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Some commutativity theorems for Banach algebras

By BERTRAM YOOD (Pennsylvania)

A number of theorems in ring theory, mostly due to Herstein, are de-
voted to showing that certain rings must be commutative as a consequence
of conditions which are seemingly too weak to imply commutativity. See
[4, Chapter 3]. In [7] we showed that, in the special case of a Banach al-
gebra, some of these results can be sharpened. We continue this program
here.

Let R be a ring with center Z. We let [a, b] denote the Lie product
ab − ba and a · b the Jordan product ab + ba. In a recent paper [2] R. D.
Giri and A. R. Dhoble showed the following.

Theorem 1. Suppose that R is a semiprime ring and that n,m are
fixed positive integers each larger than one. Suppose that either (a)
[xn, ym] ∈ Z for every x, y ∈ R or (b) xn · ym ∈ Z for every x, y ∈ R.
Then R is commutative.

Henceforth A will denote a Banach algebra over the complex field with
center Z. For this special case we prove a sharper version of Theorem 1.

Theorem 2. Suppose that there are non-empty open subsets G1, G2

of A such that for each x ∈ G1 and y ∈ G2 there are positive integers
n = n(x, y), m = m(x, y) depending on x and y, n > 1, m > 1, such
that either [xn, ym] ∈ Z or xn · ym ∈ Z. Then A is commutative if A is
semiprime.

Let p(t) =
∑n

r=0 brt
r be a polynomial in the real variable t with

coefficients in A where p(t) ∈ Z for an infinite set of real values t. Then
every br ∈ Z. For let f(x) be any bounded linear functional on A which
vanishes on Z. Then

∑n
r=0 f(br)tr = 0 for an infinite set of reals so that

each f(br) = 0. As Z is a closed linear subspace of A this implies that
each br ∈ Z.
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We begin the Proof of Theorem 2. Fix x ∈ G1. For positive integers
n ≥ 2, m ≥ 2 let V (n,m) be the set of y ∈ A for which [xn, ym] 6∈ Z and
xn ·ym 6∈ Z. Each V (n,m) is open in A. If every V (n, m) is dense then, by
the Baire category theorem, so is the intersection W of all the sets V (n,m).
But W being dense would violate the nature of G1 and G2. Hence there
are integers r ≥ 2 and s ≥ 2 so that V (r, s) is not dense. Therefore there
is a non-empty open subset G3 in the complement of V (r, s). For each
y ∈ G3 either [xr, ys] ∈ Z or xr · ys ∈ Z. Let y0 ∈ G3 and w ∈ A. There
is positive real number a > 0 such that y0 + tw ∈ G3 for all t, 0 ≤ t ≤ a.
For each such t either

(1) [xr, (y0 + tw)s] ∈ Z

or

(2) xr · (y0 + tw)s ∈ Z .

Therefore at least one of (1) and (2) must be valid for infinitely many real
t. Suppose (1) is valid for these t. Now [xr, (y0 + tw)s] can be written
as a polynomial in t with coefficients in A. The coefficient of ts in that
polynomial is [xr, ws]. Therefore [xr, ws] ∈ Z. Likewise if (2) is valid for
infinitely many values of t then xr · ws ∈ Z.

Thus, given x ∈ G1, there are positive integers r > 1, s > 1 so that,
for each w ∈ A, either [xr, ws] ∈ Z or xr · ws ∈ Z. Let F1 = {w ∈ A :
[xr, ws] ∈ Z} and F2 = {w ∈ A : xr ·ws ∈ Z}. Now A = F1 ∪F2 and each
Fk is closed. Then, by the Baire category theorem, at least one of F1 and
F2 must contain a non-empty open subset of A.

Suppose F1 contains a ball with center v0 and radius r > 0. Let
z ∈ A. For infinitely many t we must have [xr, (v0 + tz)]s ∈ Z. Therefore
[xr, zs] ∈ Z for every z ∈ A. Likewise if F2 has non-void interior then
xr · zs ∈ Z for every z ∈ A.

Consequently, given x ∈ G1, there are positive integers r > 1, s > 1
so that either [xr, zs] ∈ Z for all z ∈ A or xr · zs ∈ Z for all z ∈ A.

Now we note that in our set-up with G1 and G2 we could replace G2

by A. Next we reverse the roles of G1 and G2 (now replaced by A) in
the above arguments. Thus, for each y ∈ A, there are positive integers
r > 1, s > 1 depending on y so that either [xr, ys] ∈ Z for all x ∈ A or
xr · ys ∈ Z for all x ∈ A.

For positive integers m > 1 and n > 1 let W (n,m) be the set of all
y ∈ A so that either [xn, ym] ∈ Z for all x ∈ A or xn ·ym ∈ Z for all x ∈ A.
We check that W (n,m) is closed. For let {yk} be a sequence in W (n, m)
and yk → w. Then either there is an infinite subsequence {ykj} so that
[xn, ym

kj
] ∈ Z for all x ∈ A and each kj or such a subsequence {ykj} where

xn · ym
kj
∈ Z for all x ∈ A and each kj . Thus w ∈ W (n,m). Inasmuch
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as A is the union of all the sets W (n, m) we see by the Baire category
theorem that some W (p, q) must contain a non-void open subset G4 of A.
Let y0 ∈ G4. For each v ∈ A there is some real number b > 0 so that when
0 ≤ t ≤ b either [xp, (y0 + tv)q] ∈ Z for all x ∈ A or xp · (y0 + tv)q ∈ Z
for all x ∈ A. Now at least one of these alternatives is valid for infinitely
many real t. Reasoning already used shows that either [xp, vq] ∈ Z for all
x ∈ Z, v ∈ A or xp · vq ∈ Z for all x ∈ A, v ∈ A. If A is semiprime then
A is now seen to be commutative by Theorem 1.

In the proof of Theorem 2 we needed m > 1 and n > 1 in order to
use Theorem 1. If A has an identity we can do with m ≥ 1, n ≥ 1, as we
do not then cite Theorem 1.

Theorem 3. Suppose that A has an identity e and that there are
non-empty open subsets G1, G2 of A where, for each x ∈ G1, y ∈ G2, there
are integers m = m(x, y), n = n(x, y), m ≥ 1, n ≥ 1, such that either
[xn, ym] ∈ Z or xn · ym ∈ Z. If Z is semisimple then A is commutative.

By the proof of Theorem 2 there exist positive integers p and q, p≥1,
q ≥ 1, so that either [xp, vp] ∈ Z for all x, v ∈ A or xp · vq ∈ Z for all
x, v ∈ A. In case [xp, vq] ∈ Z for all x, v ∈ A we may replace v by e + tv.
Then [xp, (e + tv)q] ∈ Z for all t. The coefficient of t in the polynomial
[xp, (e + tv)q] is [xp, v]. Then [xp, v] ∈ Z for all x and v in A. Now replace
x by e + tx and [(e + tx)p, v] ∈ Z for all t. Then [x, v] ∈ Z for all x, v ∈ Z.
Likewise if xp · vq ∈ Z for all x and v in A we see that x · v ∈ Z for all x
and v in A.

In the case that x · v ∈ Z for all x, v set v = e to see that 2x ∈ Z
for all x ∈ A. Then A is commutative. It remains to consider the case
where [x, v] ∈ Z for all x and v ∈ A. By the Kleinecke–Shirokov theorem
[1, Prop. 13, p.91] each w = [x, v] is a generalized nilpotent element of A,
that is, lim ‖wn‖1/n = 0. Then [x, v] is a generalized nilpotent element in
the commutative Banach algebra Z and so is in the radical of Z. As Z is
semisimple [x, v] = 0 so that A is commutative.

We point out that is easy to show that Z is semisimple if A is semisim-
ple. See, for example, [6, Lemma 2.1].

In the situation of Theorem 3 we next drop the requirement that Z
be semisimple. Then A need not be commutative as the following example
shows.

First let B be the three-dimensional complex algebra with basis {a, b, c}
and multiplication given by

(λ1a + µ1b + ν1c)(λ2a + µ2b + ν2c) = (λ1µ2 − λ2µ1)c
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where the λk, µk and νk are complex scalars. With the norm, say,

‖λa + µb + νc‖ = (|λ|2 + |µ|2 + |ν|2)1/2 .

B is a Banach algebra (as the product of any three elements of B is zero,
B is associative). Now let A be the Banach algebra obtained by adjoining
an identity e to B where ‖γe + x‖ = |γ| + ‖x‖ for x ∈ B and γ complex.
For x, y in B we have

[γ1e + x, γ2e + y] = [x, y]

which is a multiple of c. Therefore, as c is in the center of A, we have
[v, w] ∈ Z for all v, w ∈ A. Hence the requirements of Theorem 3 for G1

and G2 hold if G1 = G2 = A. However A is not commutative.
For the purposes of the next theorem we discuss a point in the theory

of non-associative algebras. Let K be a non-associative algebra. By the
center of K is meant [5, p.14] the set of all z ∈ K where zx = xz for all
x ∈ K and where

(x, y, z) = (z, x, y) = (x, z, y) = 0

for all x, y ∈ K. Here (a, b, c) is the associator of the elements a, b and c,

(a, b, c) = (ab)c− a(bc) .

Now we consider A as a non-associative algebra AJ with its multiplication
the Jordan multiplication x · y = xy + yx. Let ZJ be the center of AJ

according to the above definition of center.
For a Lie ideal U of A as in [3, p.5] we set

T (U) = {x ∈ A : [x,A] ⊂ U} .

As noted there T (U) is both a subalgebra and a Lie ideal of A and T (U)⊃U .

Lemma. For A we have ZJ = T (Z).
Proof. A straight-forward calculation shows that

(a · b) · c− a · (b · c) = [b, [a, c]]

for all a, b and c in A. Then ZJ is the set of all z ∈ A such that

[x, [y, z]] = [z, [x, y]] = [y, [z, x]] = 0

for all x, y ∈ A. Thus we see that ZJ ⊂ T (Z). Conversely suppose that
z ∈ T (Z) so that [[z, x], y] = 0 for all x, y ∈ A. Inasmuch as the Jacobi
identity gives us

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ A, we also get T (Z) ⊂ ZJ . Also, as Z ⊂ T (Z), we have
Z ⊂ ZJ .
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Theorem 4. Let A be a Banach algebra with identity e which satisfies
the requirements on G1 and G2 of Theorem 3. Then A = ZJ .

Proof. As shown in the proof of Theorem 3 either A is commutative
(so that also A = ZJ) or [x, y] ∈ Z for all x, y ∈ A. Then A = T (Z) = ZJ

by the above lemma.
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