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Measures of pseudorandomness of families of binary lattices, II
(A further construction)

By KATALIN GYARMATI (Budapest), CHRISTIAN MAUDUIT (Marseille)

and ANDRÁS SÁRKÖZY (Budapest)

Abstract. In Part I of this paper we extended the notions of family complexity,

collision and avalanche effect from one dimension to n dimensions, i.e., from binary sequ-

ences to binary lattices. Then we considered a large family of binary lattices with strong

pseudorandom properties which had been constructed by using quadratic characters of

finite fields, and we showed that this family also possesses a nice structure in terms of

these notions. In Part I we considered a large family of binary sequences with strong

pseudorandom properties constructed by using additive characters and we extended it

to n dimensions, i.e., to binary lattices. In this paper we will show that these binary

lattices possess strong pseudorandom properties, and their family also possesses a nice

structure in terms of family complexity, collision and avalanche effect.

1. Introduction

First we recall those definitions from Part I [9] which we need here. In [14]

Mauduit and Sárközy proposed to use the following measures of pseudoran-

domness of binary sequences

(e1, e2, . . . , eN ) ∈ {−1,+1}N :
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the well-distribution measure of EN is defined by

W (EN ) = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

ea+jb

∣∣∣∣∣∣
(1.1)

where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a + (t − 1)b ≤ N ,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1
. . . en+dk

∣∣∣∣∣

where the maximum is taken over all D = (d1, . . . , dk) and M such that 0 ≤ d1 <

· · · < dk ≤ N −M . The combined (well-distribution-correlation) pseudorandom

measure of order k was also introduced:

Qk(EN ) = max
a,b,t,D

∣∣∣∣∣∣

t∑

j=0

ea+jb+d1 . . . ea+jb+dk

∣∣∣∣∣∣
(1.2)

where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that all the

subscripts a+ jb+ d` belong to {1, 2, . . . , N}. (Note that Q1(EN ) = W (EN ) and

clearly Ck(EN ) ≤ Qk(EN ).) Then the sequence EN is considered to be a “good”

pseudorandom sequence if both W (EN ) and Ck(EN ) (at least for “small” k) are

“small” in terms of N , in particular, both are o(N) as N −→ ∞. Indeed, later

Cassaigne, Mauduit and Sárközy [3] showed that this terminology is justified

since for almost all EN ∈ {−1,+1}N both W (EN ) and Ck(EN ) (for fixed k) are

less than N1/2(logN)c (and they are also greater than εN1/2; see also [2] and

[12]). Since that many papers have been written on the pseudorandomness of

special binary sequences and on the measures of pseudorandomness.

In [11] Hubert, Mauduit and Sárközy extended this theory of pseudo-

randomness to n dimensions. They introduced the following definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are integers

between 0 and N − 1:

InN = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or briefly an N -lattice. In [10]

this definition was extended to more general lattices in the following way: Let

u1,u2, . . . ,un be n linearly independent n-dimensional vectors over the field of
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the real numbers such that the i-th coordinate of ui is a positive integer and the

other coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0) (with

zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then we call

the set

Bn
N = {x = x1u1 + · · ·+ xnun :, xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n}

an n-dimensional box N -lattice or briefly a box N -lattice.

In [11] the definition of binary sequences was extended to more dimensions

by considering functions of type

η(x) : InN → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify the nota-

tion slightly by writing η(x) = η(x1, . . . , xn). Such a function can be visualized

as the lattice points of the N -lattice replaced by the two symbols + and −, thus

they are called binary N -lattices.

In [11] Hubert, Mauduit and Sárközy introduced the following measures

of pseudorandomness of binary lattices (here we will present the definition in the

same slightly modified but equivalent form as in [10]):

η : InN → {−1,+1}.

Define the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk

∣∣∣∣∣
∑

x∈B

η(x+ d1) . . . η(x+ dk)

∣∣∣∣∣ ,

where the maximum is taken over all distinct d1, . . . ,dk ∈ InN and all box N -

lattices B such that B + d1, . . . , B + dk ⊆ InN . Note that in the one dimensional

special case Qk(η) is the same as the combined pseudorandom measure (1.2) for

every k and, in particular Q1(η) is the well-distribution measure W in (1.1).

Then η is said to have strong pseudorandom properties, or briefly, it is cons-

idered as a “good” pseudorandom binary lattice if for fixed n and k and “large”

N the measure Qk(η) is “small” (much smaller, than the trivial upper bound

Nn). This terminology is justified by the fact that, as it was proved in [11], for

a truly random binary lattice defined on InN and for fixed k the measure Qk(η)

is “small”, more precisely, it is less than Nn/2 multiplied by a logarithmic factor.
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As in the one-dimensional case, a list of papers written on pseudorandomness of

binary lattices and on the measures of pseudorandomness is presented in [6]; see

also the more recent papers [7] and [8].

In the applications one may need not just a single binary sequence resp.

lattice with strong pseudorandom properties but a large family of them. More-

over, in many applications it is not enough if our family F is large; it can be

much more important to know that F has a “rich”, “complex” structure, there

are many “independent” sequences, resp. lattices in it which are “far apart”.

Thus one needs quantitative measures for these properties of families of binary

sequences, resp. lattices. In the one dimensional case there are tools of this type

appearing in the literature: family complexity, collision, avalanche effect. In Part

I we presented their definitions, and then we extended them to n dimensions, i.e.,

to binary lattices. These definitions in the n dimensional case are the following:

Let F be a family of binary lattices η : InN → {−1,+1}, let j ≤ Nn, let

x1,x2, . . . ,xj be j distinct vectors from InN , and let (ε1, ε2, . . . , εj) ∈ {−1,+1}j .
If we consider binary lattices η : InN → {−1,+1} with

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj , (1.3)

then

Definition 1. (1.3) is said to be a specification of length j of η.

Definition 2. The family complexity or f -complexity of a family F of binary

lattices η : InN → {−1,+1}, denoted by Γ(F), is defined as the greatest integer j

so that for any specification (1.3) of length j there is at least one η ∈ F which

satisfies it.

Then it is easy to see that

Γ(F) ≤ log |F|
log 2

. (1.4)

(Indeed, this is Proposition 1 in [9].)

Assume that N ∈ N, n ∈ N, S is a given finite set, to each s ∈ S we assign

a unique binary lattice η = ηs : InN → {−1,+1}, and let F = F(S) denote the

family of the binary lattices obtained in this way:

F = F(S) = {ηs : s ∈ S}. (1.5)

Definition 3. If s ∈ S, s′ ∈ S, s 6= s′ and ηs = ηs′ , then this is said to be a

collision in F = F(S). If there is no collision in F = F(S), then F is said to be

collision free.
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Definition 4. If F is of form (1.5), and for any s ∈ S changing any element

of s changes “many” elements of ηs : InN → {−1,+1}, then we speak about

avalanche effect, and we say that F = F(S) possesses the avalanche property. If

for any s ∈ S, s′ ∈ S, s 6= s′ at least
(
1
2 − o(1)

)
Nn elements of ηs and ηs′ are

different, then F is said to possess the strict avalanche property.

Definition 5. If N ∈ N, n ∈ N, η : InN → {−1,+1} and η′ : InN → {−1,+1},
then the distance d(η, η′) between η and η′ is defined by

d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ InN , η(x1, . . . , xn) 6= η′(x1, . . . , xn)}|.

If F is a family of form (1.5), then the distance minimum m(F) is defined by

m(F) = min
s,s′∈S
s 6=s′

d(ηs, ηs′).

(So that F is collision free if m(F) > 0, and it possesses the strict avalanche

property if

m(F) ≥
(
1

2
− o(1)

)
Nn.)

After introducing these definitions in Part I, the rest of the paper was devo-

ted to the study of a family of binary lattices. In [16] Mauduit and Sárközy

constructed a large family of binary lattices by using the quadratic character of

finite fields and they proved that these lattices have strong pseudorandom proper-

ties in terms of the measures Qk. In Part I we also showed that a variant of this

family also possesses nice pseudorandom structure in terms of family complexity,

collisions and avalanche effect.

The quadratic character based constructions certainly belong to the best ones

in both one and n dimensions. However, there are a few further constructions

which are (nearly) equally good or just slightly inferior to these quadratic cha-

racter constructions. It may occur that these other constructions have certain

advantages (e.g., fast and simple implementation, flexibility of certain type, bet-

ter control of a special pseudorandom property) which pay in some applications.

Thus it is worth to continue the work by analyzing the pseudorandom proper-

ties of families generated by other important constructions. In this paper our

goal is to analyze two closely related further constructions, and then combining

certain elements of the two constructions we will be able to construct a further

large family of binary lattices such that each of them has strong pseudorandom

properties and their family also possesses a nice pseudorandom structure.



484 Katalin Gyarmati, Christian Mauduit and András Sárközy

2. Two further constructions

The first construction is a one dimensional-one which was presented by Ma-

uduit, Rivat and Sárközy in [13]: let p be an odd prime, f(x) ∈ Fp[x] , and
define the binary sequence Ep = (e1, . . . , ep) by

en =

{
+1 if 0 ≤ rp(f(n)) < p/2

−1 if p/2 ≤ rp(f(n)) < p
(2.1)

(for n = 1, 2, . . . , p) where rp(n) denotes the unique r ∈ {0, 1, . . . , p−1} such that

n ≡ r (mod p). They proved:

Theorem A. If f ∈ Fq[x] is of degree ` ≥ 2 and Ep = (e1, e2, . . . , ep) is

defined as above, then we have

W (Ep) ¿ `p1/2(log p)2,

and for

2 ≤ k ≤ `− 1, Ck(Ep) ≤ `p1/2(log p)k+2. (2.2)

(The expression “additive characters” appears in the title of their paper [13]

since this result is proved by using additive characters.) However, they also

showed that the correlation of large order can be large:

Theorem B. For any ` = 2s there exists a constant c = c(`) > 0 such that

if p is a prime number large enough, f ∈ Fp[x] is of degree ` and Ep = (e1, . . . , ep)

is defined as above, then

max
1≤U<U+V≤p−`+1

∣∣∣∣∣
U+V∑

n=U

enen+1 . . . en+`−1

∣∣∣∣∣ ≥ cp.

Thus condition (2.2) in Theorem A is necessary, and the correlation of or-

der k can be large if k ≥ deg f . This slight weakness of construction (2.1) explains

that, apart from a rather simplified and crude construction in [5] (which did not

use finite fields) it has not been extended to n dimensions (to binary lattices).

However, in the most applications this small problem does not lead to any diffi-

culties: it is usually enough to know that the correlation of small order are small.

If we want Ck to be small, for say k ≤ K, then it is enough to take polynomials

of degree greater than K. Taking the degrees of the polynomial higher makes

the computation longer but, on the other hand, it means more freedom in the

choice of the coefficients and it makes the size of the family greater, which pays

in cryptography and elsewhere.
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In [18] Tóth showed that the family induced by (2.1) and (2.2) is not collision

free, but later she showed [19] that this weakness can be corrected by taking a

subfamily which is just a slightly smaller but it is collision free and it also possesses

the strict avalanche property.

Thus we may conclude that in spite of minor problems arising from The-

orem B, construction (2.1) can be adjusted to the majority of the applications,

besides it is simple and it can be implemented easily, so that is worth to continue

its study and, in particular, to extend it to n dimensions (to binary lattices), by

using also finite fields which may lead to sharper estimates.

The difficulties arising from Theorem B can be eliminated by using the no-

tion of the multiplicative inverse and replacing f(n) in (2.1) by its multiplicative

inverse. This was shown by Mauduit and Sárközy in [15]:

Theorem C. Assume that p is a prime number, f ∈ Fp[x] has degree (0 <)

`(< p) and no multiple zero in Fp. For (a, p) = 1, denote the multiplicative inverse

of a by a−1:

aa−1 ≡ 1 (mod p).

Define the binary sequence Ep = (e1, . . . , ep) by

en =





+1 if (f(n), p) = 1, rp(f(n))
−1 <

p

2

−1 if either (f(n), p) = 1 and rp(f(n))
−1 >

p

2
or p | f(n)

(2.3)

for n = 1, 2, . . . , p (where rp(n) is defined as in (2.1)). Then we have

W (Ep) ¿ `p1/2(log p)2.

Theorem D. Define p, f(x), ` and Ep = (e1, . . . , ep) in the same way as in

Theorem C. Assume also that k ∈ N with 2 ≤ k ≤ p, and one of the following

conditions holds:

(i) k = 2;

(ii) (4`)k < p.

Then we also have

Ck(Ep) ¿ `kp1/2(log p)k+1.

Note that for small `
(
for ` ¿ log p

log log p

)
condition (ii) in Theorem D is weaker,

than (2.2) in Theorem A.

In [17] Mauduit and Sárközy extended construction (2.3) to n dimensions

(to binary lattices). Let q = pn be the power of an odd prime. We will consider
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the field Fq of order q, its prime field of order p will be denoted by Fp (and we

will identify Fp with the field of the modulo p residue classes, and we write i for

the residue class ≡ i (mod p)). Fix a basis v1, v2, . . . , vn of the linear vector space

formed by Fq over Fp (i.e., v1, v2, . . . , vn are linearly independent over Fp). Let

ϕ : Inp → Fq be the mapping defined so that for x = (x1, . . . , xn) ∈ Inp we have

ϕ(x) = ϕ((x1, x2, . . . , xn)) = x1v1 + · · ·+ xnvn ∈ Fq;
clearly, this is a bijection.

Assume that ` ∈ N, a1, . . . , a` are distinct elements of Fq, and let

f(z) = (z + a1)(z + a2) . . . (z + a`) (∈ Fq[z]). (2.4)

Define the “boxes” B1, B2, . . . , Bn by

B1 =

{ n∑

i=1

uivi : 0 ≤ u1 ≤ p− 3

2
, u2, . . . , un ∈ Fp

}
,

Bj =

{ n∑

i=1

uivi : u1 = · · · = uj−1 =
p− 1

2
, 0 ≤ uj ≤ p− 3

2
, uj+1, . . . , un ∈ Fp

}

and write

B = ∪n
j=1Bj .

Define the binary lattice Inp → {−1,+1} by

η(x) =

{
+1 if f(ϕ(x)) 6= 0 and f(ϕ(x))−1 ∈ B
−1 otherwise.

(2.5)

(As they write in [17]: “We remark that the definition of B is made slightly

complicated by the fact that we have to balance between two requirements: the

structure of B must be possibly symmetric, easy to handle and, on the other hand,

its cardinality must approximate q
2 well.”)

It was shown that if k is not very large, then Qk(η) is “small” for this binary

lattice η:

Theorem E. If p, q, n, `, B and η are defined as above, k ∈ N
k, ` < p, k + ` ≤ p+ 1

and

k` <
q

2
,

then we have

Qk(η) <
(
2k+3 + 1

)
k`nkq1/2(log p+ 2)n+k.
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We have tried to show that there is a large family of binary lattices of type

(2.5) obtained from polynomials of form (2.4) (so that by Theorem E the pseu-

dorandom measures Qk of the lattices are small for small k) and the complexity

of this family is large, it is collision free, and it also possesses the strict avalanche

property (as it happens in case of the quadratic character construction studied in

Part I). Unfortunately, we have not been able to do this. The difficulty is that the

polynomials f appearing in this construction have the very special structure given

in (2.4) which can be handled only by multiplicative characters (which appear in

the quadratic character construction) but it can be handled neither by additive

characters (which is the natural approach in case of construction (2.5)) nor by

the interpolation method used in [1].

Since the estimate of the family complexity seems to be so difficult in case of

the multiplicative inverse construction (2.3), thus we will return here to construc-

tion (2.1) which is slightly simpler and thus it can be handled more easily. First

in Section 3 we will extend construction (2.1) to n dimensions by using the same

finite fields approach which was used in [17] for extending construction (2.3) to

the n dimensional construction (2.5), and we will show that Qk(η) is small for

the binary lattice obtained in this way if k is small. Then in Section 4 we will

introduce a large subfamily of these lattices, and we will show that its family

complexity is also large; we will prove this by using a variant of the interpolation

method (introduced in [1]). Finally, in Section 5 we will show that the same subfa-

mily is collision free, and it also possesses the strict avalanche property. Thus this

subfamily is composed of lattices each having strong pseudorandom properties,

and their family also possesses strong pseudorandom properties.

3. Extension of construction (2.1) to n dimensions and estimate

of the pseudorandom measures

We will use the same notations as in Section 2. Let f(z) ∈ Fq[z] be a non-

constant polynomial, and define the binary lattice η : Inp → {−1,+1} by

η(x) = ηf (x) =

{
+1 if f(ϕ(x)) ∈ B
−1 if f(ϕ(x)) 6∈ B.

(3.1)

Theorem 1. Let k, ` ∈ N with

2 ≤ ` < p (3.2)
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and

2 ≤ k ≤ `− 1, (3.3)

let f(z) ∈ Fq[z] be of degree `, and define η by (3.1). Then we have

Qk(EN ) < 2k`nkq1/2(log p+ 2)n+k. (3.4)

As Theorem B shows condition (3.3) is necessary in the special case n = 1.

This result could be extended to the case of general n (so that (3.3) is also

necessary for n > 1); we will not go into details of this here.

Proof of Theorem 1. Consider the i-th factor η(x + di) in the sum in

definition of Qk(η). By (3.1), the value of this is

η(x+ di) =

{
+1 if f(ϕ(x+ di)) ∈ B
−1 if f(ϕ(x+ di)) 6∈ B.

(3.5)

Clearly, ϕ(x+di) = ϕ(x)+ϕ(di), so that writing ϕ(x) = z and ϕ(di) = zi, (3.5)

can be rewritten as

η(x+ di) =

{
+1 if f(z + zi) ∈ B
−1 if f(z + zi) 6∈ B.

(3.6)

Moreover, if x runs over the elements of the box N -lattice

B = {x = (x1b1, x2b2, . . . , xnbn) : 0 ≤ xi ≤ tiqforqi = 1, 2, . . . , n}

then z runs over the box

B′ = {ϕ(x) : x ∈ B}
= {x1b1v1 + x2b2v2 + · · ·+ xnbnvn : xi ∈ N ∪ {0}, 0 ≤ xi ≤ ti} ⊆ Fq.

Clearly, for all u ∈ Fq we have

2


1

q

∑

b∈B

∑

h∈Fq
ψ1 (h(u− b))− 1

2


 =

{
+1 if u ∈ B
−1 if u 6∈ B

where ψ1 denotes the canonical character of Fq thus (3.6) can be rewritten as

η(x+ di) = 2


1

q

∑

b∈B

∑

h∈Fq
ψ1 (h(f(z + zi)− b))− 1

2



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so that the sum in the definition of Qk(η) can be written as

∑

x∈B

η(x+ d1) . . . η(x+ dk)

=
∑

z∈B′
2k

k∏

i=1


1

q

∑

b∈B

∑

h∈Fq
ψ1 (h(f(z + zi)− b))− 1

2


 . (3.7)

Separating the h = 0 term in the general factor of the product we get

1

q

∑

b∈B

∑

h∈Fq
ψ1 (h(f(z + zi)− b))− 1

2

=

(
1

q

∑

b∈B
1− 1

2

)
+

1

q

∑

b∈B

∑

h∈F∗q
ψ1 (h(f(z + zi)− b)) .

Here we have

1

q

∑

b∈B
1− 1

2
=

1

q

n∑

j=1

|Bj | − 1

2
=

1

q

n∑

j=1

p− 1

2
· pn−j − 1

2
=

1

2q
(pn − 1)− 1

2

=
q − 1

2q
− 1

2
= − 1

2q

so that it follows from (3.7) that
∣∣∣∣
∑

x∈B

η(x+ d1) . . . η(x+ dk)

∣∣∣∣

=

∣∣∣∣∣
∑

z∈B′
2k

k∏

i=1

(
1

q

∑

b∈B

∑

h∈F∗q
ψ1 (h(f(z + zi)− b))− 1

2q

∣∣∣∣∣

)

=
1

qk

∣∣∣∣∣
∑

z∈B′

(
(−1)k +

k∑

j=1

(−1)k−j2j
∑

(b1,...,bj)∈Bj

∑

(h1,...,hj)∈(F∗q)
j

∑

1≤i1<···<ij≤k

ψ1(h1(f(z + zi1)− b1) + · · ·+ hj(f(z + zij )− bj))

)∣∣∣∣∣

≤ 1 +
1

qk

k∑

j=1

2j
∑

(h1,...,hj)∈(F∗q)
j

∑

1≤i1<···<ij≤k

∣∣∣∣
∑

z∈B′
ψ1(h1(f(z + z1)) + · · ·+ hj(f(z + zj)))

∣∣∣∣
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×
∣∣∣∣

∑

(b1,...,bj)∈Bj

ψ1(−h1b1 − · · · − hjbj)

∣∣∣∣. (3.8)

¤

In order to estimate the penultimate sum we will need Weil’s theorem [20]:

Lemma 1. If q is a prime power, ψ is a nontrivial additive character of Fq,
and g(x) ∈ Fq[x] is a polynomial of degree d with d ≥ 1, then we have

∣∣∣∣
∑

z∈Fq
ψ(g(z))

∣∣∣∣ ≤ (d− 1)q1/2.

We will use the incomplete version of this theorem:

Lemma 2. Assume that q = pn is a prime power, ψ is a nontrivial additive

character of Fq, and g(x) ∈ Fq[x] is a polynomial of degree d with d ≥ 2 and

B ⊆ Fq is a box of form

B =

{ n∑

j=1

jivi : 0 ≤ ji ≤ ti for i = 1, 2, . . . , n

}

(where v1, . . . , vn are linearly independent over the prime field of Fq). Then we

have ∣∣∣∣
∑

z∈B

ψ(g(z))

∣∣∣∣ ≤ (d− 1)q1/2(2 + log p)n. (3.9)

Proof of Lemma 2. This can be derived from the complete version in

Lemma 1 in the standard way; for the sake of completeness we sketch the proof.

By ψ 6= ψ0 for any u, b ∈ Fq we have

1

q

∑

h∈Fq
ψ(h(u− b)) =

{
1 if u = b

0 if u 6= b,

and thus

∣∣∣∣
∑

z∈B

ψ(g(z))

∣∣∣∣ =
∣∣∣∣
∑

u∈Fq
ψ(g(u))

∑

b∈B

1

q

∑

h∈Fq
ψ(h(u− b))

∣∣∣∣

≤ 1

q

∑

h∈Fq

∣∣∣∣
∑

u∈Fq
ψ(g(u) + hu)

∣∣∣∣
∣∣∣∣
∑

b∈B

ψ(hb)

∣∣∣∣ (3.10)
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By deg g(u) = d ≥ 2 we have

deg(g(u) + hu) = deg g(u) ≥ 2

for every h ∈ Fq, thus we may estimate the middle sum by using Lemma 1, and

then we obtain
∣∣∣∣
∑

u∈Fq
ψ(g(u) + hu)

∣∣∣∣ ≤ (d− 1)q1/2 for every h ∈ Fq. (3.11)

Moreover, by formula (3.21) in [17], for ψ 6= ψ0 and any box B of the given type

we have ∑

h∈Fq

∣∣∣∣
∑

b∈B

ψ(hb)

∣∣∣∣ ≤ q(2 + log p)n. (3.12)

(3.9) follows from (3.10) by (3.11) and (3.12), and this completes the proof of

Lemma 2. ¤

To complete the proof of Theorem 1 it suffices to prove

Lemma 3. In the penultimate sum in (3.8) we have

deg
(
h1f(z + zi1) + · · ·+ hjf(z + zij )

) ≥ 2 (3.13)

for every (h1, . . . , hj) ∈ (F∗q)j and 1 ≤ i1 < · · · < ij ≤ k.

First we will show that, indeed, (3.4) follows from (3.8) and Lemma 3, and

we will return to the proof of Lemma 3 after this.

By Lemma 3, each of the polynomials h1f(z + z1) + · · ·+ hjf(z + zj) in the

penultimate sum in (3.8) is of degree greater than 1, and clearly, each of them

has degree at most deg f = `. Thus we may use Lemma 2 to estimate these sums,

and then we get

∣∣∣∣
∑

z∈B′
ψ1(h1f(z + z1) + · · ·+ hjf(z + zj))

∣∣∣∣ ≤ (`− 1)q1/2(2 + log p)n.

Thus it follows from (3.8) that

∣∣∣∣
∑

x∈B

η(x+ d1) . . . η(x+ dk)

∣∣∣∣

≤ 1+
1

qk

k∑

j=1

2j
∑

(h1,...,hj)∈(F∗q)j

∑

1≤i1<···<ij≤k

(`− 1)q1/2(2 + log p)n
j∏

i=1

∣∣∣∣
∑

b∈B
ψ1(hib)

∣∣∣∣
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= 1 +
1

qk

k∑

j=1

2j(`− 1)q1/2(2 + log p)n
(
k

j

)
∑

h∈F∗q

∣∣∣∣
∑

b∈B
ψ1(hb)

∣∣∣∣




j

. (3.14)

Here we have

∑

h∈F∗q

∣∣∣∣
∑

b∈B
ψ1(hb)

∣∣∣∣ =
∑

ψ 6=ψ0

∣∣∣∣
∑

b∈B
ψ(b)

∣∣∣∣ =
∑

ψ 6=ψ0

∣∣∣∣
n∑

i=1

∑

b∈Bi

ψ(b)

∣∣∣∣

≤
∑

ψ 6=ψ0

n∑

i=1

∣∣∣∣
∑

b∈Bi

ψ(b)

∣∣∣∣ =
n∑

i=1

∑

ψ 6=ψ0

∣∣∣∣
∑

b∈Bi

ψ(b)

∣∣∣∣

By (3.29) in [17] we have

∑

ψ 6=ψ0

∣∣∣∣
∑

b∈Bi

ψ(b)

∣∣∣∣ < q

(
log p+

3

2

)

so that ∑

h∈F∗q

∣∣∣∣
∑

b∈B

ψ1(hb)

∣∣∣∣ <
n∑

i=1

q

(
log p+

3

2

)
= nq

(
log p+

3

2

)
. (3.15)

Thus it follows from (3.14) that

∣∣∣∣
∑

x∈B

η(x+ d1) . . . η(x+ dk)

∣∣∣∣

≤ 1 +
1

qk

k∑

j=1

2j(`− 1)q1/2(2 + log p)n
(
k

j

)(
nq

(
log p+

3

2

))j

= 1 +
`− 1

qk
q1/2(2 + log p)n

k∑

j=1

(
k

j

)(
2nq

(
log p+

3

2

))j

< 1 +
`− 1

qk
q1/2(2 + log p)n

(
1 + 2nq

(
log p+

3

2

))k

< 1 + (`− 1)q1/2(2 + log p)n (2n (log p+ 2))
k
< 2k`nkq1/2(log p+ 2)n+k.

This holds for every B,d1, . . . ,dk which proves (3.4) in the theorem.

It remains to prove Lemma 3.

Proof of Lemma 3. Write

F (z) = h1f(z + zi1) + · · ·+ hjf(z + zij ),
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and assume that contrary to (3.13) we have

degF (z) = 0 or 1, or F (z) ≡ 0. (3.16)

By the assumption deg f = ` < p in (3.2), for every zi ∈ Fq we may use the Taylor

formula to write

f(z + zi) =
∑̀
m=0

zmi
m!

f (m)(z).

(where f (m)(z) denotes the m-th derivative of f(z)). By (3.3) we have

j ≤ k ≤ `− 1, (3.17)

thus we may rewrite this as

f(z + zi) =

j−1∑
m=0

zmi
m!

f (m)(z) + ri(z)

with some polynomial ri(z) of degree at most `− (j − 1)− 1 = `− j. Thus F (z)

can be written as

F (z) =

j∑
t=1

ht

j−1∑
m=0

zmit
m!

f (m)(z) +

j∑
t=1

htrit(z) (3.18)

=

j−1∑
m=0

(
j∑

t=1

htz
m
it

)
1

m!
f (m)(z) +R(z) (3.19)

where R(z) is a polynomial of degree

degR(z) ≤ `− j (or R(z) ≡ 0), (3.20)

while the polynomials fm(z) with 0 ≤ m ≤ j − 1 are of degree

deg f (m)(z) = `−m ≥ `− j + 1 (3.21)

so that by (3.17) we have

deg f (m)(z) ≥ 2. (3.22)

By our indirect assumption (3.16), it follows from (3.19), (3.20), (3.21) and (3.22)

that the coefficient of every f (m)(z) in (3.19) must be 0:

h1 + h2 + · · ·+ hj = 0,
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zi1h1 + zi2h2 + · · ·+ zijhj = 0,

...

zj−1
i1

h1 + zj−1
i2

h2 + · · ·+ zj−1
ij

hj = 0.

This is a system of linear equations in the variables h1, h2, . . . , hj whose deter-

minant is a Vandermonde determinant with generating elements zi1 , zi2 , . . . , zij
which are pairwise distinct, thus it is nonzero. It follows that the system has only

the trivial solution

h1 = h2 = · · · = hj = 0,

which contradicts our assumption (h1, h2, . . . , hj) ∈ (F∗q)j , and this completes the

proof of the lemma. ¤

4. The family complexity of a large subfamily

of the binary lattices studied in Theorem 1

Suppose that by using construction (3.1) we want to form a large family

of n-dimensional binary p-lattices η each of them having strong pseudorandom

properties, more precisely, we want Qk(η) to be “small” for every η belonging to

the family and every k ∈ N less than a certain parameter K ∈ N. By Theorem 1

the lattice η = ηf in (3.1) satisfies this requirement if conditions (3.2) and (3.3)

in Theorem 1 hold with ` = deg f < p and K in place of k + 1: K ≤ ` < p. On

the other hand, if ` = deg f increases then the computational complexity of the

construction also increases, thus we have to keep ` = deg f possibly small. To

balance these two requirements, we take polynomials of degree exactly K, i.e.,

wee consider the family

GK = {η : η = ηf is of form (3.1) with f ∈ Fq[x], deg f = K}.

Note that the coefficients of f can be chosen in (q − 1)qK ways so that

|GK | = (q − 1)qK . (4.1)

Now we will define a subfamily HK of GK which is just slightly smaller than GK ,

and we will show that it is of high family complexity (it follows from HK ⊆ GK

that Γ(HK) ≤ Γ(GK) so that then GK is also of high complexity), it is also

collision free, and it possesses the strict avalanche property. Thus, indeed, both
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the lattices belonging to this family HK and the family itself will possess all the

pseudorandom properties studied by us.

Define S+ and S− as the set of the polynomials of the following form:

S+ = {xK + x2g(x) + x+ 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0},
S− = {xK + x2g(x)− x− 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0},

and let

S = S+ ∪ S−

and

HK = {η : η = ηf with some f ∈ S}.
Note that clearly

|S| =
∣∣S+

∣∣+
∣∣S−∣∣ = 2qK−2,

and in the next section we will show that HK = HK(S) is collision free so that

|HK | = |S| = 2qK−2 (4.2)

which is indeed, just slightly smaller than |GK | in (4.1).

Now we will prove that HK is of high complexity:

Theorem 2. Define q = pn, S and HK as above, and assume that K ∈ N is

such that

3 < K < p. (4.3)

Then we have

Γ(HK) ≥ K − 2. (4.4)

Note that by (1.4) and (4.2) we have

Γ(HK) ≤ log |HK |
log 2

=
log 2 + (K − 2) log q

log 2
<

2

log 2
(K − 2) log q

so that our lower bounds (4.4) is worse than the best possible one by at most a

factor c log q.

Proof of Theorem 2. We will use a modified and extended version of the

interpolation method applied in [1]. While this method gives slightly weaker

estimate than the optimal one, it has the advantage that it is more flexible than

the method used in [4] and it can be adapted to more general situations. We will

use the same notations as in Section 5.
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In order to prove (4.4) we have to show that for any specification

η(x1) = ε1, η(x2) = ε2, . . . , η(xK−2) = εK−2, (4.5)

of length K − 2 there is an f ∈ S such that the associated binary lattice η = ηf :

Inp → {−1,+1} satisfies it. For each of the vectors xi ∈ Inp considered in (4.5) we

write ϕ(xi) = yi and Y = {y1, y2, . . . , yK−2}. Then by (3.1),

η(xi) = εi

holds for some η = ηf if and only if (4.6)

f(yi) ∈ B if εi = +1 and f(yi) 6∈ B if εi = −1. (4.6)

Since clearly 1 ∈ B1 ⊆ B for p > 3 and 1 ∈ B2 ⊆ B for p = 3, and −1 6∈ B, thus
(4.6) follows from

f(yi) = εi (4.7)

so that it suffices to show that there is an f ∈ S = S+ ∪S− such that (4.7) holds

for i = 1, 2, . . . ,K − 2.

If 0 6∈ Y, or 0 ∈ Y and for the i0 with yi0 = 0 we have

εi0 = +1, (4.8)

then we look for such an f in S+, i.e., we represent it in the form

f(y) = yK + y2g(y) + y + 1. (4.9)

Clearly, f(0) = +1 for every f of this form, so that if 0 ∈ Y then by (4.8), (4.7)

holds trivially for i = i0. Thus we may restrict ourselves to i 6= i0 in (4.7), i.e.,

we are looking for a

g ∈ Fq[y] with deg g(y) ≤ K − 3 or g(y) ≡ 0 (4.10)

such that

f(yi) = yKi + y2i g(yi) + yi + 1 = εi

for i 6= i0. If i 6= i0, i.e., yi 6= 0, then the last equality can be rewritten in the

form

g(yi) = −yK−2
i +

εi − yi − 1

y2i
(for i 6= i0). (4.11)
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Since i may assume at most K − 2 values here, thus there is an interpolation

polynomial g of form (4.10) which satisfies (4.11) for every i 6= i0 (which can

be determined by Lagrange or Newton interpolation) and then the polynomial f

defined by (4.9) is of the desired properties.

It remains to consider the case when 0 ∈ Y and for the i0 with yi0 = 0 we

have

εi0 = −1.

Then we look for f in S−, i.e., we represent it in the form

f(y) = yK + y2g(y)− y − 1.

Then again (4.7) holds trivially for i = i0. It remains to find a polynomial g of

form (4.10) such that

f(yi) = yKi + y2i g(yi)− yi − 1 = εi

or, in equivalent form,

g(yi) = −yK−2
i +

εi + yi + 1

y2i
(for i 6= i0).

Again, such a polynomial g can be found by interpolation, and this completes the

proof of Theorem 2. ¤

5. The family studied in Section 4 is collision free and it possesses

the strict avalanche property

We will prove

Theorem 3. Using the notations and assumptions of Section 4 we have

m(HK) >
1

2

(
q − 6(K − 1)n2q1/2

(
log p+

3

2

)2
)
. (5.1)

Note that if

6(K − 1)n2

(
log p+

3

2

)2

< q3/2 (5.2)

then the right hand side of (5.1) is positive so that m(HK) > 0 and thus HK is

collision free. This proves
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Corollary 1. If (5.2) holds then HK is collision free.

Moreover, if q → ∞ and

Kn2(log p)2 = o(q3/2) (5.3)

then it follows from (5.1) that

m(HK) >

(
1

2
− o(1)

)
q

which proves

Corollary 2. If (5.3) holds then HK possesses the strict avalanche property.

Proof of Theorem 3. Assume that f, g ∈ S and f 6= g. Then as at the

beginning of the proof of Theorem 2 in [9] we have

d(ηf , ηg) =
1

2


q −

∑

x∈In
p

ηf (x)ηg(x)


 . (5.4)

If we write ϕ(x) = z, then in the same way as in the proof of Theorem 1 we get

ηf (x) = 2


1

q

∑

b∈B

∑

h∈Fq
ψ1(h(f(z)− b))− 1

2




= 2


1

q

∑

b∈B

∑

h∈F∗q
ψ1(h(f(z)− b))− 1

2q


 (5.5)

and

ηg(x) = 2


1

q

∑

b∈B

∑

h∈F∗q
ψ1(h(g(z)− b))− 1

2q


 . (5.6)

If x runs over the elements of Inp then ϕ(x) = z runs over the elements of Fq.
Thus by (5.5) and (5.6), the sum in (5.4) can be rewritten as

∑

x∈In
p

ηf (x)ηg(x) = 4


1

q

∑

b∈B

∑

h∈F∗q
ψ1(h(f(z)− b))− 1

2q




×

1

q

∑

b∈B

∑

h∈F∗q
ψ1(h(g(z)− b))− 1

2q




= 4
(∑

1
+
∑

2
+
∑

3

)
+

1

q2
(5.7)
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where

∑
1
=

1

q2

∑

h1∈F∗q

∑

h2∈F∗q

∑

z∈Fq
ψ1(h1f(z) + h2g(z))

∑

b1∈B
ψ1(−h1b1)

∑

b2∈B
ψ1(−h2b2),

∑
2
=

1

2q2

∑

h∈F∗q

∑

z∈Fq
ψ1(h(f(z)))

∑

b∈B
ψ1(−hb)

and ∑
3
=

1

2q2

∑

h∈F∗q
q,

∑

z∈Fq
ψ1(h(g(z)))

∑

b∈B
ψ1(−hb).

We have

∑
1
=

1

q2

∑

h1∈F∗q

∑

h2∈F∗q

∣∣∣∣
∑

z∈Fq
ψ1(h1f(z) + h2g(z))

∣∣∣∣
∣∣∣∣
∑

b1∈B
ψ1(−h1b1)

∣∣∣∣

×
∣∣∣∣
∑

b2∈B
ψ1(−h2b2)

∣∣∣∣. (5.8)

We will show that for every h1, h2 ∈ F∗q we have

deg(h1f(z) + h2g(z)) ≥ 1. (5.9)

Indeed, if h1 6= −h2, then the coefficient of xK in h1f(z) + h2g(z) is nonzero.

If h1 = −h2 and both f(z) and g(z) belong to S+ or both belong to S−, then,
by f 6= g the coefficient of at least one of x2, x3, . . . , xK−1 is nonzero. Finally, if

h1 = −h2 and one of f and g belongs to S+ and the other one to S− then the

coefficient of x is ±2h1 6= 0 (note that p > 2). This proves (5.9) so that we may

apply Lemma 1 to estimate the middle sum in (5.8). Clearly, the degree of the

polynomial in (5.9) is at most K, thus we obtain

∣∣∣∣
∑

z∈Fq
ψ1(h1f(z) + h2g(z))

∣∣∣∣ ≤ (K − 1)q1/2

(uniformly for h1, h2 ∈ F∗q). Thus it follows from (5.8) that

∣∣∣
∑

1

∣∣∣ ≤ 1

q2
(K − 1)q1/2


∑

h∈F∗q

∣∣∣∣
∑

b∈B

ψ1(−hb)

∣∣∣∣




2
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whence, by (3.15),

∣∣∣
∑

1

∣∣∣≤ 1

q2
(K−1)q1/2

(
nq

(
log p+

3

2

))2

=(K−1)n2q1/2
(
log p+

3

2

)2

. (5.10)

Clearly we have

∣∣∣
∑

2

∣∣∣ ≤ 1

2q2

∑

h∈F∗q

∣∣∣∣
∑

z∈Fq
ψ1(hf(z))

∣∣∣∣
∣∣∣∣
∑

b∈B

ψ1(−hb))

∣∣∣∣.

Again we may estimate the middle sum by Lemma 1 and then we may use (3.15):

∣∣∣
∑

2

∣∣∣ ≤ 1

2q2

∑

h∈F∗q
(K−1)q1/2

∣∣∣∣
∑

b∈B

ψ1(−hb))

∣∣∣∣ =
1

2q2
(K−1)q1/2

∑

h∈F∗q

∣∣∣∣
∑

b∈B

ψ1(−hb))

∣∣∣∣

≤ 1

2q2
(K − 1)q1/2nq

(
log p+

3

2

)
=

1

2q1/2
(K − 1)n

(
log p+

3

2

)
, (5.11)

and in the same way,

∣∣∣
∑

3

∣∣∣ ≤ 1

2q1/2
(K − 1)n

(
log p+

3

2

)
. (5.12)

It follows from (5.7), (5.10), (5.11) and (5.12) that

∣∣∣∣∣∣
∑

x∈In
p

ηf (x)ηg(x)

∣∣∣∣∣∣
≤ 4

(
(K − 1)n2q1/2

(
log p+

3

2

)2

+
1

q1/2
(K − 1)n

(
log p+

3

2

))
+

1

q2
< 6(K − 1)n2q1/2

(
log p+

3

2

)2

. (5.13)

(5.1) follows from (5.4) and (5.13) which completes the proof of the theorem.

¤
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[7] K. Gyarmati, C. Mauduit and A. Sárközy, Measures of pseudorandomness of finite
binary lattices, II. (The symmetry measures.), Ramanujan J. 25 (2011), 155–178.
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