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The maximal subsemigroups of semigroups of transformations
preserving or reversing the orientation on a finite chain

By ILINKA DIMITROVA (Blagoevgrad), VÍTOR H. FERNANDES (Caparica)

and JÖRG KOPPITZ (Potsdam)

Abstract. The study of the semigroups OPn, of all orientation-preserving trans-

formations on an n-element chain, and ORn, of all orientation-preserving or orientation-

reversing transformations on an n-element chain, has began in [17] and [5]. In order to

bring more insight into the subsemigroup structure of OPn and ORn, we characterize

their maximal subsemigroups.

Introduction and preliminaries

For n ∈ N, let Xn = {1 < 2 < · · · < n} be a finite chain with n elements. As

usual, we denote by Tn the monoid (under composition) of all full transformations

of Xn.

We say that a transformation α ∈ Tn is order-preserving [respectively, order-

reversing ] if x ≤ y implies that xα ≤ yα [respectively, xα ≥ yα], for all x, y ∈ Xn.

As usual, On denotes the submonoid of Tn of all order-preserving transformations

of Xn. This monoid has been extensively studied, for instance in [1], [7], [13], [15],

[20].

Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 1) elements from the chain

Xn. We say that a is cyclic [respectively, anti-cyclic] if there exists no more than
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one index i ∈ {1, . . . , t} such that ai > ai+1 [respectively, ai < ai+1], where at+1

denotes a1. Notice that the sequence a is cyclic [respectively, anti-cyclic] if and

only if a is empty or there exists i ∈ {0, 1, . . . , t − 1} such that ai+1 ≤ ai+2 ≤
· · · ≤ at ≤ a1 ≤ · · · ≤ ai [respectively, ai+1 ≥ ai+2 ≥ · · · ≥ at ≥ a1 ≥ · · · ≥ ai]

(the index i ∈ {0, 1, . . . , t− 1} is unique unless a is constant and t ≥ 2). We say

that a transformation α ∈ Tn is orientation-preserving [respectively, orientation-

reversing ] if the sequence (1α, 2α, . . . , nα) of its images is cyclic [respectively,

anti-cyclic]. The notion of an orientation-preserving transformation was intro-

duced by McAlister in [17] and, independently, by Catarino and Higgins

in [5]. It is easy to show that the product of two orientation-preserving or of two

orientation-reversing transformations is orientation-preserving, and the product

of an orientation-preserving transformation by an orientation-reversing transfor-

mation is orientation-reversing (see [5]). We denote by OPn [respectively, ORn]

the monoid of all orientation-preserving [respectively, orientation-preserving or

orientation-reversing] full transformations. It is clear that OPn is a submonoid

of ORn.

Regarding the monoidsOPn andORn, presentations for them were exhibited

by Catarino in [4] and by Arthur and Ruškuc in [2], the Green’s relations,

their sizes and ranks, among other properties, were determined by Catarino

and Higgins in [5] and a description of their congruences were given in [10]

by Fernandes, Gomes and Jesus. In [22], Zhao, Bo and Mei characterized

the locally maximal idempotent-generated subsemigroups of OPn (excluding the

permutations).

In this paper, we aim to give more insight into the subsemigroup structure

of the monoids OPn and ORn by characterizing the maximal subsemigroups of

these monoids and of their ideals. By a maximal subsemigroup of a semigroup

S we mean a maximal element, under set inclusion, of the family of all proper

subsemigroups of S. In Section 1, we study the monoid OPn and its ideals. First,

we describe all maximal subsemigroups of OPn (some of them are associated with

the maximal subsemigroups of the additive group Zn). The main result of this

section is the characterization of the maximal subsemigroups of the ideals of OPn.

In Section 2, we study the monoid ORn and its ideals. Again, first we describe all

maximal subsemigroups of ORn (some of them are associated with the maximal

subsemigroups of the dihedral group Dn of order 2n). The main result of this

section is the characterization of the maximal subsemigroups of the ideals of ORn,

which are associated with the maximal subsemigroups of the ideals of OPn.

The maximal subsemigroups of the monoid Tn were described by Bayra-

mov [3] in 1966. Much more recently (2001), Yang [21] classified the maximal
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subsemigroups of the semigroup Singn of all singular full transformations of Xn.

In 1985, Todorov and Krac̆olova [18] constructed four types of maximal sub-

semigroups of the ideals of Tn. A complete description of the maximal subsemi-

groups of the ideals of Tn was given in 2004 by Yang and Yang [19]. The maxi-

mal subsemigroups of the semigroup On were characterized by Yang [20] in 2000.

Gyudzhenov and Dimitrova (2006) completely described in [14] the maximal

subsemigroups of the semigroup ODn of all order-preserving or order-reversing

full transformations of Xn. In 2008, Dimitrova and Koppitz [6] classified the

maximal subsemigroups of the ideals of On as well as of the ideals of ODn.

On the other hand, Ganyushkin and Mazorchuk [11] in 2003 gave a de-

scription of the maximal subsemigroups of the semigroup POIn of all order-

preserving partial injections of Xn and, in 2009, Dimitrova and Koppitz [7]

characterized the maximal subsemigroups of the ideals of the semigroup POIn

and of the ideals of the semigroup PODIn of all order-preserving or order-

reversing partial injections of Xn.

For every transformation α ∈ Tn, we denote by kerα and imα the kernel and

the image of α, respectively. The number rankα = | kerα| = | imα| is called the

rank of α. Given a subset U of Tn, we denote by E(U) its set of idempotents.

The weight of an equivalence relation π on Xn is the number |Xn/π|. Let A ⊆ Xn

and let π be an equivalence relation on Xn of weight |A|. We say that A is a

transversal of π (denoted by A#π) if |A ∩ x̄| = 1 for every equivalence class x̄

of π.

Since On, OPn and ORn are regular submonoids of Tn, the definition of the

Green’s relations L, R and H on On, OPn and ORn follow immediately from well

known results on regular semigroups and from their descriptions on Tn. We have

αLβ ⇐⇒ imα = imβ and αRβ ⇐⇒ kerα = kerβ, for every transformations α

and β. Recall also that for the Green’s relation J , we have (on On, OPn and

ORn) αJ β ⇐⇒ rankα = rankβ, for every transformations α and β.

Given a semigroup S, we denote by LS
s , R

S
s and HS

s (or, if not ambiguous,

simply by Ls, Rs and Hs) the L-class, R-class and H-class, respectively, of an

element s ∈ S.

For general background on Semigroup Theory, we refer the reader toHowie’s

book [16]. Regarding notions on Group Theory, the book [8] by Dummit and

Foote is our reference.
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1. Maximal subsemigroups of the ideals of OPn

Let n ∈ N. The semigroup OPn is the union of its J -classes J1, J2, . . . , Jn,

where

Jk = {α ∈ OPn | rankα = k},
for k = 1, . . . , n. It follows that the ideals of the semigroup OPn are unions of

the J -classes J1, J2, . . . , Jk, i.e. the sets

OP (n, k) = {α ∈ OPn | rankα ≤ k},

with k = 1, . . . , n. See [9, Note of page 181].

Now, notice that for α ∈ OP (n, k), with k = 1, . . . , n, we have L
OP (n,k)
α =

LOPn
α , R

OP (n,k)
α = ROPn

α and H
OP (n,k)
α = HOPn

α . Moreover, for α, β ∈ Jk, with

k = 1, . . . , n, the product αβ belongs to Jk (if and only if αβ ∈ Rα ∩ Lβ) if and

only if imα# kerβ. Thus, it is easy to show:

Lemma 1.1. Let k ∈ {1, 2, . . . , n} and let α, β ∈ Jk be such that imα# kerβ.

Then αROPn

β = ROPn

αβ = ROPn
α , LOPn

α β = LOPn

αβ = LOPn

β , αHOPn

β = HOPn
α β =

HOPn

αβ and LOPn
α ROPn

β = Jk.

Next, recall that Catarino and Higgins [5] proved:

Proposition 1.2. Let k ∈ {1, 2, . . . , n} and let α ∈ OPn be an element of

rank k. Then |Hα| = k. Moreover, if α is an idempotent, then Hα is a cyclic

group of order k.

Let G be a cyclic group of order k, with k ∈ N. It is well known that

there exists an one-to-one correspondence between the subgroups of G and the

(positive) divisors of k.

Let us consider the following elements of OPn:

g =

(
1 2 · · · n− 1 n

2 3 · · · n 1

)
∈ Jn

and

ui =

(
1 2 · · · i− 1 i i+ 1 · · · n

1 2 · · · i− 1 i+ 1 i+ 1 · · · n

)
∈ Jn−1,

for i = 1, . . . , n (with i = n we take i+ 1 = 1).

Notice that the group of units of OPn is the cyclic group Jn = HOPn
g of

order n.

We will use the following well known result (see [4], [17]).
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Proposition 1.3. OPn = 〈u1, g〉.
Next, we present alternative generating sets of the monoid OPn.

Proposition 1.4. Let α, γ ∈ OPn. If α ∈ Jn−1 and γ is a permutation of

order n then OPn = 〈α, γ〉.
Proof. Since γ ∈ Jn has order n, we have 〈γ〉 = Jn and so g ∈ 〈γ〉. From

α ∈ Jn−1, it follows that there exist 1 ≤ i, j ≤ n such that imα = Xn \ {j} and

(i, i + 1) ∈ kerα (by taking i + 1 = 1, if i = n). Put s = i − j, if j < i, and

s = n + i − j, otherwise. Then, it is easy to show that β = αgs ∈ Hui
. Now, as

ui is an idempotent of OPn, by Proposition 1.2, it follows that ui is a power of

β. On the other hand, it is a routine matter to show that u1 = gn+i−1uig
n−i+1.

Thus, by Proposition 1.3, we deduce that OPn = 〈α, γ〉. ¤

For a prime divisor p of n, we put Wp = 〈gp〉 = {1, gp, g2p, . . . , g(n
p −1)p},

which is a cyclic group of order n
p . Furthermore, from well known results regarding

finite cyclic groups, we have:

Lemma 1.5. The groups Wp, with p a prime divisor of n, are the maximal

subsemigroups of Jn.

Now, we can describe the maximal subsemigroups of OPn.

Theorem 1.6. Let S be a subsemigroup of the semigroup OPn. Then S is

maximal if and only if S = OP (n, n − 2) ∪ Jn or S = OP (n, n − 1) ∪Wp, for a

prime divisor p of n.

Proof. Let S be a maximal subsemigroup of OPn. Then, it is clear that

OP (n, n−2) ⊆ S and thus S = OP (n, n−2)∪T , for some subset T of Jn−1∪Jn.

By Proposition 1.4, we have T ∩ Jn−1 = ∅ or T does not contain any element of

Jn of order n. In the latter case, we must have Jn−1 ⊆ T , by the maximality of S.

This shows that S = OP (n, n−1)∪T ′, for some subset T ′ of Jn, whence T ′ must be

a maximal subsemigroup of Jn. Thus, by Lemma 1.5, we have T ′ = Wp, for some

prime divisor p of n. On the other hand, if T∩Jn−1 = ∅ then S ⊆ OP (n, n−2)∪Jn,
whence S = OP (n, n− 2) ∪ Jn, by the maximality of S.

The converse part follows immediately from Proposition 1.4 and Lemma 1.5.

¤

Let n ≥ 3 and 1 ≤ k ≤ n − 1. In the remaining of this section, we consider

the ideal OP (n, k) of OPn.

Clearly, the maximal subsemigroups of OP (n, 1) are the sets of the form

OP (n, 1) \ {α}, for α ∈ OP (n, 1). Therefore, in what follows, we consider k ≥ 2.
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Notice that any element α ∈ On of rank k − 1, for 2 ≤ k ≤ n − 1, is

expressible as a product of elements of On of rank k (see [12]). On the other

hand, any element β ∈ OPn admits a decomposition β = gtα, for some 1 ≤ t ≤ n

and α ∈ On (see [5]). Then, it is easy to deduce that any element of Jk−1 is a

product of elements of Jk, for 2 ≤ k ≤ n− 1. Thus, we have:

Lemma 1.7. OP (n, k) = 〈Jk〉.
Next, observe that for a transformation α ∈ OPn, it is easy to show that if

(1, n) 6∈ kerα then all kernel classes of α are intervals of Xn and, on the other

hand, if (1, n) ∈ kerα then all kernel classes of α are intervals of Xn, except the

class containing 1 and n which is a union of two intervals of Xn (one containing 1

and the other n). Moreover, if α is not a constant, then HOPn
α ∩ On = ∅ if and

only if (1, n) ∈ kerα.

Proposition 1.8. Let C be any subset of Jk containing Jk∩On and at least

one element from each R-class of OPn of rank k. Then OP (n, k) = 〈C〉.
Proof. First, let α ∈ C with kernel {{1, k + 1, . . . , n}, {2}, . . . , {k}}. Let β

be an order-preserving transformation with image {1, . . . , k} such that imα# kerβ.

Then, β ∈ C, ker(αβ) = kerα and im(αβ) = imβ, from which it follows that the

idempotent power of αβ is the element

(
1 · · · k k + 1 · · · n

1 · · · k 1 · · · 1

)
∈ 〈C〉. There-

fore,

γ =

(
1 · · · k k + 1 · · · n

2 · · · k + 1 k + 1 · · · k + 1

)(
1 · · · k k + 1 · · · n

1 · · · k 1 · · · 1

)

=

(
1 · · · k − 1 k k + 1 · · · n

2 · · · k 1 1 · · · 1

)
∈ 〈C〉,

since the first element of the second member of these equalities is an order-

preserving transformation of rank k and so an element of C. Furthermore, as γ

generates a cyclic group of order k, then the H-class Hγ of OPn is contained

in 〈C〉.
Now, ε = γk =

(
1 · · · k k + 1 · · · n

1 · · · k k · · · k

)
is the idempotent of Hγ and let H

be any H-class of OPn contained in the R-class Rε = Rγ of OPn. Since the

elements of H have the same kernel as ε ∈ On, then H has an order-preserving

element τ . From εRτ it follows that ετ = τ , whence im ε# ker τ and so, by

Lemma 1.1, we have Hετ = Hτ . As τ ∈ C and Hε ⊆ 〈C〉, we also have H =

Hτ ⊆ 〈C〉. Hence Rε ⊆ 〈C〉.
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Next, let θ ∈ Jk.

Suppose first that (1, n) 6∈ ker θ. Then, there exists an order-preserving

transformation τ ∈ Lε ∩ Rθ. Since ε ∈ Lε ∩ Rε = Lτ ∩ Rε, we have τε = τ ,

whence im τ# ker ε and so, by Lemma 1.1, we obtain τRε = Rτ = Rθ. As τ ∈ C

and Rε ⊆ 〈C〉, then the R-class Rθ of OPn is contained in 〈C〉.
Finally, suppose that (1, n) ∈ ker θ and let τ ∈ C ∩ Rθ. Take an order-

preserving idempotent ε′ such that im ε′ = im τ . Then, ε′ ∈ Lε′ ∩Rε′ = Lτ ∩Rε′ ,

whence τε′ = τ and so im τ# ker ε′. Thus, by Lemma 1.1, we have τRε′ = Rτ =

Rθ. As τ ∈ C and Rε′ ⊆ 〈C〉 (by the previous case), then the R-class Rθ is also

contained in 〈C〉.
Hence, we have proved that Jk ⊆ 〈C〉 and so, by Lemma 1.7, we obtain

OP (n, k) = 〈C〉, as required. ¤

Since Jk ∩ On ⊆ 〈E(Jk ∩ On)〉 (see [12]) and each R-class of OPn contains

at least one idempotent, we have:

Corollary 1.9. OP (n, k) = 〈E(Jk)〉.
Notice that it is easy to show that, in fact, each R-class of OPn contained

in Jk has at least two idempotents. Moreover, as 2 ≤ k ≤ n− 1, it also is easy to

show that each L-class of OPn contained in Jk also has at least two idempotents.

Next, we define a fundamental concept (first considered by Yang and Yang

in [19]) for our description of the maximal subsemigroups of OP (n, k).

Let Imk be any non-empty family of subsets of Xn of cardinality k. Let Kerk
be any non-empty collection of equivalence relations on Xn of weight k. Let I

be a non-empty proper subset of Imk and let K be a non-empty proper subset

of Kerk. The pair (I,K) is called a coupler of (Imk,Kerk) if the following three

conditions are satisfied:

(1) For every A ∈ I and π ∈ K, A is not a transversal of π;

(2) For every B ∈ Imk \ I, there exists π ∈ K such that B#π;

(3) For every ρ ∈ Kerk \K, there exists A ∈ I such that A#ρ.

Now, let

Imk(OPn) = {imα | α ∈ OPn and rankα = k}

(i.e. Imk(OPn) =
(
Xn

k

)
, the family of all subsets of Xn of cardinality k) and let

Kerk(OPn) = {kerα | α ∈ OPn and rankα = k}.

Then, to a coupler of (Imk(OPn),Kerk(OPn)) we also call k-coupler of OPn.

Analogously, being Imk(On) = {imα | α ∈ On and rankα = k} and Kerk(On) =
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{kerα | α ∈ On and rankα = k}, we also call k-coupler of On to a cou-

pler of (Imk(On),Kerk(On)) (notice that Imk(On) =
(
Xn

k

)
= Imk(OPn) and

Kerk(On) = {π ∈ Kerk(OPn) | (1, n) 6∈ π}).
Example 1.10. Consider the following transformations of OP5 of rank 3:

α1 =

(
1 2 3 4 5

1 1 1 2 3

)
, α2 =

(
1 2 3 4 5

1 1 2 2 4

)
,

α3 =

(
1 2 3 4 5

1 1 2 5 5

)
, α4 =

(
1 2 3 4 5

1 3 3 3 4

)
,

α5 =

(
1 2 3 4 5

1 3 3 5 5

)
, α6 =

(
1 2 3 4 5

1 4 5 5 5

)
,

α7 =

(
1 2 3 4 5

4 2 2 3 4

)
, α8 =

(
1 2 3 4 5

5 2 3 3 5

)
,

α9 =

(
1 2 3 4 5

5 2 4 5 5

)
and α10 =

(
1 2 3 4 5

5 5 3 4 5

)
.

Then, we have {imα1, . . . , imα10} =
(
X5

3

)
, {kerα1, . . . , kerα10} = Ker3(OP5)

and {kerα1, . . . , kerα6} = Ker3(O5). Moreover, for instance,

• ({imα1, imα2}, {kerα1, kerα2, kerα3, kerα4, kerα10}) [Figure 1],

• ({imα7, imα8, imα9, imα10}, {kerα4, kerα5, kerα6}) [Figure 2],

• ({imα1, imα7, imα10}, {kerα2, kerα4, kerα5}) [Figure 3] and

• ({imα6, imα9}, {kerα3, kerα5, kerα6, kerα9, kerα10}) [Figure 4]

are 3-couplers of OP5.

Figure 1
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Figure 2

Figure 3

Figure 4

On the other hand,

• ({imα1, imα7, imα10}, {kerα2, kerα4, kerα5}) [Figure 5]

• ({imα1, imα2}, {kerα1, kerα2, kerα3, kerα4}) [Figure 6]

are 3-couplers of O5.
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Figure 5

Figure 6

(As usual, the symbol ∗ inside a box means that the corresponding H-class

contains an idempotent.)

Next, we consider the following subsets of OP (n, k):

(1) SA = OP (n, k − 1) ∪ (Jk \ LOPn
α ), with α ∈ OPn such that A = imα,

for each A ∈ (
Xn

k

)
;

(2) Sπ = OP (n, k − 1) ∪ (Jk \ROPn
α ), with α ∈ OPn such that π = kerα,

for each π ∈ Kerk(OPn);

(3) S(I,K) = OP (n, k − 1) ∪ (⋃{LOPn
α | α ∈ OPn and imα ∈ I})∪

∪ (⋃{ROPn
α | α ∈ OPn and kerα ∈ K}),

for each k-coupler (I,K) of OPn.

It is routine matter to prove that each of these subsets is a (proper) subsemigroup

of OP (n, k).

Before we give the description of the maximal subsemigroups of the ideals

of the semigroup OPn, we recall a result presented in [6] by the first and third

authors (see also [20]). Let O(n, k) denote the ideal of On of all elements of rank

less than or equal to k, i.e. O(n, k) = OP (n, k) ∩ On. Thus, we have:

Theorem 1.11. Let n ≥ 3 and 2 ≤ k ≤ n − 1. Then a subsemigroup of

O(n, k) is maximal if and only if it belongs to one of the following types:

(1) SA ∩ On, with A ∈ (
Xn

k

)
;



Maximal subsemigroups of semigroups of transformations 21

(2) Sπ ∩ On, with π ∈ Kerk(On) such that π does not admit any interval of Xn

as a transversal;

(3) S′
(I,K) = O(n, k − 1) ∪ (⋃{LOn

α | α ∈ On and imα ∈ I})∪
∪ (⋃{ROn

α | α ∈ On and kerα ∈ K}),
with (I,K) a k-coupler of On.

Regarding the maximal subsemigroups of OP (n, k), we first prove:

Lemma 1.12. Let S be a maximal subsemigroup of OP (n, k). Then

S =
⋃{HOPn

α | α ∈ S}.
Proof. Let T =

⋃{HOPn
α | α ∈ S}. Then clearly S ⊆ T . By Corollary 1.9,

there exists ε ∈ E(Jk) such that ε 6∈ S. HenceHOPn
ε ∩S = ∅ and so T 6= OP (n, k).

The result follows by proving that T is a subsemigroup of OP (n, k). Clearly, by

the maximality of S and Lemma 1.7, we have OP (n, k − 1) ( S. So, it suffices

to show that, for all α, β ∈ T ∩ Jk such that αβ ∈ Jk, we get αβ ∈ T . Therefore,

let α, β ∈ T ∩ Jk be such that αβ ∈ Jk. Take α′, β′ ∈ S such that α ∈ HOPn

α′ and

β ∈ HOPn

β′ . Then imα′ = imα# kerβ = kerβ′ and αβ ∈ ROPn
α ∩ LOPn

β , whence

α′β′ ∈ ROPn

α′ ∩ LOPn

β′ = ROPn
α ∩ LOPn

β = HOPn

αβ and so, as α′β′ ∈ S, we obtain

αβ ∈ HOPn

α′β′ ⊆ T , as required. ¤

Now, we have:

Theorem 1.13. Let n ≥ 3 and 2 ≤ k ≤ n − 1. Then a subsemigroup of

OP (n, k) is maximal if and only if it belongs to one of the following types:

(1) SA, with A ∈ (
Xn

k

)
;

(2) Sπ, with π ∈ Kerk(OPn);

(3) S(I,K), with (I,K) a k-coupler of OPn.

Proof. We begin by showing that each of these subsemigroups of OP (n, k)

is maximal.

First, let A ∈ (
Xn

k

)
and let α ∈ OPn be such that imα = A. Take an

idempotent ε ∈ (Jk \ LOPn
α ) ∩ ROPn

α . As LOPn
ε ⊆ SA and, by Lemma 1.1,

LOPn
ε α = LOPn

α , we have 〈SA, α〉 = OP (n, k). Thus, SA is maximal.

Similarly, being π ∈ Kerk(OPn) and being α ∈ OPn such that kerα = π, the

L-class LOPn
α contains at least one idempotent ε ∈ Jk \ROPn

α and so ROPn
ε ⊆ Sπ

and, by Lemma 1.1, αROPn
ε = ROPn

α , whence 〈Sπ, α〉 = OP (n, k). Thus, Sπ is

maximal.

Finally, regarding the subsemigroups of type (3), let (I,K) be a k-coupler

of OPn. As I and K are proper subsets of
(
Xn

k

)
and Kerk(OPn), respectively,
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we may take γ ∈ OPn such that im γ ∈ (
Xn

k

) \ I and ker γ ∈ Kerk(OPn) \ K.

Then, there exist α, β ∈ OPn such that imα ∈ I, kerβ ∈ K, im γ# kerβ and

imα# ker γ. Now, by Lemma 1.1, we have γROPn

β = ROPn
γ . As ROPn

β ⊆ S(I,K),

we obtain ROPn
γ ⊆ 〈S(I,K), γ〉. On the other hand, by Lemma 1.1, we also have

LOPn
α ROPn

γ = Jk. Since LOPn
α ⊆ S(I,K), we deduce that 〈S(I,K), γ〉 = OP (n, k).

Thus, S(I,K) is maximal.

For the converse part, let S be a maximal subsemigroup of the ideal OP (n, k).

If S ∩ ROPn
α = ∅, for some α ∈ Jk, then S = Skerα, by the maximality

of S. Similarly, if S ∩ LOPn
α = ∅, for some α ∈ Jk, then S = Simα. Thus,

suppose that S has at least one element from each R-class and each L-class of

OPn contained in Jk. If S∩On = O(n, k) then S = OP (n, k), by Proposition 1.8.

Therefore S ∩ On ( O(n, k). Let S̄ be a maximal subsemigroup of O(n, k) such

that S ∩ On ⊆ S̄. By Theorem 1.11, we have three possible cases for S̄.

First, suppose that S̄ = Sπ ∩ On, for some π ∈ Kerk(On). As Kerk(On) ⊆
Kerk(OPn), we may take α ∈ S such that kerα = π. Moreover, we have HOPn

α ∩
On 6= ∅. Now, as HOPn

α ⊆ S (by Lemma 1.12), we have (S ∩ On) ∩ ROPn
α 6= ∅,

whence S̄ ∩ROPn
α 6= ∅ and so Sπ ∩ROPn

α 6= ∅, which is a contradiction. Thus, S̄

cannot be of this type.

Secondly, we suppose that S̄ = SA1∩On, for some A1 ∈ (
Xn

k

)
. Let A2, . . . , Ar

(r ≥ 2) be distinct elements of
(
Xn

k

)
such that, for all α ∈ Jk, L

OPn
α ∩On ∩S = ∅

if and only if imα ∈ {A1, . . . , Ar}. For each i ∈ {1, . . . , r}, let αi ∈ OPn be such

that imαi = Ai. Notice that, for i ∈ {1, . . . , r}, as S has at least one element

from each L-class of OPn contained in Jk, in particular, we have LOPn
αi

∩ S 6= ∅
and, on the other hand, as a consequence of Lemma 1.12, if α ∈ LOPn

αi
∩ S then

(1, n) ∈ kerα. Now, let

K = {kerα | α ∈ LOPn
αi

∩ S, for some i ∈ {1, . . . , r}}.

Notice that, clearly, K 6= ∅. Also, let

I = {A ∈ (
Xn

k

) | A is not a transversal of π, for all π ∈ K}.

Observe that, as (1, n) ∈ π, for all π ∈ K, then {A ∈ (
Xn

k

) | 1, n ∈ A} ⊆ I and

so, in particular, I 6= ∅. Furthermore, it is a routine matter to check that the

pair (I,K) is a k-coupler of OPn. Next, we show that S ∩ Jk ⊆ S(I,K). Take

α ∈ S ∩ Jk. If imα ∈ I, then α ∈ S(I,K), by definition. On the other hand,

suppose that imα 6∈ I. Then, there exists π ∈ K such that imα#π. As π ∈ K,

then π = kerβ, for some β ∈ LOPn
αi

∩ S and i ∈ {1, . . . , r}. From imα# kerβ it

follows that αβ ∈ ROPn
α ∩ LOPn

β = ROPn
α ∩ LOPn

αi
. Moreover, αβ ∈ S, whence



Maximal subsemigroups of semigroups of transformations 23

αβ ∈ LOPn
αi

∩ S and so kerα = ker(αβ) ∈ K. Then α ∈ S(I,K), by definition. So,

we have proved that S ∩ Jk ⊆ S(I,K). Therefore S ⊆ S(I,K) and thus S = S(I,K),

by the maximality of S.

Finally, suppose that S̄ = S′
(I′,K′) (as defined in Theorem 1.11), for some

k-coupler (I′,K′) of On. Let

I = I′ ∩ {imα | α ∈ S and kerα ∈ Kerk(On) \K′}
and

K = {π ∈ Kerk(OPn) | A is not a transversal of π, for all A ∈ I}.

Clearly, K′ ⊆ K, whence K 6= ∅. On the other hand, from the definition of I and

from S∩On ⊆ S′
(I′,K′), in view of Lemma 1.12, we may deduce that ROPn

β ∩LOPn
α ∩

S = ∅, for all α, β ∈ Jk such that kerβ ∈ Kerk(On) \ K′ and imα ∈ (
Xn

k

) \ I.

As S has at least one element from each R-class of OPn contained in Jk, in

particular, it follows that I 6= ∅. Furthermore, it is a routine matter to check that

the pair (I,K) is a k-coupler of OPn. Next, we aim to prove that S = S(I,K).

Take α ∈ Jk ∩ S and suppose that α 6∈ S(I,K). Then, imα ∈ (
Xn

k

) \ I and

kerα ∈ Kerk(OPn)\K. Hence, there exists A ∈ I such that A# kerα and, by the

definition of I, we have A = imβ, for some β ∈ S such that kerβ ∈ Kerk(On)\K′.
Thus, from imβ = A# kerα, it follows that βα ∈ ROPn

β ∩ LOPn
α ∩ S and so

ROPn

β ∩ LOPn
α ∩ S 6= ∅, with kerβ ∈ Kerk(On) \ K′ and imα ∈ (

Xn

k

) \ I, which

contradicts the above deduction. Therefore, α ∈ S(I,K), whence S ⊆ S(I,K) and

then S = S(I,K), by the maximality of S, as required. ¤

2. Maximal subsemigroups of the ideals of ORn

As for OPn, the semigroup ORn is the union of its J -classes J̄1, J̄2, . . . , J̄n,

where

J̄k = {α ∈ ORn | rankα = k}
for k = 1, . . . , n. Notice that J̄k∩OPn is the J -class Jk of OPn, for k = 1, . . . , n,

and J̄1 = J1 and J̄2 = J2. Observe also that, for α ∈ OPn, we have LOPn
α =

LORn
α ∩ OPn, R

OPn
α = RORn

α ∩ OPn and HOPn
α = HORn

α ∩ OPn.

Analogously to OPn, the ideals of the semigroup ORn are unions of the

J -classes J̄1, J̄2, . . . , J̄k, i.e. the sets

OR(n, k) = {α ∈ ORn | rankα ≤ k},
with k = 1, . . . , n.
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For α ∈ OR(n, k), with k = 1, . . . , n, we also have L
OR(n,k)
α = LORn

α ,

R
OR(n,k)
α = RORn

α andH
OR(n,k)
α = HORn

α . Moreover, a result similar to Lemma 1.1

holds for elements of ORn:

Lemma 2.1. Let k ∈ {1, 2, . . . , n} and let α, β ∈ J̄k be such that imα# kerβ.

Then αRORn

β = RORn

αβ = RORn
α , LORn

α β = LORn

αβ = LORn

β , αHORn

β = HORn
α β =

HORn

αβ and LORn
α RORn

β = J̄k.

As OR1 = OP1 and OR2 = OP2, in what follows, we consider n ≥ 3.

Next, recall that a dihedral group Dn of order 2n can abstractly be defined

by the group presentation

〈x, y | xn = y2 = 1, xy = yx−1〉.

Let

h =

(
1 2 · · · n− 1 n

n n− 1 · · · 2 1

)
∈ J̄n.

Hence, we have J̄n = 〈g, h〉 and, as gn = h2 = (gh)2 = 1, it is easy to see that J̄n
is a dihedral group of order 2n. Furthermore, Catarino and Higgins [5] proved:

Proposition 2.2. Let k ∈ {3, . . . , n} and let α ∈ ORn be an element of

rank k. Then |Hα| = 2k. Moreover, if α is an idempotent, then Hα is a dihedral

group of order 2k.

Thus, each H-class of rank k of ORn has k orientation-preserving transfor-

mations and k orientation-reversing transformations, for k ∈ {3, . . . , n}.
Notice that, since J̄1 = J1 and J̄2 = J2, for α ∈ J̄k with k = 1, 2, we have

|HORn
α | = k.

Let us consider again the dihedral group Dn of order 2n. Observe that

Dn = {1 = x0, x, x2, . . . , xn−1} ∪ {y, xy, x2y, . . . , xn−1y}.

It is easy to show that the subgroups of Dn are of the form 〈xd〉 (a cyclic group

of order n/d) and of the form 〈xd, xiy〉 (a dihedral group of order 2n/d), for each

positive divisor d of n and each 0 ≤ i < d. It follows that 〈x〉 and 〈xp, xiy〉, with
p a prime divisor of n and 0 ≤ i < p, are the maximal subsemigroups of Dn.

Now, for a prime divisor p of n and 0 ≤ i < p, consider the dihedral group

Vp,i = 〈gp, gih〉 of order 2n/p. Then, the above observation can be rewrote as:

Lemma 2.3. The group Jn = 〈g〉 and the groups Vp,i, with p a prime divisor

of n and 0 ≤ i < p, are the maximal subsemigroups of J̄n.
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Next, we recall the following well known result (see [4], [17]).

Proposition 2.4. ORn = 〈u1, g, h〉.
In fact, more generally, we have:

Proposition 2.5. Let α ∈ J̄n−1, γ an element of Jn of order n and β ∈
J̄n \ Jn. Then ORn = 〈α, γ, β〉.

Proof. If α ∈ J̄n−1∩OPn then, by Proposition 1.4, we have OPn = 〈α, γ〉.
If α ∈ J̄n−1 \ OPn then αβ ∈ J̄n−1 ∩ OPn and, again by Proposition 1.4, we

obtain OPn = 〈αβ, γ〉. Therefore, u1, g ∈ 〈α, γ, β〉. As β ∈ J̄n \OPn, there exists

i ∈ {1, . . . , n} such that β =
(

1 2 ··· i−1 i ··· n−1 n
i−1 i−2 ··· 1 n ··· i+1 i

)
. On the other hand, the

transformation

δ =

(
1 2 · · · i− 1 i · · · n− 1 n

n− i+ 2 n− i+ 3 · · · n 1 · · · n− i n− i+ 1

)

is an element of OPn and h = βδ ∈ 〈α, γ, β〉. Therefore, by Proposition 2.4, we

deduce that ORn = 〈α, γ, β〉. ¤

We have now all the ingredients to describe the maximal subsemigroups

of ORn.

Theorem 2.6. A subsemigroup S of the semigroup ORn is maximal if and

only if S = OR(n, n−2)∪ J̄n or S = OR(n, n−1)∪Jn or S = OR(n, n−1)∪Vp,i,

for some prime divisor p of n and 0 ≤ i < p.

Proof. Let S be a maximal subsemigroup of ORn. Then, by Proposi-

tion 2.5, we have S = OR(n, n − 2) ∪ T , for some T ⊂ (J̄n−1 ∪ J̄n) such that

T∩J̄n−1 = ∅ or T does not contain any element of Jn of order n or T∩(J̄n\Jn) = ∅.
In the latter two cases, we must have J̄n−1 ⊆ T , by the maximality of S. Thus,

S = OR(n, n−1)∪T ′, for some T ′ ⊂ J̄n. Clearly, T
′ must be a maximal subsemi-

group of J̄n, whence S = OR(n, n− 1) ∪ Jn or S = OR(n, n− 1) ∪ Vp,i, for some

prime divisor p of n and 0 ≤ i < p, accordingly with Lemma 2.3. On the other

hand, if T ∩ J̄n−1 = ∅ then S ⊆ OR(n, n− 2)∪ J̄n and so S = OR(n, n− 2)∪ J̄n,

by the maximality of S.

The converse part follows immediately from Proposition 2.5 and Lemma 2.3.

¤

From now on we consider the ideals OR(n, k) of ORn, for k ∈ {1, . . . , n−1}.
Since OR(n, 1) = OP (n, 1) and OR(n, 2) = OP (n, 2), in what follows, we take

k ≥ 3.
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Notice that, as αh ∈ OP (n, k), for all α ∈ OR(n, k) \ OP (n, k), by using

Lemma 1.7, it is easy to conclude:

Lemma 2.7. OR(n, k) = 〈J̄k〉.
In fact, moreover, we have:

Proposition 2.8. OR(n, k) = 〈Jk, α〉, for all α ∈ J̄k \ Jk.
Proof. Let α ∈ J̄k \ Jk and take an idempotent ε ∈ LORn

α . Since imα =

im ε# ker ε, we have αRORn
ε = RORn

α , by Lemma 2.1. Hence, α(RORn
ε ∩ Jk) =

RORn
α \ Jk and so

RORn
α = (RORn

α ∩ Jk) ∪ (RORn
α \ Jk) = (RORn

α ∩ Jk) ∪ α(RORn
ε ∩ Jk) ⊆ 〈Jk, α〉.

Now, let ε′ be an idempotent of RORn
α and take α′ ∈ HORn

ε′ \ Jk. Notice

that α′ ∈ RORn
α ⊆ 〈Jk, α〉. As im ε′# ker ε′ = kerα′, we have LORn

ε′ α′ = LORn

α′ =

LORn

ε′ , by Lemma 2.1. Thus (LORn

ε′ ∩ Jk)α
′ = LORn

ε′ \ Jk, whence

LORn

ε′ = (LORn

ε′ ∩ Jk) ∪ (LORn

ε′ \ Jk) = (LORn

ε′ ∩ Jk) ∪ (LORn

ε′ ∩ Jk)α
′ ⊆ 〈Jk, α〉.

Finally, as im ε′# ker ε′ = kerα, we have LORn

ε′ RORn
α = J̄k, again by Lem-

ma 2.1. Therefore, J̄k ⊆ 〈Jk, α〉 and so, by Lemma 2.7, OR(n, k) = 〈Jk, α〉, as
required. ¤

As an immediate consequence of Proposition 2.8, we have:

Corollary 2.9. OR(n, k − 1) ∪ Jk is a maximal subsemigroup of OR(n, k).

Also, combining Proposition 2.8 with Corollary 1.9, we have:

Corollary 2.10. OR(n, k) = 〈E(Jk), α〉, for all α ∈ J̄k \ Jk.
Before we present our description of the maximal subsemigroups of the ideals

of ORn, we prove the following result:

Lemma 2.11. Let S be a maximal subsemigroup of OR(n, k) containing at

least one orientation-reversing transformation of rank k. Then S =
⋃{HORn

α |
α ∈ S ∩ OPn}.

Proof. Let α ∈ S. As clearly OR(n, k − 1) ⊆ S, it suffices to consider α ∈
J̄k. Take β ∈ HORn

α and suppose that β /∈ S. Hence, by the maximality of S, we

have OR(n, k) = 〈S, β〉. Let ε ∈ E(Jk). Then, there exist t ≥ 0, r0, r1, . . . , rt ≥ 0

and α1, . . . , αt ∈ S such that ε = βr0α1β
r1α2 · · ·βrt−1αtβ

rt . As αHβ, it follows

that τ = αr0α1α
r1α2 · · ·αrt−1αtα

rtHε. Furthermore, τ ∈ S. Now, since ε is a
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power of τ , it follows that also ε ∈ S. Thus E(Jk) ⊆ S. Since S also contains an

orientation-reversing transformation of rank k, by Corollary 2.10, we have S =

OR(n, k), a contradiction. Therefore HORn
α ⊆ S. This shows that HORn

α ⊆ S

for all α ∈ S, i.e.
⋃{HORn

α | α ∈ S} ⊆ S and thus
⋃{HORn

α | α ∈ S} = S.

Since each H-class of ORn contains an orientation-preserving transformation, we

obtain S =
⋃{HORn

α | α ∈ S ∩ OPn}, as required. ¤

In general, if S′ is a subsemigroup of OP (n, k) containing OP (n, k−1), then

(using an argument similar to that considered in the proof of Lemma 1.12) it

is easy to show that S =
⋃{HORn

α | α ∈ S′} is a subsemigroup of OR(n, k).

Furthermore, if S′ ( OP (n, k) then also S ( OR(n, k). In fact, in this case, by

Corollary 1.9, there exists ε∈E(Jk) such that ε /∈S′. It follows thatHORn
ε ∩S′= ∅

and so also ε 6∈ S.

Finally, we have:

Theorem 2.12. Let n ≥ 4 and 3 ≤ k ≤ n − 1. Let S be a subsemigroup

of OR(n, k). Then, S is maximal if and only if S = OR(n, k − 1) ∪ Jk or S =⋃{HORn
α | α ∈ S′}, for some maximal subsemigroup S′ of OP (n, k).

Proof. First, let S be a maximal subsemigroup of OR(n, k) and suppose

that S 6= OR(n, k− 1)∪ Jk. Then S must contain an orientation-reversing trans-

formation of rank k and so S =
⋃{HORn

α | α ∈ S ∩ OPn}, by Lemma 2.11.

Clearly, S ∩ OPn is a proper subsemigroup of OP (n, k), whence there exists a

maximal subsemigroup S′ of OP (n, k) such that S ∩ OPn ⊆ S′. Then, as in the

proof of Lemma 2.11,
⋃{HORn

α | α ∈ S′} is a proper subsemigroup of OR(n, k)

and, as it contains S, it follows that S =
⋃{HORn

α | α ∈ S′}, by the maximality

of S.

Conversely, if S = OR(n, k − 1) ∪ Jk, then S is a maximal subsemigroup of

OR(n, k), by Corollary 2.9. Hence, let us suppose that S =
⋃{HORn

α | α ∈ S′},
for some maximal subsemigroup S′ of OP (n, k). Then, by the above observation,

S is a proper subsemigroup of OR(n, k). Moreover, S must contain an orientation-

reversing transformation of rank k. Let Ŝ be a maximal subsemigroup of OR(n, k)

such that S ⊆ Ŝ. Then Ŝ also contains an orientation-reversing transformation of

rank k and so, by Lemma 2.11, Ŝ =
⋃{HORn

α | α ∈ Ŝ∩OPn}. On the other hand,

S′ ⊆ S ∩OPn ⊆ Ŝ ∩OPn ( OP (n, k), whence S′ = S ∩OPn = Ŝ ∩OPn, by the

maximality of S′. It follows that S = Ŝ and thus S is a maximal subsemigroup

of OR(n, k), as required. ¤

Acknowledgements. The authors wish to thank the anonymous referees



28 Ilinka Dimitrova, Vı́tor H. Fernandes and Jörg Koppitz

for many useful comments and suggestions which improved substantially this

paper.

References
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