : (CO(Y ), CK(Y )) −→ (CO(X), CK(X))

and ϕ(G) = f−1(G), for all G ∈ CO(Y ). Let {Gγ | γ ∈ Γ} ⊆ CO(Y ) and

let this family have a join G in CO(Y ). Set W =
⋃{Gγ | γ ∈ Γ}. Since Y

is zero-dimensional, we get easily that G = cl(W ). Thus ϕ(G)⊇ cl(
⋃{ϕ(Gγ) |

γ ∈Γ})=F . Let x ∈ f−1(G)(= ϕ(G)). Then f(x) ∈ G and there exists a neigh-

borhood U of x such that f(U) ⊆ G. Suppose that x 6∈ F . Then there exists a

neighborhood V of x such that V ⊆ U and V ∩ f−1(Gγ) = ∅ for all γ ∈ Γ. Thus

f(V )∩W = ∅. Then cl(f(V ))∩W = ∅. Since cl(f(V )) ⊆ cl(f(U)) ⊆ G = cl(W ),

we get that cl(f(V )) ⊆ cl(W ) \W (= Fr(W )). This leads to a contradiction be-

cause f is skeletal and thus int(cl(f(V ))) 6= ∅ (see 1.5). So, ϕ(G) = f−1(G) = F .

Since ϕ(G) is clopen, we get that ϕ(G) is the join of the family {ϕ(Gγ) | γ ∈ Γ}
in CO(X). Therefore, ϕ is complete.

Let now ϕ ∈ SZLBA((A, I), (B, J)) and f = Θa
d(ϕ). Set X = Θa

d(A, I) and

Y = Θa
d(B, J). Then f : Y −→ X. Since CK(Y ) is an open base of Y , for

proving that f is skeletal it is enough to show that for every G ∈ CK(Y ) \ {∅},
int(f(G)) 6= ∅. So, let G ∈ CK(Y ) \ {∅}. Then there exists b ∈ J \ {0} such

that G = λ(B,J)(b). Suppose that
∧{c ∈ A | b ≤ ϕ(c)} = 0. Then, using the

completeness of ϕ, we get that 0 = ϕ(0) =
∧{ϕ(c) | c ∈ A, b ≤ ϕ(c)} ≥ b. Since

b 6= 0, we get a contradiction. Hence there exists a ∈ A\{0} such that a ≤ c for all

c ∈ A for which b ≤ ϕ(c). We will prove that λ(A,I)(a) ⊆ f(λ(B,J)(b))(= f(G)).

This will imply that int(f(G)) 6= ∅. Let u ∈ λ(A,I)(a). Then a ∈ u. Suppose that

there exists c ∈ u such that b ∧ ϕ(c) = 0. Then b ≤ ϕ(c∗). Thus a ≤ c∗, i.e.,
a∧ c = 0. Since a, c ∈ u, we get a contradiction. Therefore, the set {b}∪ϕ(u) is a

filter-base. Hence there exists an ultrafilter v in B such that {b}∪ϕ(u) ⊆ v. Then

b ∈ v and u ⊆ ϕ−1(v). Thus u = ϕ−1(v), i.e., f(v) = u. So, u ∈ f(λ(B,J)(b)). ¤

Remarks 3.1. Note that in the definition of the category SZLBA the require-

ment that the morphisms ϕ : (A, I) −→ (B, J) are complete can be replaced by

the following condition:
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(SkeZLBA) For every b ∈ J \ {0} there exists a ∈ I \ {0} such that (∀c ∈ A)[(b ≤
ϕ(c)) → (a ≤ c)].

Indeed, the proof of the above theorem shows the sufficiency of this condition

and its necessity can be established as follows. Let f ∈ SkelBoolSp(X,Y ) and

ϕ = Θt(f). Then ϕ : (CO(Y ), CK(Y )) −→ (CO(X), CK(X)) and ϕ(G) =

f−1(G), for all G ∈ CO(Y ). Let F ∈ CK(X) \ {∅}. Then int(f(F )) 6= ∅. Hence

there exists G ∈ CK(Y ) \ {∅} such that G ⊆ int(f(F )). Let H ∈ CO(Y ) and

F ⊆ f−1(H). Then G ⊆ int(f(F )) ⊆ f(F ) ⊆ H. So, condition (SkeZLBA) is

satisfied.

Moreover, condition (SkeZLBA) can be replaced by the following one:

(CEP) For every b ∈ B \ {0} there exists a ∈ A \ {0} such that (∀c ∈ A)[(b ≤
ϕ(c)) → (a ≤ c)].

Indeed, if b ∈ B \ {0} then, by the density of J in B, there exists b1 ∈ I \ {0}
such that b1 ≤ b. Now, applying (SkeZLBA) for b1, we get an a ∈ I \ {0} which

satisfies also the requirements of (CEP) about b. Conversely, if b ∈ J \ {0} then,

by (CEP), there exists a ∈ A \ {0} such that (∀c ∈ A)[(b ≤ ϕ(c)) → (a ≤ c)]; but,

by condition (LBA) (see Definition 2.1), there exists a1 ∈ I such that b ≤ ϕ(a1);

thus a ≤ a1; since I is an ideal, we get that a ∈ I; so, condition (SkeZLBA) is

satisfied.

The assertion (c) of the next corollary is a zero-dimensional analogue of the

Fedorchuk Duality Theorem [10].

Corollary 3.2. (a) Let f be a PerfBoolSp-morphism. Then f is a quasi-open

map iff Θt(f) is complete. In particular, if f is a Stone-morphism then f is a

quasi-open map iff St(f) is complete.

(b) The cofull subcategory QOpenPerfBoolSp of the category PerfBoolSp (see

Theorem 2.10) whose morphisms are, in addition, quasi-open maps, is dually

equivalent to the cofull subcategory QPZLBA of the category PZLBA whose mor-

phisms are, in addition, complete homomorphisms;

(c) The category QOpenStone of compact zero-dimensional Hausdorff spa-

ces and quasi-open maps is dually equivalent to the category CBool of Boolean

algebras and complete Boolean homomorphisms.

Proof. The assertion (a) follows from the proof of Theorem 3.1 and [4,

Corollary 2.5]. The assertions (b) and (c) follow from (a) and Theorem 3.1. ¤

The last corollary together with Fedorchuk’s Duality Theorem [10] imply the

following assertion in which the equivalence (a) ⇐⇒ (b) is a special case of a

much more general theorem due to Monk [14].
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Corollary 3.3. Let ϕ ∈ BoolAlg(A,B) and A′, B′ be minimal completions

of A and B respectively. We can suppose that A ⊆ A′ and B ⊆ B′. Then the

following conditions are equivalent:

(a) ϕ can be extended to a complete homomorphism ψ : A′ −→ B′;

(b) ϕ is a complete homomorphism;

(c) ϕ satisfies condition (CEP) (see Remark 3.1 above).

Proof. (a)⇒(b) This is obvious.

(b)⇒(c) This was already established in the proof of Theorem 3.1 (see also

Remark 3.1).

(c)⇒(a) Obviously, ϕ ∈ ZLBA((A,A), (B,B)). Then, by Remark 3.1 and

Theorem 3.1, condition (CEP) implies that f = Θa
d(ϕ)(= Sa(ϕ)) is a skele-

tal map. Since f is closed, we get that f is a quasi-open map between Y =

Θa
d(B,B)(= Sa(B)) and X = Θa

d(A,A)(= Sa(A)). Now, by Fedorchuk’s Duality

Theorem [10], the map ψ : RC(X) −→ RC(Y ), F 7→ cl(f−1(int(F ))), is a comp-

lete homomorphism. Obviously, for every F ∈ CO(X), ψ(F ) = f−1(F ) = ϕ′(F )

(here ϕ′ = Θt
d(Θ

a
d(ϕ))). Then the existence of a natural isomorphism between the

composition Θt
d ◦Θa

d and the identity functor (see Theorem 2.7), and the fact that

RC(X) and RC(Y ) are minimal completions of, respectively, A and B, imply our

assertion. ¤

Now, using Theorem 2.13, we will present in a simpler form the result estab-

lished in Corollary 3.2(b).

Theorem 3.4. The category QOpenPerfBoolSp is dually equivalent to the

cofull subcategory QGBA of the category GenBoolAlg whose morphisms, in addi-

tion, preserve all meets that happen to exist.

Proof. Having in mind Theorem 2.13 and Corollary 3.2(b), it is enough to

show that the functor Ea (see Theorem 2.13) maps QPZLBA to QGBA and the

functor Eb (see again Theorem 2.13) maps QGBA to QPZLBA because with this we

will obtain that the categories QPZLBA and QGBA are equivalent. Obviously, if

ϕ′ : (A, I) −→ (B, J) is a QPZLBA-morphism then ϕ = Ea(ϕ′) = (ϕ′)|I : I −→ J

preserves all meets in I that happen to exist (indeed, since I is an ideal of A,

every meet in I of elements of I is also a meet in A). Conversely, let ϕ : I −→ J

be a QGBA-morphism. We will show that ϕ satisfies the following condition:

(QGBPL) For every b ∈ J \ {0} there exists a ∈ I \ {0} such that (∀c ∈ I)[(b ≤
ϕ(c)) → (a ≤ c)].

Indeed, let b ∈ J \ {0}. Suppose that
∧

I{c ∈ I | b ≤ ϕ(c)} = 0. Then, using the

completeness of ϕ, we get that 0 = ϕ(0) =
∧{ϕ(c) | c ∈ I, b ≤ ϕ(c)} ≥ b. Since
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b 6= 0, we get a contradiction. Hence there exists a ∈ I \ {0} such that a ≤ c for

all c ∈ I for which b ≤ ϕ(c).

Let ϕ′ = Eb(ϕ). We will show that the map ϕ′ satisfies condition (SkeZLBA).

We have that ϕ′ : (SI(I), eI(I)) −→ (Si(J), eJ (J)). Let J1 ∈ eJ(J) \ {0}. Then

there exists b ∈ J \{0} such that J1 =↓ (b). By (QGBPL), there exists a ∈ I \{0}
such that (∀c ∈ I)[(b ≤ ϕ(c)) → (a ≤ c)]. Let I1 ∈ Si(I) and J1 ⊆ ϕ′(I1).
Then, by the definition of the map ϕ′ (see Theorem 2.13), we have that ↓ (b) ⊆ ⋃
{↓ (ϕ(c)) | c ∈ I1}. Thus there exists c ∈ I1 such that b ≤ ϕ(c). Since c ∈ I,

we get that a ≤ c. Therefore, ↓ (a) ⊆ I1. So, the map ϕ′ satisfies condition

(SkeZLBA). Now Remark 3.1 implies that ϕ′ is a complete homomorphism. Thus

ϕ′ is a QPZLBA-morphism. ¤

Remark 3.2. The proof of Theorem 3.4 shows that in the definition of the

category QPZLBA the requirement that its morphisms ϕ : I −→ J preserve all

meets that happen to exist can be replaced by the condition (QGBPL) introduced

above.

Theorem 3.5. (a) Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

Θt(Y ) = (B, J). Then the map f is open iff there exists a map ψ : I −→ J which

satisfies the following conditions:

(OZL1) For every b ∈ J and every a ∈ I, (a ∧ ϕ(b) = 0) → (ψ(a) ∧ b = 0), and

(OZL2) For every a ∈ I, ϕ(ψ(a)) ≥ a

(such a map ψ will be called a lower pre-adjoint of ϕ).

(b) The cofull subcategory OpenBoolSp of the category BoolSp whose morp-

hisms are open maps is dually equivalent to the cofull subcategory OZLBA of the

category ZLBA whose morphisms have, in addition, lower pre-adjoints.

Proof. (a) Let f ∈ BoolSp(X,Y ) be an open map. For every F ∈ CK(X)

(= I) set ψ(F ) = f(F ). Then, clearly, ψ(F ) ∈ CK(Y )(= J) and ϕ(ψ(F )) =

f−1(f(F )) ⊇ F . Hence, condition (OZL2) is satisfied. Let F ∈ CK(X), G ∈
CK(Y ) and F ∧ ϕ(G) = 0. Then F ∩ f−1(G) = ∅. Thus f(F ) ∩ G = ∅, i.e.,
ψ(F ) ∧G = 0. Therefore, condition (OZL1) is satisfied as well.

Let now ϕ has a lower pre-adjoint. We will show that f ′ = Θa(ϕ) is an open

map. This will imply that f is open. Let X ′ = Θa(Θt(X)) and Y ′ = Θa(Θt(Y )).

Since λ(A,I)(I) is an open base of X ′, it is enough to show that f ′(λ(A,I)(a)) is

an open set, for every a ∈ I. So, let a ∈ I. We will prove that f ′(λ(A,I)(a)) =

λ(B,J)(ψ(a)). Let u ∈ λ(A,I)(a). Then a ∈ u. Let v = f ′(u), i.e., v = ϕ−1(u).

By (OZL2), ϕ(ψ(a)) ≥ a and hence ϕ(ψ(a)) ∈ u. Thus ψ(a) ∈ ϕ−1(u) = v,

i.e., f ′(u) ∈ λ(B,J)(ψ(a)). Therefore f ′(λ(A,I)(a)) ⊆ λ(B,J)(ψ(a)). Conversely,
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let v ∈ λ(B,J)(ψ(a)). Then ψ(a) ∈ v. Suppose that there exists b ∈ v such that

a ∧ ϕ(b) = 0. Since v is a bounded ultrafilter, there exists b0 ∈ v ∩ J . Then

b1 = b ∧ b0 ∈ J ∩ v and a ∧ ϕ(b1) = 0. Now, condition (OZL1) implies that

ψ(a)∧ b1 = 0, which is a contradiction. Hence, the set {a} ∪ϕ(v) is a filter-base.

Thus there exists an ultrafilter u ⊇ {a} ∪ ϕ(v). Then a ∈ u ∩ I and v ⊆ ϕ−1(u).

Therefore, v = ϕ−1(u) = f(u). This shows that f ′(λ(A,I)(a)) ⊇ λ(B,J)(ψ(a)).

Hence, f ′ is an open map.

(b) It follows from (a) and Theorem 2.7. ¤

Remarks 3.3. Note that condition (OZL2) implies condition (LBA). Indeed,

in the notation of Theorem 3.5, if a ∈ I then b = ψ(a) ∈ J and ϕ(b) ≥ a. Further,

condition (OZL1) implies that (again in the notation of Theorem 3.5) ψ(0) = 0.

Indeed, 0 ∧ ϕ(ψ(0)) = 0 implies that ψ(0) ∧ ψ(0) = 0, i.e., that ψ(0) = 0.

Theorem 3.6. (a) Let f ∈ PerfBoolSp(X,Y ), (A, I) = Θt(X), (B, J) =

Θt(Y ) and ϕ = Θt(f). Then the map f is open iff ϕ : B −→ A has a lower

adjoint ψ : A −→ B.

(b) The cofull subcategory OpenPerfBoolSp of the category PerfBoolSp whose

morphisms are, in addition, open maps is dually equivalent to the cofull subcate-

gory OPZLBA of the category PZLBA whose morphisms have, in addition, lower

adjoints.

Proof. (a) Let f ∈ PerfBoolSp(X,Y ) and f is open. Then set ψ(F ) = f(F ),

for every F ∈ CO(X)(= A). Then, since f is open and closed map, ψ : A −→
B(= CO(Y )). Obviously, ϕ(ψ(F )) = f−1(f(F )) ⊇ F for every F ∈ CO(X) and

ψ(ϕ(G)) = f(f−1(G)) ⊆ G for every G ∈ CO(Y ). Hence ψ is a lower adjoint

of ϕ. Conversely, let ϕ has a lower adjoint ψ. Then ψ(I) ⊆ J . Indeed, let

a ∈ I. Then, by condition (LBA), there exists b ∈ J such that a ≤ ϕ(b). Then

ψ(a) ≤ ψ(ϕ(b)) ≤ b ∈ J . Thus, ψ(a) ∈ J . Further, condition (OZL2) is clearly

fulfilled as well as condition (OZL1) (see, e.g., [4, Fact 1.22(a)]). So, (ψ)|I is a

lower pre-adjoint of ϕ. Then, by Theorem 3.5(a), f : X −→ Y is an open map.

(b) It follows from (a) and Theorem 2.10. ¤

Corollary 3.7. (a) Let f ∈ Stone(X,Y ), ϕ = St(f), A = St(X) and B =

St(Y ). Then the map f is open iff ϕ : B −→ A has a lower adjoint ψ : A −→ B.

(b) The category OpenStone of compact zero-dimensional Hausdorff spaces

and open maps is dually equivalent to the category OBool of Boolean algebras

and Boolean homomorphisms having lower adjoints.

Proof. It follows immediately from Theorem 3.6. ¤
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Definition 3.2. Let ϕ ∈ GenBoolAlg(J, I). If ψ : I −→ J is a map which

satisfies conditions (OZL1) and (OZL2) (see Theorem 3.5) then ψ is called a

lower preadjoint of ϕ.

Let OGBA be the cofull subcategory of the category GenBoolAlg whose mor-

phisms have, in addition, lower preadjoints.

Corollary 3.8. The categories OpenPerfBoolSp and OGBA are dually equi-

valent.

Proof. It follows from Theorems 2.13, 3.5 and 3.6. Indeed, it is enough to

show that the categories OGBA and OPZLBA are equivalent. From the proof of

Theorem 3.6, it follows that if ϕ′ is an OPZLBA-morphism then ϕ = Ea(ϕ′) has
a lower preadjoint. Conversely, if ϕ is an OGBA-morphism then ϕ′ = Eb(ϕ) can

be regarded as an extension of ϕ. This implies immediately that ϕ′ has a lower

pre-adjoint. Now, Theorem 3.5 implies that f = Θa(ϕ′) is an open map. Thus,

by Theorem 3.6, ϕ′ has a lower adjoint. ¤

4. Characterization of the dual maps of embeddings,

surjections and injections

In this section we will investigate the following problem: characterize the

dual morphisms of the injective and surjective morphisms of the category BoolSp

and its subcategories PerfBoolSp, OpenBoolSp. Such a problem was regarded by

M. Stone in [18] for surjective continuous maps and for closed embeddings (i.e.,

for injective morphisms of the category PerfBoolSp). An analogous problem will

be investigated for the homeomorphic embeddings and dense embeddings.

We start with a simple observation.

Proposition 4.1. Let f ∈ BoolSp(X,Y ), (A, I) = Θt(X), (B, J) = Θt(Y )

and ϕ=Θt(f). Then ϕ is an injection ⇐⇒ ϕ|J is an injection ⇐⇒ clY (f(X))=Y.

Proof. We have that ϕ : CO(Y ) −→ CO(X), (A, I) = (CO(X), CK(X))

and (B, J) = (CO(Y ), CK(Y )).

Obviously, if ϕ is an injection then ϕ|J is an injection.

Let ϕ|J be an injection, G ∈ CK(Y ) and G 6= ∅. Then ϕ(G) 6= ∅, i.e.,

f−1(G) 6= ∅. This means that f(X) ∩G 6= ∅. Thus cl(f(X)) = Y .

Finally, let cl(f(X)) = Y , G ∈ CO(Y ) and G 6= ∅. Then G ∩ f(X) 6= ∅ and

thus ϕ(G) = f−1(G) 6= ∅. So, ϕ is an injection. ¤
Proposition 4.2. Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X),

(B, J) = Θt(Y ) and ϕ(B) ⊇ I (or ϕ(J) ⊇ I). Then f is an injection.
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Proof. Suppose that there exist x, y ∈ X such that x 6= y and f(x) = f(y).

Then there exists U ∈ CK(X) such that x ∈ U ⊆ X \ {y}. There exists V ∈
CO(Y ) (or, respectively, V ∈ CK(Y )) with ϕ(V ) = U , i.e., f−1(V ) = U . Then

f(U) = f(X) ∩ V and f−1(f(U)) = f−1(V ) = U . Since f(y) = f(x) ∈ f(U), we

get that y ∈ U , a contradiction. Thus, f is an injection. ¤

Theorem 4.3. Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then f is an injection iff ϕ : (B, J) −→ (A, I) satisfies the

following condition:

(InZLC) For any a, b ∈ I such that a∧b = 0 there exists a′, b′ ∈ J with a′∧b′ = 0,

ϕ(a′) ≥ a and ϕ(b′) ≥ b.

Proof. Let f : X −→ Y be an injection. We have that

ϕ : CO(Y ) −→ CO(X), G 7→ f−1(G),

(A, I) = (CO(X), CK(X)) and (B, J) = (CO(Y ), CK(Y )). Let F1, F2 ∈ CK(X)

and F1∩F2 = ∅. Since f is a continuous injection, we get that f(F1) and f(F2) are

disjoint compact subsets of Y . Using the fact that CK(Y ) is a base of Y , we get

that there exist disjoint G1, G2 ∈ CK(Y ) such that f(Fi) ⊆ Gi, i = 1, 2. Then

Fi ⊆ f−1(Gi), i.e., Fi ⊆ ϕ(Gi), i = 1, 2. Hence, ϕ satisfies condition (InZLC).

Let now ϕ satisfies condition (InZLC). We will prove that f is an injection.

Let x, y ∈ X and x 6= y. Then there exist disjoint Fx, Fy ∈ CK(X) such that

x ∈ Fx and y ∈ Fy. Now, by condition (InZLC), there exist Gx, Gy ∈ CK(Y )

such that Gx ∩Gy = ∅, f−1(Gx) ⊇ Fx and f−1(Gy) ⊇ Fy. Then f(x) ∈ Gx and

f(y) ∈ Gy. Thus f(x) 6= f(y). ¤

Corollary 4.4. The cofull subcategory InjBoolSp of the category BoolSp

whose morphisms are, in addition, injective maps, is dually equivalent to the

cofull subcategory DInjBoolSp of the category ZLBA whose morphism satisfy, in

addition, condition (InZLC).

Proof. It follows from Theorems 4.3 and 2.7. ¤

In the sequel, we will not formulate corollaries like that because they follow

directly from the respective characterization of injectivity or surjectivity and the

corresponding duality theorems.

Remark 4.1. Let us show how Theorem 4.3 implies Proposition 4.2. Let

ϕ(B) ⊇ I. Then ϕ(J) ⊇ I. Indeed, let a ∈ I; then, by condition (LBA), there

exists b1 ∈ J such that ϕ(b1) ≥ a; since there exists b2 ∈ B with ϕ(b2) = a, we

get that ϕ(b1 ∧ b2) = a and b1 ∧ b2 ∈ J . Hence, ϕ(J) ⊇ I. Let now a, b ∈ I
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and a ∧ b = 0. There exist a1, b1 ∈ J such that ϕ(a1) = a and ϕ(b1) = b. Then

ϕ(a1 ∧ b∗1) = a ∧ b∗ = a, a1 ∧ b∗1 ∈ J and (a1 ∧ b∗1) ∧ b1 = 0. Therefore, ϕ satisfies

condition (InZLC).

In the next theorem we will assume that the ideals and prime ideals could

be non-proper.

Theorem 4.5. Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then the following conditions are equivalent:

(a) f is a surjection;

(b) ϕ : B −→ A is an injection and for every bounded ultrafilter v in (B, J) there

exists a ∈ I such that a ∧ ϕ(v) 6= 0 (i.e., a ∧ ϕ(b) 6= 0 for any b ∈ v);

(c) ϕ : B −→ A is an injection and for every prime ideal J1 of J , we have that∨{Iϕ(b) | b ∈ J1} = I implies J1 = J (where Iϕ(b) = {a ∈ I | a ≤ ϕ(b)});
(d) ϕ : B −→ A is an injection and for every ideal J1 of J ,

[(
∨{Iϕ(b) | b ∈ J1} = I) → (J1 = J)].

Proof. (a)⇒(b) Let f(X) = Y . Then, by Proposition 4.1, ϕ is an injection.

Further, by (7), the bounded ultrafilters in (B, J) = (CO(Y ), CK(Y )) are of the

form uC
y (see Notation 2.2 for this notation) and analogously for (A, I). So,

let y ∈ Y . Then there exists x ∈ X such that f(x) = y. This implies that

ϕ(uC
y ) ⊆ uC

x . There exists F ∈ CK(X) ∩ uC
x . Then F ∩ f−1(G) 6= ∅, for every

G ∈ uC
y , i.e., F ∧ ϕ(uC

y ) 6= 0.

(b)⇒(c) Let J1 be a prime ideal of J . Let
∨{Iϕ(b) | b ∈ J1} = I. Suppose

that J1 6= J . Then v1 = {b ∈ B | b∧(J \J1) 6= 0} is a bounded ultrafilter in (B, J)

and v1∩J = J \J1. This follows from the more general result [5, Proposition 3.6]

but, for completeness of our exposition, we will supply it with a new proof. So, it

is clear that J \ J1 is a filter in J , and hence J \ J1 ⊆ v1; also, J \ J1 6= ∅ and v1
is an upper set. We will show that v1 ∩J = J \J1. Since J \J1 ⊆ v1, it is enough

to prove that v1 ∩ J1 = ∅. Let d ∈ J1. There exists e ∈ J \ J1. If d∗ ∧ e ∈ J1
then e = (e ∧ d) ∨ (e ∧ d∗) ∈ J1, a contradiction. Hence c = d∗ ∧ e ∈ J \ J1 and

d ∧ c = 0. Therefore, d 6∈ v1. So, v1 ∩ J1 = ∅ and thus v1 ∩ J = J \ J1. Further,

if b1 ∈ v1 and b2 ∈ J \ J1 then b1 ∧ b2 ∈ J \ J1. Indeed, if b = b1 ∧ b2 ∈ J1 then

b 6∈ v1 and hence there exists c ∈ J \ J1 such that b∧ c = 0, i.e., b1 ∧ (b2 ∧ c) = 0;

since c ∧ b2 ∈ J \ J1, we get a contradiction. Let now b1, b2 ∈ v1. We will show

that b1 ∧ b2 ∈ v1 and this will imply that v1 is a filter in B. Let c ∈ J \ J1. Then
b1 ∧ c, b2 ∧ c ∈ J \ J1 and thus (b1 ∧ c) ∧ (b2 ∧ c) ∈ J \ J1; hence (b1 ∧ b2) ∧ c 6= 0.

Therefore, b1 ∧ b2 ∈ v1. Finally, for showing that the filter v1 is an ultrafilter,

suppose that there exists b ∈ B such that b 6∈ v1 and b∗ 6∈ v1. Then there exist
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c, d ∈ J \ J1 such that b ∧ c = 0 and b∗ ∧ d = 0. Since c ∧ d ∈ J \ J1, we have

that c ∧ d 6= 0. On the other hand, d ≤ b and hence c ∧ d ≤ c ∧ b = 0, i.e.,

c ∧ d = 0, a contradiction. Therefore, v1 is a bounded ultrafilter in (B, J) and

v1 ∩ J = J \ J1. By (b), there exists a ∈ I such that a ∧ ϕ(v1) 6= 0. Since a ∈ I

and
∨{Iϕ(b) | b ∈ J1} = I, there exist b1, . . . , bk ∈ J1 and a1, . . . , ak ∈ I (where

k ∈ N+) such that a =
∨{ai | i = 1, . . . , k} and ai ≤ ϕ(bi), i = 1, . . . , k. Set

b =
∨{bi | i = 1, . . . , k}. Then a ≤ ϕ(b) and b ∈ J1. Since ϕ is an injection, we

have that ϕ(v1 ∩ J) = ϕ(J \ J1) = ϕ(J) \ ϕ(J1). Thus ϕ(b) 6∈ ϕ(v1 ∩ J) (because

b ∈ J1). Since a ≤ ϕ(b), we get that ϕ(b)∧ϕ(v1) 6= 0. The injectivity of ϕ implies

that b ∧ v1 6= 0. Thus b ∈ v1 ∩ J1, a contradiction. Hence, J1 = J .

(c)⇒(a) Suppose that f(X) 6= Y . Then there exists y ∈ Y \ f(X). Set

U = Y \ {y}. Thus f(X) ⊆ U . Set J1 = {G ∈ CK(Y ) | G ⊆ U}. Then J1 is a

prime ideal of J(= CK(Y )). (Indeed, if G1, G2 ∈ CK(Y ) and y 6∈ G1 ∩G2 then

either y 6∈ G1 or y 6∈ G2; hence, G1 ∈ J1 or G2 ∈ J1.) Obviously, J1 6= J . We

will prove that
∨{Iϕ(b) | b ∈ J1} = I, which, by (c), will lead to a contradiction.

So, let F ∈ CK(X). Then f(F ) ⊆ U . Since f(F ) is compact, there exists

G ∈ CK(Y ) such that f(F ) ⊆ G ⊆ U . Then G ∈ J1 and F ⊆ f−1(G) = ϕ(G).

Thus F ∈ Iϕ(G). Therefore,
∨{Iϕ(b) | b ∈ J1} = I. So, f(X) = Y .

(a)⇒(d) Let f(X) = Y . Then, by Proposition 4.1, ϕ is an injection. Let

J1 be an ideal of J such that
∨{Iϕ(b) | b ∈ J1} = I. Suppose that J1 6= J . Set

U =
⋃{G | G ∈ J1}. Then U 6= Y . (Indeed, if U = Y then every H ∈ CK(Y )

(= J) will be covered by a finite number of elements of J1; since J1 is an ideal,

we will get that H ∈ J1.) Since f is a surjection, we get that V = f−1(U) 6= X.

Set IV = {F ∈ I | F ⊆ V }. Then, obviously, IV is a proper ideal of I. Let

G ∈ J1 and F ∈ Iϕ(G). Then F ⊆ ϕ(G) = f−1(G) ⊆ f−1(U) = V . Thus∨{Iϕ(b) | b ∈ J1} ⊆ IV . Since IV 6= I, we get a contradiction. Therefore, J1 = J .

(d)⇒(c) It is obvious. ¤

Remark 4.2. In [18, Theorem 7]M. Stone proved a result which is equivalent

to our assertion that (a)⇔(d) in the previous theorem. More precisely, M. Stone

proved the following (in our notation): the map f is a surjection iff the map

ψ = ϕ|J : J −→ A is a 0-pseudolattice monomorphism and for every ideal J1 of

J , [(
∨{Iϕ(b) | b ∈ J1} = I) ↔ (J1 = J)]. The Stone’s condition “(J1 = J) →

(
∨{Iϕ(b) | b ∈ J1} = I)”, i.e., “

∨{Iϕ(b) | b ∈ J} = I”, is equivalent (as it is easy

to see) to our condition (LBA) (see Definition 2.1) which is automatically satisfied

by the morphisms of the category ZLBA and thus it appears in our Theorem 4.5

in another form. Further, when ϕ is an injection then, obviously, ψ = ϕ|J is

an injection; in the converse direction we have the following: the map ψ can be



Some generalizations of the Stone Duality Theorem 287

extended to a homomorphism ϕ : B −→ A (by the result proved below) and then

ϕ is obliged to be an injection (indeed, if b ∈ B \ {0} and ϕ(b) = 0 then the

density of J in B implies that there exists c ∈ J \ {0} such that c ≤ b; then

ψ(c) = ϕ(c) = 0, a contradiction). So, our condition (d) is equivalent to the cited

above Stone condition from [18, Theorem 7].

Proposition 4.6. Let (A, I) be a ZLBA, (B, J) be an LBA and ψ : J −→ A

be a 0-pseudolattice homomorphism satisfying condition (LBA) (i.e., ∀a ∈ I

∃b ∈ J such that a ≤ ψ(b)). Then ψ can be extended to a homomorphic map

ϕ : B −→ A.

Proof. For every a ∈ A and every b ∈ B, set Ia = {c ∈ I | c ≤ a} and

Jb = {c ∈ J | c ≤ b}. It is easy to see that Ia and Jb are simple ideals of I and J

respectively. Note also that ¬Ia = Ia∗ and analogously for Jb.

Let b ∈ B. Since J is dense in B, we have that b =
∨
Jb. We will show

that I(b) =
∨{Iψ(c) | c ∈ Jb} is a simple ideal of I. It is easy to see that

I(b) =
⋃{Iψ(c) | c ∈ Jb}. Let now a ∈ I. Then, by condition (LBA), there exists

c ∈ J such that a ≤ ψ(c). We have that c = (c ∧ b) ∨ (c ∧ b∗), c1 = c ∧ b ∈ Jb,

c2 = c ∧ b∗ ∈ ¬Jb and c = c1 ∨ c2. Thus a ≤ ψ(c) = ψ(c1) ∨ ψ(c2). We obtain

that a = a1 ∨ a2, where a1 = a ∧ ψ(c1) and a2 = a ∧ ψ(c2). Obviously, a1 ∈ I(b).

We will show that a2 ∈ ¬I(b). Indeed, let a′ ∈ I(b); then there exists d ∈ Jb such

that a′ ≤ ψ(d). Since c2 ∈ ¬Jb, we get that d ∧ c2 = 0. Thus ψ(d) ∧ ψ(c2) = 0.

Hence a′ ∧ a2 ≤ ψ(d)∧ a∧ψ(c2) = 0. Therefore, for every a′ ∈ I(b) we have that

a2 ∧ a′ = 0. This means that a2 ∈ ¬I(b). Therefore, I(b) ∨ ¬I(b) = I, i.e., I(b)

is a simple ideal. Since (A, I) is a ZLBA, we get that
∨
I(b) exists in A. We set

now ϕ(b) =
∨
I(b). Obviously, ϕ(0) = 0. Further, ϕ(1) =

∨
I(1). We have that

I(1) =
⋃{Iψ(c) | c ∈ J}. Applying condition (LBA), we get that I(1) = I. Now,

using the density of I in A, we obtain that ϕ(1) = 1. Finally, the fact that ϕ

preserves finite meets and finite joins can be easily proved. Hence ϕ : B −→ A is

a Boolean homomorphism and the definition of ϕ together with the density of I

in A imply that ϕ extends ψ. ¤

Remark 4.3. Note that Remark 4.2 and Proposition 4.6 imply that in The-

orem 4.5 we can obtain new conditions equivalent to the condition (a) by replacing

in (b), (c) and (d) the phrase “ϕ is an injection” by the phrase “ϕ|J is an injec-

tion”.

Theorem 4.7. Let f ∈ OpenBoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then f is an injection ⇐⇒ ϕ(J) ⊇ I ⇐⇒ ϕ(B) ⊇ I.
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Proof. Note that, by Remark 4.1, conditions “ϕ(J) ⊇ I” and “ϕ(B) ⊇ I”

are equivalent.

Let f be an injection and F ∈ CK(X). Then f(F ) ∈ CK(Y ) and

f−1(f(F )) = F.

Hence, ϕ(J) ⊇ I. Conversely, let ϕ(J) ⊇ I. Then, by Proposition 4.2, we get

that f is an injection. ¤

Theorem 4.8. Let f ∈ PerfBoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then f is a surjection ⇐⇒ ϕ is an injection ⇐⇒ ϕ|J is an

injection.

Proof. By Proposition 4.1, if f is a surjection then ϕ is an injection. Hence

ϕ|J is an injection.

Let now ϕ|J be an injection. Then, by Proposition 4.1, cl(f(X)) = Y . Since

f is a closed map, we get that f is a surjection. ¤

Theorem 4.9. Let f ∈ PerfBoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then f is an injection iff ϕ(J) = I.

Proof. Let f be an injection. Then f¹X : X −→ f(X) is a homeomorphism.

Let F ′ ∈ CK(X). Then F = f(F ′) is compact. Since F is open in f(X), there

exists an open set U in Y such that U ∩f(X) = F . Then there exists G ∈ CK(Y )

such that F ⊆ G ⊆ U . Then, clearly, f−1(G) = f−1(F ) = F ′. Hence ϕ(G) = F ′.
Therefore, ϕ(J) ⊇ I. Since f is perfect, we have that ϕ(J) ⊆ I. Thus ϕ(J) = I.

Conversely, let ϕ(J) = I. Then Proposition 4.2 implies that f is an injection. ¤

Obviously, the last two theorems imply the well-known Stone’s results that a

Stone-morphism f is an injection (resp., a surjection) iff ϕ = St(f) is a surjection

(resp., an injection).

Now we will be occupied with the homeomorphic embeddings. We will call

them shortly embeddings.

Theorem 4.10. Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

(B, J) = Θt(Y ). Then f is a dense embedding iff ϕ is an injection and ϕ(J) ⊇ I.

Proof. Let f be a dense embedding. Then f(X) is open in Y and thus f is

an open injection. Now, Theorem 4.7 implies that ϕ(J) ⊇ I. Since cl(f(X)) = Y ,

we get, by Proposition 4.1, that ϕ is an injection.

Conversely, let ϕ be an injection and ϕ(J) ⊇ I. Then, by Proposition 4.1,

cl(f(X)) = Y . We will show that ϕ has a lower pre-adjoint. Indeed, for every
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a ∈ I there exists a unique ba ∈ J such that ϕ(ba) = a. Let ψ : I −→ J be defined

by ψ(a) = ba for every a ∈ I. Then, obviously, ϕ(ψ(a)) = a, for every a ∈ I.

Thus condition (OZL2) (see Theorem 3.5) is satisfied. Further, let a ∈ I, b ∈ J

and a ∧ ϕ(b) = 0. Since a = ϕ(ψ(a)), we get that ϕ(ψ(a) ∧ b) = 0. This implies,

by the injectivity of ϕ, that ψ(a)∧b = 0. So, condition (OZL1) (see Theorem 3.5)

is also satisfied. Therefore, ψ is a lower pre-adjoint of ϕ. Hence, by Theorem 3.5,

f is an open map. Now, using the condition ϕ(J) ⊇ I, we get, by Theorem 4.7,

that f is an injection. Hence, f is a dense embedding. ¤

Theorem 4.11 (M. Stone [18]). Let f ∈ BoolSp(X,Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is a closed embedding iff ϕ(J) = I.

Proof. Let f be a closed embedding. Then f is a perfect injection. Hence,

by Theorem 4.9, ϕ(J) = I.

Conversely, let ϕ(J) = I. Then, by Theorem 2.10, f is a perfect map. Using

Proposition 4.2, we get that f is an injection. Hence, f is a closed embedding. ¤

Proposition 4.12. Let f ∈ BoolSp(X,Y ), ϕ = Θt(f), (A, I) = Θt(X) and

Θt(Y ) = (B, J). Then f is an embedding iff there exists a ZLBA (A1, I1) and

two ZLBA-morphisms ϕ1 : (A1, I1) −→ (A, I) and ϕ2 : (B, J) −→ (A1, I1) such

that ϕ = ϕ1 ◦ ϕ2, ϕ1 is an injection, ϕ1(I1) ⊇ I and ϕ2(J) = I1.

Proof. Obviously, f is an embedding iff f = i ◦ f1 where f1 is a dense

embedding and i is a closed embedding. (Indeed, when f is an embedding then

let f1 : X −→ clY (f(X)) be the restriction of f and i : clY (f(X)) −→ Y be the

inclusion map; the converse is also clear.) Setting ϕ1 = Θt
d(f1) and ϕ2 = Θt

d(i),

we get, by Theorem 2.7, that ϕ = ϕ1 ◦ ϕ2. Now our assertion follows from

Theorems 4.10 and 4.11. ¤
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5. The construction of the dual objects of the closed,

regular closed and open subsets

The next theorem is the well-known result of M. Stone [18] (written in our

terms and notation) that open sets correspond to the ideals .

Theorem 5.1 (Stone [18]). Let I be a GBA and (X,O) = Θa
s(I). Then

there exists a frame isomorphism ιs : (Idl(I),≤) −→ (O,⊆), J 7→ ⋃ {γI(a) |
a∈ J}. If U ∈ O then J = ι−1

s (U)) = {b ∈ I | γI(b) ⊆ U}, J is isomorphic to the

ideal JU = {F ∈ CK(X) | F ⊆ U} of CK(X) (= Θt
g(X)) and JU = CK(U), i.e.,

JU = Θt
g(U).

Corollary 5.2. Let (A, I) be a ZLBA and (X,O) = Θa(A, I)(= Θa
g(I)).

Then there exists a frame isomorphism

ι : (Idl(I),≤) −→ (O,⊆), J 7→
⋃

{λ(A,I)(a) | a ∈ J}.

If U ∈ O then J = ι−1(U) = {b ∈ I | λ(A,I)(b) ⊆ U}, J is isomorphic to the

ideal JU = {F ∈ CK(X) | F ⊆ U} of CK(X) (= Θt
g(X)) and JU = CK(U), i.e.,

JU = Θt
g(U).

Corollary 5.3 (M. Stone [18, Theorem 5]). Let I be a GBA, (X,O) =

Θa
s(I), J be an ideal of I and U = ιs(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of I;

(b) U is a regular open set iff J is a normal ideal of I;

(c) U is a compact open set iff J is a principal ideal of I.

If (A, I) is an LBA and a ∈ A then the ideal Ia = {b ∈ I | b ≤ a} of I will be

called an A-principal ideal of I.

Corollary 5.4. Let (A, I) be a ZLBA, (X,O) = Θa(A, I) (= Θa
g(I)), J be

an ideal of I and U = ι(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of I ⇐⇒ J is an A-principal

ideal;

(b) U is a regular open set iff J is a normal ideal of I;

(c) U is a compact open set iff J is a principal ideal of I.

Proof. We need only to prove the second assertion in (a). By Proposit-

ion 2.6, we have that λ(A,I)(A) = CO(X). Let U be a clopen set. There exists

a ∈ A such that U = λ(A,I)(a). Then J = ι−1(U) = {b ∈ I | λ(A,I)(b) ⊆ U} =

{b ∈ I | λ(A,I)(b) ⊆ λ(A,I)(a)} = {b ∈ I | b ≤ a}, i.e., J is an A-principal
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ideal. Conversely, let J be an A-principal ideal. Then there exists a ∈ A such

that J = {b ∈ I | b ≤ a}. Since I is dense in A, we get that a =
∨
J . Us-

ing again Proposition 2.6, we get that λ(A,I)(a) =
∨

CO(X){λ(A,I)(b) | b ∈ J} =∨
RC(X){λ(A,I)(b) | b ∈ J} = clX(

⋃{λ(A,I)(b) | b ∈ J}) = clX(U). If there exists

x ∈ λ(A,I)(a) \ U then there exists b ∈ I such that x ∈ λ(A,I)(b) ⊆ λ(A,I)(a)

(since λ(A,I)(a) is open). Thus b ≤ a, i.e., b ∈ J , a contradiction. Therefore,

U = λ(A,I)(a), i.e., U is a clopen set. ¤

The above results show that if X ∈ |BoolSp| and U is an open subset of X

then ι−1(U) (or, equivalently, ι−1
s (U)) is GenBoolAlg-isomorphic to Θt

g(U). Then

the dual object Θt
d(U) of U can be obtained with the help of the following fact

which was proved in Section 2: if I ∈ |GenBoolAlg| is the Θt
g-dual object of some

Y ∈ |BoolSp| then (Si(I), eI(I)) is its Θ
t
d-dual object in the category ZLBA.

Now, for every X ∈ |BoolSp|, we will find the connections between the dual

objects Θt
g(F ) of the closed or regular closed subsets F of X and the dual object

Θt
g(X) of X. The obtained result for regular closed subsets of X seems to be new

even in the compact case.

Theorem 5.5. Let I, J ∈ |GenBoolAlg|, X = Θa
g(I) and F = Θa

g(J). Then:

(a)(M. Stone [18, Theorem 4(4)]) F is homeomorphic to a closed subset

of X iff there exists a 0-pseudolattice epimorphism ϕ : I −→ J (i.e., iff J is a

quotient of I);

(b) F is homeomorphic to a regular closed subset of X if and only if there

exists a 0-pseudolattice epimorphism ϕ : I −→ J which preserves all meets that

happen to exist in I.

Proof. (a) Let F be homeomorphic to a closed subset ofX, i.e. there exists a

closed embedding f : F −→ X. Then, by Theorem 4.11, ϕ′ = Θt
g(f) : Θ

t
g(X) −→

Θt
g(F ) is a surjective 0-pseudolattice homomorphism. Thus, by the duality, there

exists a a surjective 0-pseudolattice homomorphism ϕ : I −→ J .

Conversely, if ϕ : I −→ J is a surjective 0-pseudolattice homomorphism then,

by Theorem 4.11, F is homeomorphic to a closed subset of X.

(b) Having in mind the assertion (a) above and Theorem 3.4, it is enough

to show that if f : F −→ X is a closed injection then f(F ) ∈ RC(X) iff f is

a quasi-open map. This can be easily done, so that the proof of assertion (b) is

complete. ¤

We will finish with mentioning some assertions about isolated points. All

these statements have easy proofs which will be omitted.
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Proposition 5.6. Let (A, I) be a ZLBA, X = Θa(A, I) and a ∈ A. Then a

is an atom of A iff λ(A,I)(a) is an isolated point of the space X. Also, for every

isolated point x ofX there exists an a ∈ I such that a is an atom of I (equivalently,

of A) and {x} = λ(A,I)(a).

Proposition 5.7. Let (A, I) be a ZLBA and X = Θa(A, I)(= Θa
g(I)). Then

X is a discrete space ⇐⇒ the elements of I are either atoms of I or finite sums

of atoms of I.

Proposition 5.8 (M. Stone [18]). Let (A, I) be a ZLBA and X = Θa(A, I)

(= Θa
g(I)). Then X is an extremally disconnected space iff A is a complete

Boolean algebra.

Proposition 5.9. Let (A, I) be a ZLBA and X = Θa(A, I)(= Θa
g(I)). Then

the set of all isolated points of X is dense in X iff A is an atomic Boolean algebra

iff I is an atomic 0-pseudolattice.
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