Some commutativity theorems for Banach algebras

By BERTRAM YOOD (Pennsylvania)

A number of theorems in ring theory, mostly due to Herstein, are devoted to showing that certain rings must be commutative as a consequence of conditions which are seemingly too weak to imply commutativity. See [4, Chapter 3]. In [7] we showed that, in the special case of a Banach algebra, some of these results can be sharpened. We continue this program here.

Let R be a ring with center Z. We let $[a, b]$ denote the Lie product $a b-b a$ and $a \cdot b$ the Jordan product $a b+b a$. In a recent paper [2] R. D. Giri and A. R. Dhoble showed the following.

Theorem 1. Suppose that R is a semiprime ring and that n, m are fixed positive integers each larger than one. Suppose that either (a) $\left[x^{n}, y^{m}\right] \in Z$ for every $x, y \in R$ or (b) $x^{n} \cdot y^{m} \in Z$ for every $x, y \in R$. Then R is commutative.

Henceforth A will denote a Banach algebra over the complex field with center Z. For this special case we prove a sharper version of Theorem 1.

Theorem 2. Suppose that there are non-empty open subsets G_{1}, G_{2} of A such that for each $x \in G_{1}$ and $y \in G_{2}$ there are positive integers $n=n(x, y), m=m(x, y)$ depending on x and $y, n>1, m>1$, such that either $\left[x^{n}, y^{m}\right] \in Z$ or $x^{n} \cdot y^{m} \in Z$. Then A is commutative if A is semiprime.

Let $p(t)=\sum_{r=0}^{n} b_{r} t^{r}$ be a polynomial in the real variable t with coefficients in A where $p(t) \in Z$ for an infinite set of real values t. Then every $b_{r} \in Z$. For let $f(x)$ be any bounded linear functional on A which vanishes on Z. Then $\sum_{r=0}^{n} f\left(b_{r}\right) t^{r}=0$ for an infinite set of reals so that each $f\left(b_{r}\right)=0$. As Z is a closed linear subspace of A this implies that each $b_{r} \in Z$.

We begin the Proof of Theorem 2. Fix $x \in G_{1}$. For positive integers $n \geq 2, m \geq 2$ let $V(n, m)$ be the set of $y \in A$ for which $\left[x^{n}, y^{m}\right] \notin Z$ and $x^{n} \cdot y^{m} \notin Z$. Each $V(n, m)$ is open in A. If every $V(n, m)$ is dense then, by the Baire category theorem, so is the intersection W of all the sets $V(n, m)$. But W being dense would violate the nature of G_{1} and G_{2}. Hence there are integers $r \geq 2$ and $s \geq 2$ so that $V(r, s)$ is not dense. Therefore there is a non-empty open subset G_{3} in the complement of $V(r, s)$. For each $y \in G_{3}$ either $\left[x^{r}, y^{s}\right] \in Z$ or $x^{r} \cdot y^{s} \in Z$. Let $y_{0} \in G_{3}$ and $w \in A$. There is positive real number $a>0$ such that $y_{0}+t w \in G_{3}$ for all $t, 0 \leq t \leq a$. For each such t either

$$
\begin{equation*}
\left[x^{r},\left(y_{0}+t w\right)^{s}\right] \in Z \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{r} \cdot\left(y_{0}+t w\right)^{s} \in Z . \tag{2}
\end{equation*}
$$

Therefore at least one of (1) and (2) must be valid for infinitely many real t. Suppose (1) is valid for these t. Now $\left[x^{r},\left(y_{0}+t w\right)^{s}\right]$ can be written as a polynomial in t with coefficients in A. The coefficient of t^{s} in that polynomial is $\left[x^{r}, w^{s}\right]$. Therefore $\left[x^{r}, w^{s}\right] \in Z$. Likewise if (2) is valid for infinitely many values of t then $x^{r} \cdot w^{s} \in Z$.

Thus, given $x \in G_{1}$, there are positive integers $r>1, s>1$ so that, for each $w \in A$, either $\left[x^{r}, w^{s}\right] \in Z$ or $x^{r} \cdot w^{s} \in Z$. Let $F_{1}=\{w \in A$: $\left.\left[x^{r}, w^{s}\right] \in Z\right\}$ and $F_{2}=\left\{w \in A: x^{r} \cdot w^{s} \in Z\right\}$. Now $A=F_{1} \cup F_{2}$ and each F_{k} is closed. Then, by the Baire category theorem, at least one of F_{1} and F_{2} must contain a non-empty open subset of A.

Suppose F_{1} contains a ball with center v_{0} and radius $r>0$. Let $z \in A$. For infinitely many t we must have $\left[x^{r},\left(v_{0}+t z\right)\right]^{s} \in Z$. Therefore $\left[x^{r}, z^{s}\right] \in Z$ for every $z \in A$. Likewise if F_{2} has non-void interior then $x^{r} \cdot z^{s} \in Z$ for every $z \in A$.

Consequently, given $x \in G_{1}$, there are positive integers $r>1$, $s>1$ so that either $\left[x^{r}, z^{s}\right] \in Z$ for all $z \in A$ or $x^{r} \cdot z^{s} \in Z$ for all $z \in A$.

Now we note that in our set-up with G_{1} and G_{2} we could replace G_{2} by A. Next we reverse the roles of G_{1} and G_{2} (now replaced by A) in the above arguments. Thus, for each $y \in A$, there are positive integers $r>1, s>1$ depending on y so that either $\left[x^{r}, y^{s}\right] \in Z$ for all $x \in A$ or $x^{r} \cdot y^{s} \in Z$ for all $x \in A$.

For positive integers $m>1$ and $n>1$ let $W(n, m)$ be the set of all $y \in A$ so that either $\left[x^{n}, y^{m}\right] \in Z$ for all $x \in A$ or $x^{n} \cdot y^{m} \in Z$ for all $x \in A$. We check that $W(n, m)$ is closed. For let $\left\{y_{k}\right\}$ be a sequence in $W(n, m)$ and $y_{k} \rightarrow w$. Then either there is an infinite subsequence $\left\{y_{k_{j}}\right\}$ so that $\left[x^{n}, y_{k_{j}}^{m}\right] \in Z$ for all $x \in A$ and each k_{j} or such a subsequence $\left\{y_{k_{j}}\right\}$ where $x^{n} \cdot y_{k_{j}}^{m} \in Z$ for all $x \in A$ and each k_{j}. Thus $w \in W(n, m)$. Inasmuch
as A is the union of all the sets $W(n, m)$ we see by the Baire category theorem that some $W(p, q)$ must contain a non-void open subset G_{4} of A. Let $y_{0} \in G_{4}$. For each $v \in A$ there is some real number $b>0$ so that when $0 \leq t \leq b$ either $\left[x^{p},\left(y_{0}+t v\right)^{q}\right] \in Z$ for all $x \in A$ or $x^{p} \cdot\left(y_{0}+t v\right)^{q} \in Z$ for all $x \in A$. Now at least one of these alternatives is valid for infinitely many real t. Reasoning already used shows that either $\left[x^{p}, v^{q}\right] \in Z$ for all $x \in Z, v \in A$ or $x^{p} \cdot v^{q} \in Z$ for all $x \in A, v \in A$. If A is semiprime then A is now seen to be commutative by Theorem 1 .

In the proof of Theorem 2 we needed $m>1$ and $n>1$ in order to use Theorem 1. If A has an identity we can do with $m \geq 1, n \geq 1$, as we do not then cite Theorem 1.

Theorem 3. Suppose that A has an identity e and that there are non-empty open subsets G_{1}, G_{2} of A where, for each $x \in G_{1}, y \in G_{2}$, there are integers $m=m(x, y), n=n(x, y), m \geq 1, n \geq 1$, such that either $\left[x^{n}, y^{m}\right] \in Z$ or $x^{n} \cdot y^{m} \in Z$. If Z is semisimple then A is commutative.

By the proof of Theorem 2 there exist positive integers p and $q, p \geq 1$, $q \geq 1$, so that either $\left[x^{p}, v^{p}\right] \in Z$ for all $x, v \in A$ or $x^{p} \cdot v^{q} \in Z$ for all $x, v \in A$. In case $\left[x^{p}, v^{q}\right] \in Z$ for all $x, v \in A$ we may replace v by $e+t v$. Then $\left[x^{p},(e+t v)^{q}\right] \in Z$ for all t. The coefficient of t in the polynomial $\left[x^{p},(e+t v)^{q}\right]$ is $\left[x^{p}, v\right]$. Then $\left[x^{p}, v\right] \in Z$ for all x and v in A. Now replace x by $e+t x$ and $\left[(e+t x)^{p}, v\right] \in Z$ for all t. Then $[x, v] \in Z$ for all $x, v \in Z$. Likewise if $x^{p} \cdot v^{q} \in Z$ for all x and v in A we see that $x \cdot v \in Z$ for all x and v in A.

In the case that $x \cdot v \in Z$ for all x, v set $v=e$ to see that $2 x \in Z$ for all $x \in A$. Then A is commutative. It remains to consider the case where $[x, v] \in Z$ for all x and $v \in A$. By the Kleinecke-Shirokov theorem [1, Prop. 13, p.91] each $w=[x, v]$ is a generalized nilpotent element of A, that is, $\lim \left\|w^{n}\right\|^{1 / n}=0$. Then $[x, v]$ is a generalized nilpotent element in the commutative Banach algebra Z and so is in the radical of Z. As Z is semisimple $[x, v]=0$ so that A is commutative.

We point out that is easy to show that Z is semisimple if A is semisimple. See, for example, [6, Lemma 2.1].

In the situation of Theorem 3 we next drop the requirement that Z be semisimple. Then A need not be commutative as the following example shows.

First let B be the three-dimensional complex algebra with basis $\{a, b, c\}$ and multiplication given by

$$
\left(\lambda_{1} a+\mu_{1} b+\nu_{1} c\right)\left(\lambda_{2} a+\mu_{2} b+\nu_{2} c\right)=\left(\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right) c
$$

where the λ_{k}, μ_{k} and ν_{k} are complex scalars. With the norm, say,

$$
\|\lambda a+\mu b+\nu c\|=\left(|\lambda|^{2}+|\mu|^{2}+|\nu|^{2}\right)^{1 / 2}
$$

B is a Banach algebra (as the product of any three elements of B is zero, B is associative). Now let A be the Banach algebra obtained by adjoining an identity e to B where $\|\gamma e+x\|=|\gamma|+\|x\|$ for $x \in B$ and γ complex. For x, y in B we have

$$
\left[\gamma_{1} e+x, \gamma_{2} e+y\right]=[x, y]
$$

which is a multiple of c. Therefore, as c is in the center of A, we have $[v, w] \in Z$ for all $v, w \in A$. Hence the requirements of Theorem 3 for G_{1} and G_{2} hold if $G_{1}=G_{2}=A$. However A is not commutative.

For the purposes of the next theorem we discuss a point in the theory of non-associative algebras. Let K be a non-associative algebra. By the center of K is meant [5, p.14] the set of all $z \in K$ where $z x=x z$ for all $x \in K$ and where

$$
(x, y, z)=(z, x, y)=(x, z, y)=0
$$

for all $x, y \in K$. Here (a, b, c) is the associator of the elements a, b and c,

$$
(a, b, c)=(a b) c-a(b c) .
$$

Now we consider A as a non-associative algebra A^{J} with its multiplication the Jordan multiplication $x \cdot y=x y+y x$. Let Z^{J} be the center of A^{J} according to the above definition of center.

For a Lie ideal U of A as in [3, p.5] we set

$$
T(U)=\{x \in A:[x, A] \subset U\} .
$$

As noted there $T(U)$ is both a subalgebra and a Lie ideal of A and $T(U) \supset U$.
Lemma. For A we have $Z^{J}=T(Z)$.
Proof. A straight-forward calculation shows that

$$
(a \cdot b) \cdot c-a \cdot(b \cdot c)=[b,[a, c]]
$$

for all a, b and c in A. Then Z^{J} is the set of all $z \in A$ such that

$$
[x,[y, z]]=[z,[x, y]]=[y,[z, x]]=0
$$

for all $x, y \in A$. Thus we see that $Z^{J} \subset T(Z)$. Conversely suppose that $z \in T(Z)$ so that $[[z, x], y]=0$ for all $x, y \in A$. Inasmuch as the Jacobi identity gives us

$$
[[x, y], z]+[[y, z], x]+[[z, x], y]=0
$$

for all $x, y, z \in A$, we also get $T(Z) \subset Z^{J}$. Also, as $Z \subset T(Z)$, we have $Z \subset Z^{J}$.

Theorem 4. Let A be a Banach algebra with identity e which satisfies the requirements on G_{1} and G_{2} of Theorem 3. Then $A=Z^{J}$.

Proof. As shown in the proof of Theorem 3 either A is commutative (so that also $A=Z^{J}$) or $[x, y] \in Z$ for all $x, y \in A$. Then $A=T(Z)=Z^{J}$ by the above lemma.

References

[1] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer, New York, 1973.
[2] R. D. Giri and A. R. Dhoble, Some commutativity theorems for rings, Publ. Math. Debrecen 41 (1992), 35-40.
[3] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
[4] I. N. Herstein, Non-commutative rings, Carus Math. Monographs, vol. 15, Wiley, New York, 1968.
[5] R. D. Schafer, An introduction to non-associative algebras, Academic Press, New York, 1966.
[6] B. Yood, Inner automorphisms of groups in topological algebras, Mich. Math. J. 10 (1963), 11-16.
[7] B. Yood, Commutativity theorems for Banach algebras, Mich. Math. J. 37 (1990), 203-210.

```
BERTRAM YOOD
DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA }1680
U.S.A.
```

(Received December 23, 1992; revised November 29, 1993)

