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Some commutativity theorems for Banach algebras

By BERTRAM YOOD (Pennsylvania)

A number of theorems in ring theory, mostly due to HERSTEIN, are de-
voted to showing that certain rings must be commutative as a consequence
of conditions which are seemingly too weak to imply commutativity. See
[4, Chapter 3]. In [7] we showed that, in the special case of a Banach al-
gebra, some of these results can be sharpened. We continue this program
here.

Let R be a ring with center Z. We let [a,b] denote the Lie product
ab — ba and a - b the Jordan product ab + ba. In a recent paper [2] R. D.
GIrI and A. R. DHOBLE showed the following.

Theorem 1. Suppose that R is a semiprime ring and that n,m are
fixed positive integers each larger than one. Suppose that either (a)
[, y™] € Z for every xz,y € R or (b) " -y™ € Z for every x,y € R.
Then R is commutative.

Henceforth A will denote a Banach algebra over the complex field with
center Z. For this special case we prove a sharper version of Theorem 1.

Theorem 2. Suppose that there are non-empty open subsets G1, G2
of A such that for each x € GG; and y € G5 there are positive integers
n = n(x,y), m = m(z,y) depending on x and y, n > 1, m > 1, such
that either [z",y™] € Z or 2" - y™ € Z. Then A is commutative if A is
semiprime.

Let p(t) = Y ._,b-t" be a polynomial in the real variable ¢ with
coefficients in A where p(t) € Z for an infinite set of real values t. Then
every b, € Z. For let f(x) be any bounded linear functional on A which
vanishes on Z. Then >_""_, f(b,)t" = 0 for an infinite set of reals so that
each f(b,) = 0. As Z is a closed linear subspace of A this implies that
each b, € Z.
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We begin the PROOF of Theorem 2. Fix x € G;. For positive integers
n > 2, m > 2let V(n,m) be the set of y € A for which [z",y™] & Z and
x™-y™ ¢ Z. Fach V(n,m) is open in A. If every V(n, m) is dense then, by
the Baire category theorem, so is the intersection W of all the sets V (n, m).
But W being dense would violate the nature of G; and G5. Hence there
are integers r > 2 and s > 2 so that V(r, s) is not dense. Therefore there
is a non-empty open subset GGz in the complement of V(r,s). For each
y € Gg either [z",y°] € Z or " - y* € Z. Let yo € G3 and w € A. There
is positive real number a > 0 such that yo +tw € G5 for all £, 0 <t < a.
For each such t either

(1) 2", (yo + tw)*] € Z
(2) " (yo +tw)® € Z.

Therefore at least one of (1) and (2) must be valid for infinitely many real
t. Suppose (1) is valid for these t. Now [z", (yo + tw)®] can be written
as a polynomial in ¢ with coefficients in A. The coefficient of ¢° in that
polynomial is [z",w®]. Therefore [z",w®| € Z. Likewise if (2) is valid for
infinitely many values of ¢ then x" - w® € Z.

Thus, given x € G1, there are positive integers » > 1, s > 1 so that,
for each w € A, either [",w®] € Z or 2" - w® € Z. Let F} = {w € A :
[z",ws] € Z} and Fo ={w € A: 2" -w® € Z}. Now A = F; U F; and each
Fy. is closed. Then, by the Baire category theorem, at least one of F; and
F5 must contain a non-empty open subset of A.

Suppose Fj contains a ball with center vy and radius » > 0. Let
z € A. For infinitely many ¢ we must have [z, (vg + tz)]® € Z. Therefore
x",2°] € Z for every z € A. Likewise if F5 has non-void interior then
x" - 2% € Z for every z € A.

Consequently, given x € (1, there are positive integers r > 1, s > 1
so that either [z",2°] € Z for all z € A or 2" - 2° € Z for all z € A.

Now we note that in our set-up with GGy and G5 we could replace Go
by A. Next we reverse the roles of G; and G2 (now replaced by A) in
the above arguments. Thus, for each y € A, there are positive integers
r > 1, s > 1 depending on y so that either [z",y°] € Z for all z € A or
x"-ys € Z for all x € A.

For positive integers m > 1 and n > 1 let W(n, m) be the set of all
y € A so that either [x™,y™] € Z forallz € Aor 2™ -y™ € Z for all z € A.
We check that W (n,m) is closed. For let {yx} be a sequence in W (n,m)
and y, — w. Then either there is an infinite subsequence {y,} so that
[z",y;:] € Z for all # € A and each k; or such a subsequence {yx, } where

a" - yp € Z for all z € A and each kj. Thus w € W(n,m). Inasmuch
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as A is the union of all the sets W (n,m) we see by the Baire category
theorem that some W (p, ¢) must contain a non-void open subset G4 of A.
Let yo € G4. For each v € A there is some real number b > 0 so that when
0 <t < beither [P, (yp + tv)?] € Z for all x € A or P - (yg + tv)? € Z
for all x € A. Now at least one of these alternatives is valid for infinitely
many real ¢. Reasoning already used shows that either [zP,v9] € Z for all
reZ, veAoraP -vie Zforallz e A, ve A If A is semiprime then
A is now seen to be commutative by Theorem 1.

In the proof of Theorem 2 we needed m > 1 and n > 1 in order to
use Theorem 1. If A has an identity we can do with m > 1, n > 1, as we
do not then cite Theorem 1.

Theorem 3. Suppose that A has an identity e and that there are
non-empty open subsets G1,Go of A where, for each v € G1,y € Go, there
are integers m = m(x,y), n = n(x,y), m > 1, n > 1, such that either
[, y™| € Z or ™ - y™ € Z. If Z is semisimple then A is commutative.

By the proof of Theorem 2 there exist positive integers p and ¢, p>1,
g > 1, so that either [zP,vP] € Z for all z,v € A or 2P - v? € Z for all
xz,v € A. In case [zP,v?] € Z for all z,v € A we may replace v by e + tv.
Then [zP, (e + tv)?] € Z for all t. The coefficient of ¢ in the polynomial
[P, (e 4+ tv)?] is [P, v]. Then [zP,v] € Z for all z and v in A. Now replace
x by e+tz and [(e+tz)P,v] € Z for all t. Then [z,v] € Z for all z,v € Z.
Likewise if 2P - v4 € Z for all  and v in A we see that x -v € Z for all
and v in A.

In the case that x - v € Z for all x,v set v = e to see that 2x € Z
for all x € A. Then A is commutative. It remains to consider the case
where [z,v] € Z for all z and v € A. By the Kleinecke-Shirokov theorem
[1, Prop. 13, p.91] each w = [z, v] is a generalized nilpotent element of A,
that is, lim ||w™||*/™ = 0. Then [z, v] is a generalized nilpotent element in
the commutative Banach algebra Z and so is in the radical of Z. As Z is
semisimple [x,v] = 0 so that A is commutative.

We point out that is easy to show that Z is semisimple if A is semisim-
ple. See, for example, [6, Lemma 2.1].

In the situation of Theorem 3 we next drop the requirement that Z
be semisimple. Then A need not be commutative as the following example
shows.

First let B be the three-dimensional complex algebra with basis {a, b, ¢}
and multiplication given by

(A1a + p1b +vic)(Aaa + pgb + vac) = (Arpa — Aapir)c
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where the A\g, pur and vg are complex scalars. With the norm, say,
IAa + pb +vel| = (AP + [ + [v[*) /2.
B is a Banach algebra (as the product of any three elements of B is zero,
B is associative). Now let A be the Banach algebra obtained by adjoining
an identity e to B where ||ye 4+ z|| = || + ||z| for € B and 7 complex.
For z,y in B we have
(e +z, ety = [z,

which is a multiple of ¢. Therefore, as ¢ is in the center of A, we have
[v,w] € Z for all v,w € A. Hence the requirements of Theorem 3 for G;
and G5 hold if G; = G = A. However A is not commutative.

For the purposes of the next theorem we discuss a point in the theory
of non-associative algebras. Let K be a non-associative algebra. By the
center of K is meant [5, p.14] the set of all z € K where zz = zz for all
x € K and where

(x7 y7 Z) = (Z7 x? y) = (x7 Z?y) = 0
for all z,y € K. Here (a,b, c) is the associator of the elements a,b and c,
(a,b,c) = (ab)c — a(bc) .

Now we consider A as a non-associative algebra A7 with its multiplication
the Jordan multiplication z -y = ay + yx. Let Z7 be the center of A7
according to the above definition of center.

For a Lie ideal U of A as in [3, p.5] we set

TU)={zxecA:[z,A]CU}.
As noted there T'(U) is both a subalgebra and a Lie ideal of A and T'(U)DU.
Lemma. For A we have Z7 = T(Z).
PROOF. A straight-forward calculation shows that
(@a-b)-c—a-(b-c)=1b,]a,c]
for all a,b and ¢ in A. Then Z” is the set of all z € A such that
[z, [y, 2]] = [2, [, 9]] = [y, [2,2]] = O

for all z,35 € A. Thus we see that Z7 C T(Z). Conversely suppose that
z € T(Z) so that [[z,z],y] = 0 for all z,y € A. Inasmuch as the Jacobi
identity gives us

[[aj,y],z] =+ [[y,z],x] + [[Z,x],y] =0

for all z,y,z € A, we also get T(Z) C Z’. Also, as Z C T(Z), we have
zcz’.
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Theorem 4. Let A be a Banach algebra with identity e which satisfies
the requirements on G and Gy of Theorem 3. Then A = Z7.

PROOF. As shown in the proof of Theorem 3 either A is commutative
(so that also A = Z7) or [x,y] € Z for all z,y € A. Then A =T(2) = Z’
by the above lemma.
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