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A characterization of finite supersolvable groups

By YANGMING LI (Guangzhou) and XIANHUA LI (Suzhou)

Abstract. We give a characterization of supersolvable groups, generalizing those

by Huppert and Kramer. At the end, we give an application of this result.

1. Introduction

All groups considered in this paper will be finite. We use conventional notion

and notations from Huppert [7]. G denotes a finite group; MlG means that M

is a maximal subgroup of G; Gp is a Sylow p-subgroup of G and Φ(G) is the

Frattini subgroup of G. Let F be a class of groups. We call F a formation

provided that (i) G ∈ F and H / G implies G/H ∈ F , and (ii) G/M and G/N

are in F implies that G/(M ∩ N) is in F for normal subgroups M,N of G. A

formation F is referred to as saturated if G/Φ(G) ∈ F implies that G ∈ F . In

this paper, U will denote the class of all supersolvable groups. Clearly, U is a

saturated formation (ref. [7, p. 713, Satz 8.6]).

For the characterizations of a supersolvable group, the most famous result

is Huppert’s Theorem: a finite group G is supersolvable if and only if every

maximal subgroup of G has prime index in G ([7] or [19]). Kramer generalized

Huppert’s result in the solvable case by proving that the supersolvability of a

solvable group G can be concluded if only those maximal subgroups of G not

containing the Fitting subgroup F (G) have prime index in G: a finite solvable
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group G is supersolvable if and only if, for any maximal subgroup M of G, |F (G) :

F (G)∩M | = 1 or a prime. The main aim of this paper is to go further to consider

the general case by dropping the hypothesis of solvability of G in Kramer’s result.

We give a new characterization of supersovable groups which generalizes both

Huppert’s and Kramer’s characterizations. As applications of our main result,

some new interesting results under the assumption that all maximal subgroup of

any Sylow subgroups of some normal subgroups ofG are well-suited inG are given.

We know that the Fitting subgroup F (G) of G is an important concept in the

study of solvable groups. In [14], the subgroup F̃ (G) of G was introduced, where

F̃ (G) satisfies F̃ (G)/Φ(G) = Soc(G/Φ(G)). It is easy to see that F̃ (G) = F (G)

when G is solvable. We now define a sequence of subgroups {F̃i(G)} of G by the

rule that

F̃1(G) = F̃ (G), F̃i(G)/F̃i−1(G) = F̃ (G/F̃i−1(G)) for i > 1.

Obviously F̃n(G) is a generalization of Fn(G), the Fitting subgroup of degree n

([1]). Since G is finite and F̃i(G) > F̃i−1(G), there exists an integer m such that

F̃m(G) = G. Our main results are as follows.

Theorem 1.1. Suppose that G is a finite group. Then G is supersolvable

if and only if, for any maximal subgroup M of G, there holds that |F̃ (G) :

F̃ (G) ∩M | = 1 or a prime.

By Theorem 1.1, we give a generalization of [19, Ch 1, Corollary 3.2].

Corollary 1.2. Suppose that G is a finite group. Then G is supersolvable

if and only if, for each maximal subgroup M of G and each normal subgroup H

of G, there holds that |H : H ∩M | = 1 or a prime.

The following result is a slight generalization of Huppert’s theorem.

Theorem 1.3. Suppose that G is a finite group. Then G is supersolvable if

and only if there exists a normal subgroup H of G such that G/H is supersolvable

and, for any maximal subgroup M of G, there holds that |H : H ∩M | = 1 or a

prime.

Applying Theorem 1.1 and Theorem 1.3, we can obtain

Theorem 1.4. Suppose that G is a finite group Then G is supersolvable if

and only if there exists a positive integer n such that, for any maximal subgroup

M of G, |F̃n(G) : F̃n(G) ∩M | = 1 or a prime.
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Corollary 1.5. Suppose that G is a solvable group. Then G is supersolvable

if and only if there exists a positive integer n such that, for any maximal subgroup

M of G, |Fn(G) : Fn(G) ∩M | = 1 or a prime.

Remark 1.6. Both Huppert and Kramer’s characterizations can be derived

from our Theorem 1.4: if n is sufficient large such that F̃n(H) = G, then our

Theorem 1.4 is precisely Huppert’s theorem; if G is solvable and n = 1, then our

Theorem 1.4 is precisely Kramer’s theorem.

Remark 1.7. We know that the Fitting subgroup F (G) of G was usually

generalized to as F ∗(G), the unique maximal normal quasinilpotent subgroup

of G ([8]), which has played an important role in the proof of the theorem of the

classification of finite simple groups ([4]). The definition and important properties

of F ∗(G) can be found in [8, X, 13]. Then some natural questions arise, what

is the relation of F ∗(G) and F̃ (G) ? Does it hold if we replace F̃ (G) by F ∗(G)

in our Theorem 1.1? We shall show that F ∗(G) ≤ F̃ (G) (see Lemma 2.1 (2)

below). The following example indicates that F ∗(G) 6= F̃ (G); and the answer to

the second question is negative in general.

Example 1.8. Suppose that N is a non-trivial 2-Frattini-module of A5 (ref.

[5]). Denote the Frattini 2-elementary A5-extension via N by G. Then we have

Φ(G) = N and G/N ∼= A5. Hence F̃ (G) = G. Since N ≤ F (G), F ∗(G) = N or G.

If F ∗(G) = G, then every chief factor of G is cyclic or non-abelian ([8, X, 13]). By

the Maschke Theorem ([7, Satz I.17.5]), N = Soc(G) = N1×· · ·×Nt, where Ni is

2-chief factor of G below N . So Ni is of order 2 and then Ni ≤ Z(G). This implies

N is a trivial A5-module, contrary to the choice. So F ∗(G) = N and F ∗(G) 6=
F̃ (G). For any maximal subgroup M of G, we have |F ∗(G) : F ∗(G) ∩ M | = 1.

But G is not solvable.

The following is a similar example.

Example 1.9. Suppose that G is a non-split extension (Z2)
3L3(2) of an ele-

mentary abelian subgroup (Z2)
3 of order 23 by L3(2) (ref. [2, page 61]). Then

F̃ (G) = G, but F ∗(G) = F (G) = Φ(G) = (Z2)
3.

Two subgroups H and K of G are said to permute if HK = KH. A subgroup

of G is said to be quasinormal in G if it permutes with every subgroup of G, a

subgroup of G is called S-quasinormal (or π-quasinormal or s-permutable) in G if

it permutes with every Sylow subgroup of G ([9]). A subgroup H of G is said to

be c-supplemented in G if there exists a subgroup N of G such that G = HN and

H ∩N ≤ HG = CoreG(H) ([1]). Recently, Skiba in [15] introduced the following
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concept, which covers both s-permutability and c-supplementedness: a subgroup

H of G is called weakly s-supplemented in G if there is a subgroup T of G such

that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by

all those subgroups of H which are s-permutable in G.

2. The proofs

We first give two lemmas.

Lemma 2.1. (1) Suppose that N is a normal subgroup of G contained in

Φ(G). Then F̃ (G/N) = F̃ (G)/N . (2) F (G) ≤ F ∗(G) ≤ F̃ (G). (3) CG(F̃ (G)) ≤
F̃ (G).

Proof. (1) Noticing that Φ(G/N) = Φ(G)/N , we can easily obtain (1).

(2) Obviously, F (G) ≤ F ∗(G). Now we prove that F ∗(G) ≤ F̃ (G). Let E(G)

be the layer of G (ref. [8, X. 13]) and let M be a maximal subgroup of G such that

Z(E(G)) �M . Then G = MZ(E(G)). Therefore E(G) = Z(E(G))(M ∩ E(G)).

Thus E(G) = (E(G))′ = (M ∩ E(G))′ ≤ M , contrary to Z(E(G)) � M . This

shows that Z(E(G)) ≤ Φ(G). If E(G) is solvable, then obviously F ∗(G) =

F (G) ≤ F̃ (G). Hence suppose that E(G) is not solvable. Then E(G)/Z(E(G))

is a direct product of non-abelian simple groups (ref. [8, X, 13. 18]). Hence

E(G)/Z(E(G)) can be written as a direct product of minimal normal subgroups

of G/Z(E(G)). Therefore F (G)E(G)/Φ(G) is a direct product of minimal normal

subgroups of G/Φ(G). Hence F ∗(G)/Φ(G) = F (G)E(G)/Φ(G) ≤ Soc(G/Φ(G)).

It follows that F ∗(G) = F (G)E(G) ≤ F̃ (G).

(3) By [8, X, 13. 12], we know that CG(F
∗(G)) ≤ F ∗(G). Applying (2), we

have CG(F̃ (G)) ≤ F̃ (G). ¤

Lemma 2.2 ([6, Lemma 3.5]). Suppose that G is a group with two maximal

subgroups with different prime indices in G. Then G is not a simple group.

Proof of Theorem 1.1. By Kramer’s theorem, we only need to prove the

sufficiency. Suppose that it is false and G is a counter-example with minimal

order.

Step 1. Φ(G) = 1, hence F̃ (G) = Soc(G). Otherwise, consider the factor

group G/Φ(G). It follows from Lemma 2.1(1) that G/Φ(G) would satisfy the

hypothesis of the theorem. The minimality of G implies that G/Φ(G) is supers-

olvable. Since U is saturated, G is supersolvable, a contradiction.

Step 2. F̃ (G) is solvable, hence F̃ (G) = F (G). If F̃ (G) = Soc(G) is not

solvable, then there is a non-solvable minimal normal subgroup N of G contained
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in F̃ (G). Denote N = N1 × · · · × Ns, where N1, . . . , Ns are conjugated non-

abelian simple groups. Take a maximal subgroup M of G such that N � M .

Then G = NM and |NM : M | = |N : N ∩ M |. Since F̃ (G) = N(F̃ (G) ∩ M),

|F̃ (G) : F̃ (G)∩M | = |N(F̃ (G)∩M) : F̃ (G)∩M | = |N : N ∩M |. So |N : N ∩M |
is a prime by the hypothesis of the theorem. Therefore there exists Ni such that

Ni � M . It follows that |Ni : Ni ∩M | = |Ni(N ∩M) : N ∩M | = |N : N ∩M |
is a prime. Assume that |N : N ∩ M | = p, where p is a prime. Then Ni is a

non-abelian simple group with a maximal subgroup of index p in Ni. On the

other hand, by the Frattini’s argument we have G = NG(Np)N . Take a maximal

subgroup K of G such that NG(Np) ≤ K. With the similar argument, we can

see that there exists Nj such that |Nj : Nj ∩ K| is a prime q. By the choice of

K, we have q 6= p. Since Ni
∼= Nj , we have a non-abelian simple group with

two maximal subgroups having different indices p and q. By Lemma 2.2, this is

impossible. Thus F̃ (G) is solvable and then F̃ (G) = F (G) by Lemma 2.1(2).

Step 3. Final contradiction. By Steps 1 and 2, we have F̃ (G) = Soc(G) =

R1 × · · · × Rs, where all Ri are solvable minimal normal subgroups of G. Take

an arbitrary minimal normal subgroup Ri of G contained in F (G). It follows

from Step 1 that there is some maximal subgroup M of G such that G = RiM .

Obviously, Ri∩M = 1. Hence |Ri| = |Ri : Ri∩M | = |F̃ (G) : F̃ (G)∩M | is a prime

by the hypothesis of the theorem. Therefore F̃ (G) = F (G) is a direct product of

some minimal normal subgroups of G of prime order. Hence F̃ (G) ≤ ZU (G), the

U-hypercenter of G (ref. [3, pp. 389]).

Because G/CG(Ri) is isomorphic to a subgroup of Aut(Ri), G/CG(Ri) is

cyclic and so is supersolvable. This implies that G/∩s
i=1 CG(Ri) = G/CG(F̃ (G))

is supersolvable. Since CG(F̃ (G)) ≤ F̃ (G) by Lemma 2.1 (3), we have G/F̃ (G) is

supersolvable. We have

G/F̃ (G) = ZU (G/F̃ (G)) = ZU (G)/F̃ (G).

Then G = ZU (G) and G is supersolvable, a contradiction. These complete the

proof of the theorem. ¤

Proof of Corollary 1.2. “Sufficiency” Let H be F̃ (G). Then G is su-

persolvable by Theorem 1.1. “Necessity” Let G be supersolvable and M a ma-

ximal subgroup of G and H a normal subgroup of G. If M contains H, then

[H : H ∩M ] = 1. If M does not contain H, then G = HM and [H : H ∩M ] =

[HM : M ] = [G : M ] is a prime by Huppert’s theorem. This completes the proof

of the theorem. ¤
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Proof of Theorem 1.3. Let H be G. Then G is supersolvable by Hup-

pert’s theorem. Now we show the sufficiency. Suppose that it is false and G is a

counter-example with minimal order.

Step 1. The minimal normal subgroup G, N say, is unique and G/N is

supersolvable and Φ(G) = 1. Suppose that N is a minimal normal subgroup G.

Consider the factor groups G/N and HN/N . Since (G/N)/(HN/N) ∼= G/HN ∼=
(G/H)/(HN/H), we have (G/N)/(HN/N) is supersolvable. For any maximal

subgroup M/N of G/N , since |HN/N : HN/N ∩ M/N | = |HN : HN ∩ M | =
|HN : (H ∩M)N | is a factor of |H : H ∩M |, |HN/N : HN/N ∩M/N | = 1 or a

prime. Hence G/N satisfies the hypotheses. By the minimal choice of G, we have

G/N is supersolvable. It is easy to see that N is the unique minimal subgroup of

G and Φ(G) = 1

Step 2. G is solvable. If G is not solvable, then N is not solvable. Denote

N = N1 × · · · ×Ns, where N1, . . . , Ns are conjugated non-abelian simple groups.

Take a maximal subgroup M of G such that N � M . Then G = NM = HM .

Then |N : N ∩M | = |NM : M | = |HM : M | = |H : H ∩M | is a prime by the

hypothesis of the theorem. Now repeat the same arguments in the proof of Step 2

of Theorem 1.1, we get a contradiction.

Step 3. The final contradiction. By Step 2 we know that N is an elementary

abelian group. Since Φ(G) = 1, there exist a maximal subgroup M of G such

that N � M . Then G = NM and N ∩M = 1. So |N | = |N : N ∩M | = |NM :

M | = |HM : M | is a prime. Hence G is supersolvable, the final contradiction.

This completes the proof of Theorem 1.3. ¤

Proof of Theorem 1.4. If n = 1, by Theorem 1.1, we have that G is

supersolvable. Thus suppose that n ≥ 2. Denote N = F̃n−1(G) and consider

the factor group G = G/N . Since F̃ (G) = F̃ (G/N) = F̃n(G)/N , applying The-

orem 1.1 to G we have G is supersolvable. So the homomorphic image G/F̃n(G)

of G = G/F̃n−1(H) is supersolvable. Applying Theorem 1.3 to G and F̃n(G) we

have that G is supersolvable. This completes the proof of Theorem 1.4. ¤

Proof of Corollary 1.5. obvious. ¤

3. Applications

Recently, many people have presented a lot of new characterizations of su-

persolvable groups by giving conditions to certain subgroups of F ∗(G), for examp-

les, [11], [12], [13], [18], etc. Now we consider a similar problem in F̃ (G) and give
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a theorem which is analogous with the results in the papers mentioned above.

We first collect some properties of weakly s-supplemented subgroups.

Lemma 3.1 ([15, Lemma 2.10]). Let U be a weakly s-supplemented subg-

roup of G and N a normal subgroup of G. Then

(1) If U ≤ H ≤ G, then U is weakly s-supplemented in H.

(2) If N ≤ U , then U/N is weakly s-supplemented in G/N .

(3) Let π be a set of primes, U a π-subgroup and N a π′-subgroup. Then UN/N

is weakly s-supplemented in G/N .

Lemma 3.2. Let G be a group, p the smallest prime dividing |G| and Gp a

Sylow p-subgroup ofG. If every maximal subgroup ofGp is weakly s-supplemented

in G, then G/Op(G) is p-nilpotent; in particular, G is solvable.

Proof. If Op(G) = Gp, then obviously G/Op(G) is p-nilpotent. So we as-

sume that Op(G) < Gp. For any maximal subgroup T/Op(G) of Gp/Op(G), by

Lemma 3.1(2) and the hypothesis, we have that T/Op(G) is weakly s-supplemen-

ted in G/Op(G). Hence there exists a subgroup K/Op(G) such that

G/Op(G) = T/Op(G) ·K/Op(G) and T/Op(G) ∩K/Op(G) ≤ (T/Op(G))sG.

Since (T/Op(G))sG ≤ Op(G/Op(G)) = 1, we know that every maximal subgroup

of Gp/Op(G) is complemented in G/Op(G). Now from [16, Theorem 3.1 and

Corollary 3.2], our lemma follows. ¤

Theorem 3.3. Suppose that G is a group. If all maximal subgroups of all

Sylow subgroups of F̃ (G) are weakly s-supplemented in G, then G is supersolv-

able.

Proof. Assume that the theorem is not true and let G be a counterexample

of minimal order.

(1) Φ(G) = 1, hence F̃ (G) = Soc(G): Assume that Φ(G) 6= 1. Then there

exists a prime p such that p‖Φ(G)|. Let P0 ∈ Sylp(Φ(G)). Then P0 / G. By

Lemma 2.1(1), we have F̃ (G/P0) = F̃ (G)/P0. Let P1/P0 be a maximal subgroup

of the Sylow p-subgroup of F̃ (G)/P0. Then P1 is a maximal subgroup of the Sylow

p-subgroup of F̃ (G). Hence P1 is weakly s-supplemented in G by hypothesis.

Thus P1/P0 is weakly s-supplemented in G/P0 by Lemma 3.1(2). Let Q∗/P0 be

a maximal subgroup of the Sylow q-subgroup of F̃ (G)/P0, where q 6= p. It is clear

that Q∗ = Q1P0, where Q1 is a maximal subgroup of the Sylow q-subgroup of

F̃ (G). Then Q1 is weakly s-supplemented in G by hypothesis, therefore Q1P0/P0

is weakly s-supplemented in G/P0 by Lemma 3.1(3). Hence, we have proved that
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G/P0 satisfies the hypothesis of the theorem. Therefore G/P0 is supersolvable by

minimal choice of G. Since P0 ≤ Φ(G) and U is a saturated formation, we have

G is supersolvable, a contradiction.

(2) F̃ (G) = F (G) < G: suppose that p is the smallest prime in π(F̃ (G)).

We know every maximal subgroup of any Sylow p-subgroup of F̃ (G) is weakly

s-supplemented in G, thus in F̃ (G) by Lemma 3.1(2). Applying Lemma 3.2 in

F̃ (G), we have F̃ (G) is solvable. Hence F̃ (G) = F (G). Obviously, F̃ (G) < G.

Hence (2) holds.

(3) F̃ (G) = F (G) = R1 × · · · × Rt, where every Ri is a minimal normal

subgroup of G of prime order. By (1) we may and shall assume that F̃ (G) =

F (G) = R1 × · · · × Rt, where every Ri is a minimal normal subgroup of G. We

now prove that all Ri are of prime order. Suppose that there exists an index i

such that Ri is not of prime order. Without loss of generality, we may and shall

suppose that i = 1 and P is the Sylow subgroup of F̃ (G) containing R1. We

write P for R1 × · · · × Rs, where all the Rj(j = 1, 2, . . . , s) are minimal normal

subgroups of G for some s ≤ t. Pick a maximal subgroup R∗
1 of R1 such that R∗

1

is normal in Gp. Then P ∗ = R∗
1R2 . . . Rs is a maximal subgroup of P . By the

hypothesis of the theorem, P ∗ is weakly s-supplemented in G. Then there exists

a subgroup K such that G = P ∗K and P ∗ ∩K ≤ (P ∗)sG. By an easy calculation

we have (P ∗)sG = (R∗
1)sGR2 . . . Rs. Denote K1 = KR2 . . . Rs. Then G = R∗

1K1

and

R∗
1 ∩K1 = R∗

1 ∩K1 ∩ P ∗ = R∗
1 ∩R2 . . . Rs(K ∩ P ∗) ≤ R∗

1 ∩ (P ∗)sG = (R∗
1)sG.

Since R1 ∩K1 is normal in G, we have R1 ∩K1 = 1 or R1 by the minimality of

R1. If R1 ∩ K1 = 1, then R1 = R1 ∩ G = R∗
1(R1 ∩ K1) = R∗

1, a contradiction.

Hence R1 ∩K1 = R1, that is, R1 ≤ K1. Then R∗
1 = (R∗

1)sG is s-permutable in G.

So NG(R
∗
1) ≥ Op(G). By the choice of R∗

1, we have R∗
1 is normal in G. By the

minimality of R1 we get that R∗
1 = 1 and R1 is of prime order, as desired.

(4) The final step.

For any maximal subgroup M of G, if F̃ (G) = F (G) ≤ M , then |F (G) :

F (G) ∩ M | = 1. If F̃ (G) = F (G) � M , then there exists a minimal normal

subgroup Ri of G contained in F (G) such that G = RiM . Then |F (G) : F (G) ∩
M | = |F (G)M : M | = |RiM : M | = |Ri : Ri ∩M | = |Ri| = a prime. Hence, by

Theorem 1.1, we have that G is supersolvable, the final contradiction. ¤

Corollary 3.4. Let G be a group. If all maximal subgroups of every Sylow

subgroup of F̃ (G) are either S-quasinormal or c-supplemented in G, then G is

supersolvable.
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4. Final remark

Consider our Theorem 1.1 and the main result of [17, Theorem 3.1], we

naturally have the following conjecture.

Conjecture 1. Let F be a saturated formation containing U and suppose

that H is a normal subgroup of G such that G/H ∈ F . If, for any maximal

subgroup M of G, there holds that |F̃ (H) : F̃ (H) ∩ M | = 1 or a prime, then

G ∈ F .
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