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On the diophantine equation (an − 1)(bn − 1) = x2

By PINGZHI YUAN (Guangzhou) and ZHONGFENG ZHANG (Zhaoqing)

Abstract. Let a and b be distinct positive integers. In this paper, we will present

some new results on the positive integer solutions (n, x) of the equation of the title.

1. Introduction

Let N+ denote the set of all positive integers, and let a, b ∈ N+. There are

some results on the following equation

(an − 1)(bn − 1) = x2. (1.1)

Szalay [7] has shown that equation (1.1) has no solution for (a, b) = (2, 3),

only the solution n = 1 for (2, 5), and for (2, 2k) has no solutions with k ≥ 2 except

for n = 3 and k = 2. Hajdu and Szalay [3] proved that (1.1) has no solution

for (2, 6) and for (a, ak), there are no solutions with k ≥ 2 and kn > 2 except

for the three cases (a, n, k) = (2, 3, 2), (3, 1, 5) and (7, 1, 4). Walsh [9] proved

that equation (2n − 1)(3m − 1) = z2 has no positive integer solutions (n,m, x).

Cohn [2] obtained some general results for equation (1.1). He proved that there

is no solution to (1.1) when n = 4, except for (a, b) = (13, 239).

Luca and Walsh [6] have shown that the equation

(ak − 1)(bk − 1) = xn (1.2)
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has finitely many solutions in positive integers (k, x, n) with n > 1. Moreover,

they showed how one can determine all solutions of the equation (1.1) with n > 1,

for almost all pairs (a, b) with 2 ≤ b < a ≤ 100. Recently, Le [5] proved that if

3|b, then the equation

(2n − 1)(bn − 1) = x2 (1.3)

has no solutions in positive integers n and x. Tang [8] showed that (1.1) has no

solutions for (a, b) with a ≡ 0 (mod 2) and b ≡ 15 (mod 20) or a ≡ 2 (mod 6)

and b ≡ 0 (mod 3). Li and Szalay [4] proved that (1.1) has no solution if a ≡ 2

(mod 6) and b ≡ 0 (mod 3).

In this paper we prove the following result. This theorem generalizes the

results in [7] (Theorem 1), in [3], in [5] and in [4] (Theorem 1).

Theorem. a, b ∈ N+. Suppose that one of the following properties is satis-

fied:

i) a ≡ 2 (mod 3) and b ≡ 0 (mod 3),

ii) a ≡ 3 (mod 4) and b ≡ 0 (mod 2),

iii) a ≡ −1 (mod 5) and b ≡ 0 (mod 5).

Then equation (1.1) has no positive integer solutions (n, x) with n > 2.

To prove our result, beside combining some known tools from [2], [4], [6], we

introduce a new one as well: a result of Bennett and Skinner concerning ternary

equations of signature (n, n, 2).

2. Lemmas and the proof of the Theorem

To prove the Theorem, we need some results on divisibility properties of the

solutions of Pell equation and some known results.

LetD be a non-square positive integer. It is well-known that the Pell equation

u2 −Dv2 = 1, u, v ∈ N+ (2.1)

has infinitely many solutions (u, v). If (u, v) = (u1, v1) denotes the fundamental

solution to equation (2.1), then every positive solution (uk, vk) (k ∈ N+) can be

represented by

uk + vk
√
D =

(
u1 + v1

√
D

)k
, k = 1, 2, . . . . (2.2)

First, we need the following simple lemma.
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Lemma 1. (i) u1|uk if and only if 2 - k.
(ii) If q ∈ {2, 3, 5}, then q|uk implies that k is odd and q|u1.

(iii) u2k = 2u2
k − 1.

For the proof of the above lemma, we refer to [4] Lemma 1 or the more

general result of the first author [10].

The following lemma is Theorem 1.1 in [1]. It plays a key role in the proof

of our Theorem.

Lemma 2. If n ≥ 3, then the diophantine equation

xn = 2y2 − 1 (2.3)

has no solution (x, y) with x > 1.

The following lemma is an immediate consequence of Result 2 of [2].

Lemma 3. The diophantine equation

(a4m − 1)(b4n − 1) = z2 (2.4)

has the only positive integer solution (a, b,m, n, z) = (13, 239, 1, 1, 9653280).

Proof of the Theorem. We prove only part i) of the statement, the proof

of the other parts are similar. Let a ≡ 2 (mod 3) and b ≡ 0 (mod 3), and suppose

that (n, x) is a solution to equation (1.1). Put D = gcd(an − 1, bn − 1). By (1.1),

we get

an − 1 = Dy2, bn − 1 = Dz2, x = Dyz, D, y, z ∈ N+. (2.5)

Since 3|b, by bn − 1 = Dz2, it follows that

D ≡ −1 (mod 3) and 3 - z. (2.6)

Now we distinguish two cases. Firstly, if 3 - y, then y2 ≡ 1 (mod 3), and

(2.5), together with (2.6) implies

an = Dy2 + 1 ≡ D + 1 ≡ 0 (mod 3), (2.7)

which contradicts a ≡ 2 (mod 3).

Assume now that 3|y. Since a ≡ 2 (mod 3), by an − 1 = Dy2 we obtain

2n ≡ an ≡ Dy2 + 1 ≡ 1 (mod 3), (2.8)

which implies that n is even.
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Put n = 2m. Therefore, by (2.5), D cannot be a square, and the correspond-

ing Pell equation u2 −Dv2 = 1 has two solutions

(x, y) = (am, y), (bm, z). (2.9)

Since a 6= b, there exist distinct positive integers r and s such that

(am, y) = (ur, vr) and (bm, z) = (us, vs) (2.10)

hold.

By Lemma 1 (ii) and 3|b, we obtain that 2 - s and 3|u1. On the other hand,

a ≡ 2 (mod 3), which together with 3|u1 and Lemma 1 (i), shows that 2|r.
Put r = 2t, then by Lemma 1 (iii),

u2t = 2u2
t − 1 = am. (2.11)

Now we distinguish two cases. Firstly, if 2|m, then 4|n, and so Lemma 2.3 implies

that (a, b) = (13, 239), which contradicts 3|b. Now we assume that 2 - m and

m > 1, then Lemma 2 implies that (2.11) has no positive integer solutions, a

contradiction. ¤

Remark. By [2] Result 4 and the above proof, it is easy to see equation

(a2 − 1)(b2 − 1) = z2, a, b, z ∈ N+

has infinitely many solutions (a, b, x) with a ≡ 5 (mod 6) and b ≡ 0 (mod 3).
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