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Finite groups determined by an inequality
of the orders of their elements

By MARIUS TĂRNĂUCEANU (Iaşi)

Abstract. In this note we introduce and characterize a class of finite groups for

which the element orders satisfy a certain inequality. This is contained in some well-

known classes of finite groups.

1. Introduction

Let CP1, CP and CN be the classes of finite groups in which the centralizers of

all nontrivial elements contain only elements of prime order, of prime power order

and are nilpotent, respectively. Clearly, we have CP1 ⊂ CP ⊂ CN. Moreover, the

classes CP1 and CP consist of exactly those finite groups all of whose elements

have prime order and prime power order, respectively. They have been studied

in many papers, as [1]–[3], [5]–[7] and [13].

In the following we consider the finite groups G such that

o(xy) ≤ max{o(x), o(y)}, for all x, y ∈ G. (∗)
These form another interesting subclass of CP, that will be denoted by CP2. Its

exhaustive description is the main goal of this note.

Most of our notation is standard and will not be repeated here. Basic notions

and results on group theory can be found in [4], [8], [9], [11].

First of all, we observe that if a finite group G belongs to CP2, then for every

x, y ∈ G satisfying o(x) 6= o(y) we have

o(xy) = max{o(x), o(y)},
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that is the order map is very close to a monoid homomorphism from (G, ·) to

(N∗,max).

An immediate characterization of finite groups contained in CP2 is indicated

in the following theorem.

Theorem A. Let G be a finite group and set πe(G) = {o(x) | x ∈ G}. Then
the following conditions are equivalent:

a) G belongs to CP2.

b) For every α ∈ πe(G), the set Gα = {x ∈ G | o(x) ≤ α} is a normal subgroup

of G.

Next, we will focus on establishing some connections between CP2 and the

previous classes CP and CP1.

Proposition B. The class CP2 is properly contained in the class CP.

On the other hand, by taking σ = (12)(34), τ = (235) ∈ A5, one obtains

5 = o(στ) > 3 = max{o(σ), o(τ)},
and therefore CP2 does not contain the alternating group A5. Since A5 belongs

to CP1, we conclude that CP1 is not contained in CP2. It is obvious that the

converse inclusion also fails (for example, any abelian p-group belongs to CP2,

but not to CP1).

Remarks.

1. Other two remarkable classes of finite p-groups, more large as the class of

abelian p-groups, are contained in CP2: regular p-groups (see Theorem 3.14

of [11], II, page 47) and p-groups whose subgroup lattices are modular (see

Lemma 2.3.5 of [10]). Moreover, by the main theorem of [12], we infer that

the powerful p-groups for p odd also belong to CP2.

2. The smallest nonabelian p-group contained in CP2 is the quaternion group

Q8, while the smallest p-group not contained in CP2 is the dihedral group

D8. Notice that all quaternion groups Q2n , for n ≥ 4, as well as all dihedral

groups Dn, for n 6= 1, 2, 4, are not contained in CP2.

3. The class CP2 contains finite groups which are not p-groups, too. The smal-

lest example of such a group is A4. Remark that the groups An, n ≥ 5, does

not belong to CP2, and this is also valid for the symmetric groups Sn, n ≥ 3.

Clearly, CP2 is closed under subgroups. On the other hand, the above results

imply that CP2 is not closed under direct products or extensions. The same thing

can be said with respect to homomorphic images, as shows the following example.
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Example. Let p be a prime and G be the semidirect product of an elementary

abelian p-group A of order pp by a cyclic group of order p2, generated by an

element x which permutes the elements of a basis of A cyclically. Then it is easy

to see that G belongs to CP2, x
p ∈ Z(G) and the quotient Q = G

〈xp〉 is isomorphic

to a Sylow p-subgroup of Sp2 . Obviously, in Q a product of two elements of order

p can have order p2, and hence it does not belong to CP2.

The next result collects other basic properties of the finite groups contained

in CP2.

Proposition C. Let G be a finite group contained in CP2. Then:

a) There is a prime p dividing the order of G such that F (G) = Op(G).

b) Both Z(G) and Φ(G) are p-groups.

c) Z(G) is trivial if G is not a p-group.

We are now able to present our main result, that gives a complete description

of the class CP2.

Theorem D. A finite group G is contained in CP2 if and only if one of the

following statements holds:

a) G is a p-group and Ωn(G) = {x ∈ G | xpn

= 1}, for all n ∈ N.
b) G is a Frobenius group of order pαqβ , p < q, with kernel F (G) of order pα

and cyclic complement.

Since all p-group and all groups of order pαqβ are solvable, Theorem D leads

to the following corollary.

Corollary E. The class CP2 is properly contained in the class of finite sol-

vable groups.

Remark. The finite supersolvable groups and the CLT-groups constitute two

important subclasses of the finite solvable groups. Since A4 belongs to CP2, we

infer that CP2 is not included in these classes. Conversely, a finite supersolvable

group or a CLT-group does not necessarily possess the structure described above,

and thus they are not necessarily contained in the class CP2.

As we already have seen, both CP1 and CP2 are subclasses of CP, and each

of them is not contained in the other. Consequently, an interesting problem is

to find the intersection of these subclasses. This can be made by using again

Theorem D.

Corollary F. A finite group G is contained in the intersection of CP1 and

CP2 if and only if one of the following statements holds:
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a) G is a p-group of exponent p.

b) G is a Frobenius group of order pαq, p < q, with kernel F (G) of order pα

and exponent p, and cyclic complement. Moreover, in this case we have

G′ = F (G).

Remark. A4 is an example of a group of type b) in the above corollary.

Mention that for such a group G the number of Sylow q-subgroups is pα. It is

also clear that G possesses a nontrivial partition consisting of Sylow subgroups:

F (G) and all conjugates of a Frobenius complement.

Finally, we indicate a natural problem concerning the class of finite groups

introduced in our paper.

Open problem. Give a precise description of the structure of finite p-groups

contained in CP2.

2. Proofs of the main results

Proof of Theorem A. Assume first that G belongs to CP2. Let α ∈
πe(G) and x, y ∈ Gα. Then, by (∗), we have

o(xy) ≤ max{o(x), o(y)} ≤ α,

which shows that xy ∈ Gα. This proves that Gα is a subgroup of G. Moreover,

Gα is normal in G because the order map is constant on each conjugacy class.

Conversely, let x, y ∈ G and put α = o(x), β = o(y). By supposing that

α ≤ β, one obtains x, y ∈ Gβ . Since Gβ is a subgroup of G, it follows that

xy ∈ Gβ . Therefore

o(xy) ≤ β = max{o(x), o(y)},
completing the proof. ¤

Proof of Proposition B. Let G be finite group in CP2 and take x ∈ G.

It is well-known that x can be written as a product of (commuting) elements of

prime power orders, say x = x1x2 · · ·xk. Then the condition (∗) implies that

k∏

i=1

o(xi) = o(x) ≤ max{o(xi) | i = 1, k },

and so k = 1. Hence x is of prime power order, i.e. G is contained in CP.

Obviously, the inclusion of CP2 in CP is strict (we already have seen that

A5 belongs to CP, but not to CP2). ¤
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Proof of Proposition C.

a) We know that F (G) is the product of the subgroups Op(G), where p runs

over the prime divisors of |G|. Suppose that there are two distinct primes p

and q dividing the order of F (G). This leads to the existence of two elements

x and y of F (G) such that o(x) = p and o(y) = q. Since F (G) is nilpotent,

we obtain xy = yx and so o(xy) = pq, a contradiction. Thus F (G) = Op(G),

for a prime divisor p of |G|.
b) It is well-known that both Z(G) and Φ(G) are normal nilpotent subgroup of

G. By the maximality of F (G), it follows that Z(G) and Φ(G) are contained

in F (G), and therefore they are also p-groups.

c) Assume that Z(G) is not trivial and take x ∈ Z(G) with o(x) = p. If G is not

a p-group, it contains an element y of prime order q 6= p. Then o(xy) = pq,

contradicting Proposition B. ¤

Proof of Theorem D. If G is a p-group, then the conclusion is obvious.

Assume now that G is not a p-group. We will proceed by induction on |G|.
Since G belongs to CP2, all the numbers in πe(G) are prime powers. Let qn be

the largest number of πe(G), where q is a prime, and let N = {g ∈ G | o(g) < qn}.
Then N E G and exp(G/N) = q. Since |N | < |G|, by the inductive hypothesis

it follows that either N is a p-group or N is a Frobenius group with kernel K of

order pα and cyclic complement H of order rβ , where p, r are distinct primes. We

will prove that in both cases G is a Frobenius group whose kernel and complement

are p-groups.

Case 1. N is a p-group.

Since G is not a p-group, we can take Q ∈ Sylq(G), where p 6= q. So G = N oQ.

Since every element of N is of prime power order, we have CN (h) = 1 for all

1 6= h ∈ Q. Thus, G is a Frobenius group with kernel N and complement Q.

Case 2. N is a Frobenius group.

Subcase 2.1. q 6= p and q 6= r.

By a similar argument as that of Case 1, we know that G is a Frobenius group

with kernel N . But N is not nilpotent, a contradiction.

Subcase 2.2. q = r.

Let Q ∈ Sylq(G). Then G = K o Q. By a similar argument as that of Case 1,

we know that G is a Frobenius group with kernel K and complement Q.

Subcase 2.3. q = p.

We observe that all elements of G\N are of order qn, and gq ∈ K, where g ∈ G\N
and K ∈ Sylq(N). So if NG(H) ∩ (G \ N) 6= 1, then NG(H) ∩ K 6= 1. But N
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is a Frobenius group and NN (H) = H. It follows that NG(H) = H. Since H is

cyclic, NG(H) = CG(H). One obtains that G is r-nilpotent and thus G = P oH,

where P ∈ Sylp(G). A similar argument as that of Case 1 shows that G is again

a Frobenius group with kernel P and complement H.

Finally, we prove that H is cyclic. By Burnside’s Theorem we only need to

prove that H is not a 2-group. If not, let L = {g ∈ G | o(g) = 2}. Then L E G.

It follows that K×L ≤ G, where K is the Frobenius kernel. This contradicts the

fact that all elements of G are of prime power order. ¤

Proof of Corollary F. The equivalence follows directly by Theorem D.

In this way, we have to prove only that G′ = F (G) in the case b).

Obviously, G′ ⊆ F (G). For the converse inclusion, let x ∈ F (G) be a nont-

rivial element. Then o(x) = p. If y is an arbitrary element of order q in G, then

we have

o(xy) ≤ max{o(x), o(y)} = q,

and therefore o(xy) ∈ {p, q}. If we assume that o(xy) = p, it results

q = o(y) = o(x−1xy) ≤ max{o(x−1), o(xy)} = p,

a contradiction. This shows that o(xy) = q. Then there is z ∈ G such that

xy ∈ 〈y〉z, say xy = z−1ykz with k ∈ Z. Since the element

xy1−k = z−1ykzy−k = [z, yk]

has order p, we infer that k must be equal to 1. Hence

x = [z, y] ∈ G′,
which completes the proof. ¤
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