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Comments on the distribution modulo one
of powers of Pisot and Salem numbers

By TOUFIK ZAÏMI (Oum El Bouaghi)

Abstract. We consider the sequence of distances to the nearest integer ‖λαn‖,
n = 1, 2, 3, . . . , where λ is a real number and α is a Salem number. We prove a cha-

racterization of the numbers λ satisfying the inequality lim supn→∞ ‖λαn‖ < ε, where

ε ∈ ]0, C(α)] and C(α) is the inverse of the length of the minimal polynomial of α.

This allows us to extend a related result, on Salem numbers, due to A. H. Fan and

J. Schmeling [5].

1. Introduction

Let throughout θ be a real number greater than 1, n an element of the set N
of nonnegative rational integers, and λ a nonzero real number. For a point t of

the real line R we denote by ‖t‖ the usual distance from t to the ring of rational

integers Z, that is ‖t‖ = mink∈Z |t − k|. Nearly a century ago, A. Thue [10]

proved that θ is an algebraic number when there are some positive constants c0
and c1 < 1 such that ‖θn‖ ≤ c0c

n
1 for all n. Some years after this, G.-H. Hardy

[6] showed that this last condition implies in fact that θ belongs to the set S of

Pisot numbers. A Pisot number is a real algebraic integer greater than 1 whose

other conjugates over the field of the rationals Q are of modulus less than 1.

Conversely, it is easy to check (see also the proof of the Theorem below) that if

θ ∈ S and β is an integer of the field Q(θ), then there are positive quantities,

say again c0 and c1, depending only on θ and β, such that ‖βθn‖ ≤ c0c
n
1 < c0

for all n. Using arguments from complex analysis, C. Pisot proved, in 1938, that
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if
∑

n∈N ‖λθn‖2 < ∞ for some λ, then θ ∈ S and λ ∈ Q(θ) [7]. Almost in the

same period, T. Vijayaraghavan and C. Pisot showed independently the following

characterization of elements of S among real algebraic numbers greater than 1

(see for example [1, Theorem 5.4.1]).

Theorem A. If θ is an algebraic number, then θ ∈ S if and only if

limn→∞ ‖λθn‖ = 0 for some λ.

The question whether there is a transcendental number θ satisfying the equ-

ality limn→∞ ‖λθn‖ = 0 for some λ, is still unsolved, and the above mentioned

result of Pisot [7] is the most significant partial answer to this problem.

Notice also that an important partial answer to the analogous question,

where λ is restricted to the interval [1,∞ [ , is due to D. W. Boyd [2]. Another

remarkable class of algebraic numbers is the set T of Salem numbers. A Salem

number is a real algebraic integer greater than 1 whose other conjugates over Q
are of modulus at most 1 and with a conjugate of modulus 1. By the same argu-

ments as in the proof of Theorem A it is easy to deduce the following well-known

characterization of elements of S ∪ T among algebraic numbers in the interval

]1,∞ [ .

Theorem B. If θ is an algebraic number, then θ ∈ S ∪ T if and only if for

each ε > 0 there is λ = λ(θ, ε) such that ‖λθn‖ < ε for all n.

When we speak about conjugate, minimal polynomial and degree of an algeb-

raic number, say α, we mean overQ. IfMα(x) = xd+(ad−1/bd−1)x
d−1+· · ·+a0/b0

is the minimal polynomial of α, where (ak, bk) ∈ Z × N and gcd(ak, bk) = 1

for k ∈ {0, . . . , d − 1}, then we denote by C(α) the inverse of the quantity(
1 +

∑d−1
k=0 |ak/bk|

)
lcm(b0, . . . , bd−1). As usual the set of polynomials with co-

efficients in Z evaluated at α is noted Z[α]. The aim of this note is to prove the

following result.

Theorem. Let α be an algebraic number greater than 1. Then:

(i) If lim supn→∞ ‖λαn‖ < C(α) for some λ, then α ∈ S ∪ T and λ belongs to

the set Λ(α) of numbers of the form β/αpM ′
α(α), where p ∈ N and β ∈ Z[α].

(ii) limn→∞ ‖λαn‖ = 0 if and only if α ∈ S and λ ∈ Λ(α).

(iii) Let α ∈ T and ε ∈ ] 0, C(α)]. Then, lim supn→∞ ‖λαn‖ < ε if and only if

λ ∈ Ω(α, ε) :=
{
t ∈ Λ(α),

∑
i∈I |σi(t)| < ε

}
, where {σi, i ∈ I} is the set of

nonreal embeddings of Q(α) into the complex field C.

In fact the proof of the Theorem (ii) is essentially contained in the papers of

Pisot and Vijayaraghavan, see, e.g., [3, Chapter VIII]. With the same technique
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as in the last mentioned book one can characterize the numbers λ in part (i) of

the Theorem, too. We prefer to state these results together with the Theorem (iii)

for convenience of reference. In the next section we show some auxiliary results.

The proofs of the Theorem and the corollaries below, appear in the last section.

For example if α = (1+
√
5 )/2, then Mα(x) = x2−x−1, α ∈ S and C(α) =

1/3. By the Theorem (ii) we have limn→∞ ‖λαn‖ = 0 ⇔ λ ∈ Λ(α) = {β/√5,

β ∈ Z[α]} (α is a unit), and the Theorem (i) yields lim supn→∞ ‖λαn‖ ≥ 1/3

when λ /∈ Λ(α). A corollary of a recent result of A. Dubickas [4, Theorem 1]

asserts that when α is an algebraic number greater than 1, there is a constant,

say c2(α), such that lim supn→∞ ‖λαn‖ ≥ c2(α), unless α ∈ S ∪ T and λ ∈ Q(α).
The Theorem (i) implies immediately the following.

Corollary 1. Let α be an algebraic number greater than 1. Then

lim sup
n→∞

‖λαn‖ ≥ C(α),

unless α ∈ S ∪ T and λ ∈ Λ(α).

It is worth noting that the quantity c2(α) in the above mentioned result of

Dubickas satisfies c2(α) ≥ C(α), and so Corollary 1 extends only the set of values

of λ when α ∈ S ∪ T .

In [5], A. H. Fan and J. Schmeling proved that for any α ∈ T and any

ε > 0, the set X(α, ε) of real numbers, say s, satisfying

‖sαn‖ < ε for all n, (1)

contains a relatively dense subset R = R(α, ε) of R (there is a positive constant ρ

such that each interval with length ρ meets R). More precisely, they proved

that R is the set of integers β of Q(α) such that the other conjugates of β are of

modulus less than ε. It is clear that X(α, ε) = R when ε > 1/2, and it is easy

to check that the last mentioned result of Fan and Schmeling remains true when

α ∈ S. The Theorem above implies that the solutions of (1) cannot go beyond

the set Λ(α) when ε < C(α). More precisely, we have the following.

Corollary 2. Let α ∈ S ∪ T and ε ∈ ] 0, C(α)[ . Then, X(α, ε) ⊂ Λ(α).

Moreover, if α ∈ T then X(α, ε) ⊂ Ω(α, ρ), where ρ ∈ ] ε, C(α)].

2. Some lemmas

For an algebraic number α we denote by σ1, . . . , σd the distinct embeddings

of Q(α) in C, where σ1 is the identity of Q(α). The trace, of the extension
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Q(α) ⊃ Q, of an element β ∈ Q(α) is Tr(β) = TrQ(α)(β) :=
∑d

l=1 σl(β). As usual

we denote by ZQ(α) the ring of the integers of the field Q(α). Let us now prove

the following simple statements from linear algebra.

Lemma 1. Let α be an algebraic number and Mα(x) =
∏d

l=1(x − αl) =

xd + rd−1x
d−1 + · · ·+ r0. Then, the set {γ0, . . . , γd−1}, where

γk =

∑d
i=1+k riα

i−1−k

M ′
α(α)

for k ∈ {0, . . . , d− 1}

and rd = 1, is a base of Q(α) over Q satisfying

TrQ(α)(γkα
i) =




1 if k = i and (i, k) ∈ {0, . . . , d− 1}2

0 if k 6= i and (i, k) ∈ {0, . . . , d− 1}2.
(2)

In terms of matrices, the relation (2) may also be written

[αj−1
l ][σj(γl−1)] = [σj(γl−1)][α

j−1
l ] = Id, (3)

where Id is the identity matrix, and j and l ∈ {1, . . . , d} denote the row and

column number, respectively.

Proof. It is clear that M ′
α(α) = drdα

d−1 + · · · + r1 is a nonzero element

of Q(α). Since each quantity of the form
∑d

i=k+1 riα
i−(k+1), where k ∈ {0, . . . ,

d − 1}, is a polynomial in α with degree d− (k + 1) having rational coefficients,

the numbers γ0, . . . , γd−1 belong to Q(α) and are Q−linearly independent; thus

{γ0, . . . , γd−1} is a base of Q(α). Set σj(α) = αj for j ∈ {1, . . . , d}. Then,

the known equalities [9, p. 56] Tr(αd−1/M ′
α(α)) = 1 and Tr(αk/M ′

α(α))= 0 for

k ∈ {0, . . . , d− 2} and d ≥ 2, together with the relation Tr(γkα
n) = rk+1 Tr(α

n/

M ′
α(α)) + · · · + rd Tr(α

d−1−k+n/M ′
α(α)), yield Tr(γkα

k) = rd and Tr(γkα
i) = 0

when i ∈ {0, . . . , k − 1}. By the identity γk = −(∑k
i=0 riα

i
)
/(M ′

α(α)α
k+1), we

obtain Tr(γkα
i) = 0 when (i, k) ∈ {k + 1, . . . , d − 1} ×{0, . . . , d − 2}, and the

relation (2) follows immediately.

For each (j, l) ∈ {1, . . . , d}2 we have Tr(αj−1γl−1) = αj−1
1 σ1(γl−1) + . . .

· · · + αj−1
d σd(γl−1) = σ1(α

j−1
1 γl−1) + · · · + σd(α

j−1
1 γl−1), and so (2) implies

[αj−1
l ][σj(γl−1)] = Id. The last equality yields the relation (3), and the asser-

tion (3) ⇒ (2) is trivially true. ¤

Lemma 2. Let α be an algebraic integer. Then,

{ς ∈ Q(α), TrQ(α)(ςZ[α]) ⊂ Z} =

{
β

M ′
α(α)

, β ∈ Z[α]
}
.
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Proof. Let ς ∈ Q(α). With the notation of Lemma 1 there is a subset

{x0, . . . , xd−1} of Q such that ς =
∑d−1

k=0 xkγk. Then, the relation (2) yields

Tr(ς) = x0, Tr(ςα) = x1, . . . ,Tr(ςα
d−1) = xd−1. It follows when Tr(ςZ[α]) ⊂ Z

that {x0, . . . , xd−1} ⊂ Z, and so ς = β/M ′
α(α) for some β ∈ Z[α], since α is

an algebraic integer. Conversely, let β and η be two elements of the ring Z[α]
and let {m0, . . . ,md−1} be a subset of Z such that βη =

∑d−1
k=0 mkα

k. Then,

Tr(βη/M ′
α(α)) =

∑d−1
k=0 mk Tr(α

k/M ′
α(α)) = md−1 and so Tr(βη/M ′

α(α)) ∈ Z;
thus Tr((β/M ′

α(α))Z[α]) ⊂ Z. ¤

The following lemma is a well-known result on Salem numbers.

Lemma 3. Let α be a Salem number of degree d. Then, d is even, 1/α is a

conjugate of α, d ≥ 4 and α has d − 2 conjugates, say α3, . . . , αd, of modulus 1.

If these last numbers are labelled so that α2j = α2j−1 for j ∈ {2, . . . , d/2}, then
for any ε > 0 and any subset {β3, . . . , βd} of C, where β2j = β2j−1 and |β2j | = 1

for j ∈ {2, . . . , d/2}, there is n arbitrarily large such that |αn
k − βk| < ε for

k ∈ {3, . . . , d}.
A proof of Lemma 3 may be found in [11] and is based on a result of C. Pisot

on the arguments of α3, . . . , αd (see, for example [8, p. 32]). Let us also show the

following.

Lemma 4. Let a be a nonzero rational integer and α an algebraic number

of degree d. If there are at least
(
(2|a| − 1)

∑
b|a, b∈N 1

)d
+ 1 distinct algebraic

integers of the form aαn, where n ∈ N, then α is an algebraic integer.

Proof. Let M := {n ∈ N, aαn ∈ ZQ(α)}. By hypothesis, there exists

m ∈ M ∩ [1,∞[ . Let {ω1, . . . , ωd} be a base of the Z-module ZQ(α). Then,

αm =
∑d

j=1(pm,j/qm,j)ωj , where (pm,j , qm,j) ∈ Z×N and gcd(pm,j ,qm,j) = 1,

aαm =
a

qm,1
pm,1ω1 + · · ·+ a

qm,d
pm,dωd,

and so (qm,1, . . . , qm,d) ∈ D × · · · ×D, where D is the set of positive divisors of

a in the ring Z. As Card(D) =
∑

b|a, b∈N 1 and Card(M) > (2|a| − 1)d Card(D ×
· · · × D), by the pigeonhole principle we obtain that there is (q1, . . . , qd) ∈ D ×
· · · ×D such that Card{n ∈ M , (qn,1, . . . , qn,d) = (q1, . . . , qd)} > (2|a| − 1)d. Set

N = {n ∈ M , (qn,1, . . . , qn,d) = (q1, . . . , qd)}. Then for any m ∈ N and any

j ∈ {1, . . . , d} there exist km,j ∈ Z and rm,j ∈ {−(qj − 1), . . . , 0, . . . , qj − 1} such

that

pm,j = km,jqj + rm,j ,
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and so

αm = βm + rm,

where βm :=
∑d

j=1 km,jωj ∈ ZQ(α) and rm :=
∑d

j=1(rm,j/qj)ωj belongs to a

finite set with cardinality ≤ ∏d
j=1(2qj−1) ≤ (2|a|−1)d. It follows again from the

pigeonhole principle that there is (k, l) ∈ N ×N such that k > l and αk − βk =

αl − βl; thus α
k − αl = βk − βl ∈ ZQ(α). Replacing in the minimal polynomial of

βk − βl the quantity βk − βl by the number αk − αl, we obtain immediately that

α is a root of a monic polynomial with rational integer coefficients. ¤

3. The proofs

Proof of the Theorem. Set

λαn = un + εn, (4)

where un ∈ Z and εn ∈] − 1/2, 1/2], that is un is ”the” nearest rational integer

to λαn (if εn = 1/2, then un + 1 satisfies |λαn − (un + 1)| = |λαn − un|) and

‖λαn‖ = |εn|. With the notation of Lemma 1, we have λαn+d + rd−1λα
n+d−1 +

· · ·+ r0λα
n = 0 and so

un+d + rd−1un+d−1 + · · ·+ r0un = −(εn+d + rd−1εn+d−1 + · · ·+ r0εn). (5)

To prove the Theorem (i) and the direct implication in the Theorem (iii) suppose

that

lim sup
n→∞

|εn| < ε, (6)

where ε is fixed in the interval ]0, C(α)] (resp., to prove the direct implication in

the Theorem (ii) suppose that

lim
n→∞

εn = 0). (7)

It is clear that (7) ⇒ (6) ⇒ there is n0 = n0(α, λ, ε) ∈ N such that

|εn| < ε for all n ≥ n0. (8)

From now on, assume n ≥ n0. Then, the relations (5) and (8) give

|un+d + rd−1un+d−1 + · · ·+ r0un| <
( d∑

i=0

|ri|
)
ε ≤

( d∑

i=0

|ri|
)
C(α)



Comments on the distribution modulo one of powers. . . 423

and so un+d+rd−1un+d−1+· · ·+r0un = 0, since
(∑d

i=0 riun+i

)
lcm(b0, . . . , bd−1)∈

Z∩]− 1, 1[ . It follows again by (5) that εn+d + rd−1εn+d−1 + · · ·+ r0εn = 0 and

so there are complex numbers, say ζ1, ζ2, . . . , ζd, such that

εn = ζ1α
n
1 + ζ2α

n
2 + · · ·+ ζdα

n
d . (9)

Fix n for a moment. Then, the equality (9) yields

[αj−1
l ]




ζ1α
n
1

ζ2α
n
2

...

ζdα
n
d



=




εn
εn+1

...

εn+d−1




and so by (3) we obtain ζjα
n
j = σj(γ0)εn + σj(γ1)εn+1 + · · · + σj(γd−1)εn+d−1,

where j ∈ {1, . . . , d}, σj(α) = αj and α := α1; thus

|ζj | ≤ H
∑d−1

k=0 |εn+k|
|αn

j |
<

Hdε

|αj |n , (10)

where H = max(j,l)∈{1,...,d}2 |σj(γl−1)| depends only on α. As we may choose

n arbitrarily large, we obtain immediately by (10) that ζj = 0 when |αj | > 1

(resp., ζj = 0 when |αj | ≥ 1); in particular we have ζ1 = 0. Let α1, . . . , αt, where

1 ≤ t ≤ d, be the conjugates of α of modulus greater than 1 (resp., of modulus

greater than or equal to 1). Then, the relation (9) gives εn = ζ2α
n
2 + · · ·+ ζdα

n
d ,

where ζj = 0 when 2 ≤ j ≤ t, and the equality (4) may also be written

λαn − ζ2α
n
2 − · · · − ζdα

n
d = un. (11)

Fix again n for a moment. Then, the relation (11) implies

[αj−1
l ]




λαn

−ζ2α
n
2

...

−ζdα
n
d



=




un

un+1

...

un+d−1



,

and so by (3) we obtain

λ =
γ0un + γ1un+1 + · · ·+ γd−1un+d−1

αn
∈ Q(α), (12)
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−ζj = (σj(γ0)un + σj(γ1)un+1 + · · ·+ σj(γd−1)un+d−1)/α
n
j = σj(λ) when j ≥ 2;

thus the other conjugates of the algebraic number λ are λ2 := −ζ2, . . . , λd := −ζd.

Consequently, we have t = 1, since otherwise ζ2 = 0 and so λ = 0, that is the

other conjugates of α are of modulus at most 1 (resp., of modulus less than 1).

Notice also that the equality (11) may also be written

λαn + λ2α
n
2 + · · ·+ λdα

n
d = un. (13)

Let a be a nonzero rational integer such that {aγ0/λ, aγ1/λ, . . . , aγd−1/λ} ⊂
ZQ(α). Then (12) gives

aαn ∈ ZQ(α),
since un ∈ Z for all n. It follows by Lemma 4 that α is an algebraic integer and so

α ∈ S∪T (resp., so α ∈ S). Moreover, the relation (12) implies αn0λ = β/M ′
α(α)

for some β ∈ Z[α], and so λ ∈ Λ(α). This ends the proof of the Theorem (i) (with

ε = C(α)) (resp., the proof of the implication: limn→∞ ‖λαn‖ = 0 ⇒ α ∈ S and

λ ∈ Λ(α)). To complete the proof of the first implication in the Theorem (iii) and

also to show the two remaining implications we shall consider the cases α ∈ S

and α ∈ T separately.

First suppose α ∈ S, and let λ∗ ∈ Λ(α). Then, there is p ∈ N such that

αpλ∗ = β∗/M ′
α(α) for some β∗ ∈ Z[α], and so Lemma 2 gives

vn := TrQ(α)(λ
∗αpαn−p) = λ∗αn + λ∗

2α
n
2 + · · ·+ λ∗

dα
n
d ∈ Z,

where λ∗
2 = σ2(λ

∗), . . . , λ∗
d = σd(λ

∗) and n ∈ N ∩ [p,∞[ . Hence, |λ∗αn − vn| =
|λ∗

2α
n
2+· · ·+λ∗

dα
n
d | ≤

(∑d
j=2 |λ∗

j |
)
max2≤j≤d |αj |n and so limn→∞ |λ∗αn−vn| = 0;

thus limn→∞ ‖λ∗αn‖ = 0 and this ends the proof of the Theorem (ii).

Finally, assume α ∈ T . Without loss of generality set α2 := 1/α and α2j =

α2j−1 for j ∈ {2, . . . , d/2} (see Lemma 3). To show the relation: λ ∈ Ω(α, ε), we

shall prove

lim sup
n→∞

|εn| =
d∑

j=3

|λj |. (14)

Notice by (4) and (13) that

λ2α
n
2 + λ3α

n
3 · · ·+ λdα

n
d = −εn, (15)

|λ2α
n
2+λ3α

n
3 · · ·+λdα

n
d | ≤ |λ2|/αn+

∑d
j=3 |λj | and so lim supn→∞ |εn|≤

∑d
j=3 |λj |.

To complete the proof of the equality (14) fix δ > 0. Then, there is n1 ∈ N such

that |λ2α
n
2 | < δ/2 when n ≥ n1. For k ∈ {3, . . . , d} and n ≥ n1 set

tk,n := αn
k +

|λk|
λk

.
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Since λ is a polynomial in α with rational coefficients, we have λ2j = σ2j(λ) =

σ2j−1(λ) = λ2j−1 for j ∈ {2, . . . , d/2}. It follows from Lemma 3 that there are

infinitely many n such that

|tk,n| < δ

2(d− 2)max{|λ3| , . . . , |λd|}

for all k ∈ {3, . . . , d}. Hence, for these n’s we have, by (15),

| − εn + |λ3|+ · · ·+ |λd|| = |λ2α
n
2 + λ3t3,n + · · ·+ λdtd,n| < δ,

(|λ3| + · · · + |λd|) − δ < |εn| and so lim supn→∞ |εn| ≥
∑d

j=3 |λj | − δ. Letting δ

tend to 0 we obtain lim supn→∞ |εn| ≥
∑d

j=3 |λj | and the relation (14) follows.

Conversely, if λ∗ ∈ Ω(α, ε), where ε ∈]0, C(α)], then similarly as for the case

where α ∈ S, and with the same notation, we obtain
∑d

j=3 |λ∗
j | < ε, |λ∗αn −

vn| = |λ∗
2/α

n + λ∗
3α

n
3 + · · ·+ λ∗

dα
n
d |, lim supn→∞ |λ∗αn − vn| ≤

∑d
j=3 |λ∗

j | and so

lim supn→∞ ‖λ∗αn‖ < ε. ¤

Proof of Corollary 1. The proof follows immediately from the The-

orem (i). ¤

Proof of Corollary 2. Let α ∈ S ∪ T and let s ∈ X(α, ε), where ε ∈
]0, C(α)[ . Then, ‖sαn‖ < ε for all n, and so lim supn→∞ ‖sαn‖ ≤ ε. It follows by

the Theorem (i) that s ∈ Λ(α). Similarly if α ∈ T , then the Theorem (iii) gives

s ∈ Ω(α, ρ), where ρ ∈]ε, C(α)]. ¤
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[10] A. Thue, Über eine Eigenschaft die keine transzendente Grösse haben kann, Skrifter Vi-
denskap Kristiania 20 (1912), 1–15.
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