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Cycles in Collatz sequences

By BUSISO P. CHISALA (Harare, Zimbabwe)

1. Introduction

The Collatz, or 3n + 1-problem has enjoyed a wide interest since its
origin in the 1950’s. It is this: starting with any positive integer a1,
generate the sequence (an) by the algorithm

an+1 =

{ an

2
, if an is even;

3an + 1, if an is odd.

The classical formulation of the problem is: does every initial a1 eventually
arrive at the “cycle” 1, 4, 2, 1,. . . ?

To date, this is apparently unsettled, and the most recent computer
check has shown this “convergence” for all integers a1 < 240 ([1], [5]). Our
contribution will be to the issue of the possible existence of other cycles in
the natural numbers. Previous work on this includes articles by Garner
[4], Terras [7] and Crandall [3]. We can define the same algorithm
for negative integers, with the result that there are an additional 3 cycles.
The general conjecture due to several authors is that there are only finitely
many cycles. Lagarias’ article [5] contains references to this and related
conjectures.

2. Extensions

We will only consider the subsequence of odd terms, in other words,

the iteration defined by the map on odd integers: C(n) =
3n + 1

2d
, where

d is the highest power of 2 dividing 3n + 1, or the 2-adic ordinal of this
integer.
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Now 1 is a fixed point of C, and the problem is whether Ck(n) = 1
for some k. Again, this map extends to the integers Z, and then to the
rationals Q in the form

C(x) = (3x + 1)|3x + 1|2,

with | . |2 the normalised 2-adic norm for which |2k|2 =
1
2k

. Clearly, we
can even go up to the 2-adic completion Q2, but for our present purposes,
we will take Q as the domain of C. A cycle of length m is now a sequence
x, C(x), C2(x), . . . , Cm−1(x), with Cm(x) = x.

To each x, we associate the sequence of the ordinals
di = Ord2(3Ci−1(x) + 1) for i = 1, 2, · · · . Then each di ≥ 1, and if for
every m ≥ 1, we set n = d1 + · · ·+ dm, we have

2nCm(x) = 3mx + Gm(d1, d2, . . . , dm−1, dm),

where the function Gm is given by

Gm(d1, . . . , dm) =

= 3m−1 + 3m−22d1 + · · ·+ 3 · 2d1+d2+···+dm−2 + 2d1+d2+···+dm−1 .

It follows that x lies on an m-cycle if and only if

(2Σdi − 3m)x = Gm(d1, . . . , dm),

with the integers di determined by x. The surprising thing about extending
to the rationals is the abundance of cycles. For any sequence of integers

(d1, d2, . . . , dm) with di ≥ 1, the rational number
Gm(d1, . . . , dm)

2Σdi − 3m
evidently

belongs to an m-cycle, which is the unique one in Q associated to the
sequence. For example, the fixed points of C are given by the sequences
(d), d ≥ 1, so that the sequences (1), (2) yield the only integral fixed points
x = −1, 1.

3. Bounding Rational Cycles

Fixing m ≥ 1, we would like to get an upper bound on the least
member of any rational m-cycle. Since we wish to apply the results to the
natural numbers, we will consider cycles with sequences (d1, . . . , dm) for
which 2n > 3m, where n =

∑
di. The key lemma is the following, whose

proof is due to Gary Nelson:
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Lemma 3.1. Let (d1, . . . , dm) be any sequence of real numbers. Given
a sequence of weights (w1, . . . , wm), let A =

∑m
i=1 diwi/

∑m
i=1 wi be the

weighted average. Then up to a cyclic permutation, we can renumber
the elements so that for 1 ≤ k ≤ m, all the partial weighted averages∑k

i=1 diwi/
∑k

i=1 wi are bounded above by A.

Proof. If all the di’s are equal to A, we are done. Otherwise, let
di1 , di2 , . . . , dis

, be the elements dj satisfying dj ≤ A, but dj−1 > A (take
j − 1 = m if j = 1). This defines s blocks: the jth block consisting of the
elements from dij

up to but not including dij+1 .
Now make a new sequence, replacing each block by a single element

whose value is the weighted average of the block, and whose weight is the
sum of the weights of the members of the block. It is easy to check that if
the lemma holds for the new (smaller) sequence, it holds for the old. We
are done by induction.

This proof gives an effective method for determining the “starting
point” for the rearrangement. When all the weights are 1, this says that for
a sequence (d1, . . . , dm), and average n, we can, after a cyclic permutation,
assume that

d1 ≤ A, d1 + d2 ≤ 2A, . . . , d1 + d2 + · · ·+ dm−1 ≤ (m− 1)A.

It then follows that

Gm(d1, . . . , dm) ≤ Gm(A, . . . , A) =

= 3m−1 + 3m−22A + · · ·+ 3 · 2(m−2)A + 2(m−1)A =

=
2mA − 3m

2A − 3
.

Since mA = n, we conclude that in any m-cycle, setting n =
∑

di there is

an element Ci(x) =
G(di, di+1, . . . , di−1)

2n − 3m
with Ci(x) ≤ 1

2n/m − 3
. Since the

denominator is minimised when n = dm log2 3e, the least integer greater
than m log2 3, we have

Proposition 3.2. For any m-cycle of positive rationals, the least ele-
ment is at most

1
2(dm log2 3e/m) − 3

.

In the next section, we say more about where this bound is attained.
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4. Intermediate convergents

For an irrational number ξ, we denote its continued fraction by [a0; a1,
. . . ], so that Ck = [a0; a1, · · · , ak] is its kth convergent.

These may also be written as
pk

qk
in reduced from, with the pk, qk

given by the recurrence formulae in terms of the ak’s: pk+2 = ak+2pk+1 +
pk, and qk+2 = ak+2qk+1 + qk. In particular, the denominators increase
with k. The kth convergent is the “best rational approximation” to ξ with
denominator less than qk, with the odd ones being particularly interesting
here since they are all greater than ξ. Between Ck and Ck+2 lie the so-
called intermediate or quasi-convergents, which we shall write as Ci

k for
0 ≤ i ≤ ak+2, and define by:

pi
k = ipk+1 + pk, qi

k = iqk+1 + qk, Ci
k =

pi
k

qi
k

.

In particular, C0
k = Ck and C

ak+2
k = Ck+2 = C0

k+2. It is easily checked
that if i + 1 ≤ ak+2 and k is odd, then Ci

k > Ci+1
k > ξ. Thus the

intermediate convergents form a strictly decreasing sequence lying above
ξ, with successively larger denominators.

For any integer m ≥ 1, the rational number
dmξe

m
is greater than

ξ, and is the best such approximation to ξ with denominator m. The
following result, which appears in various (albeit disguised) forms in the
literature (viz. [6] ch. 7, problem 5, and [2] ch. XXXII, §§15), extends the
sense in which the odd convergents are closest to ξ:

Proposition 4.1. The numbers Ci
k, pi

k, qi
k for odd k satisfy

(1) pi
k = dqi

kξe, so that Ci
k =

dqi
kξe
qi
k

.

(2)
dmξe

m
≥ Ci

k for any m such that 1 ≤ m < qi+1
k .

Of course, and analogous result holds for the lower intermediate conver-
gents based on the even k’s, with (1) replaced by pi

k = bqi
kξc, and inequality

bmξc
m ≤ Ci

k in the statement of (2).

5. Integral cycles

Suppose that it is known that no positive integers less than N lie on
a cycle. Using these facts we are ready to prove our main result. Taking
ξ = log2 3 and using the notation of section 4:
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Theorem. Suppose that Ct(n) = 1 for all positive integers n < N ,
and let i and the odd integer k ≥ 1 be defined by

1
2Ci

k − 3
< N <

1

2Ci+1
k − 3

,

then there are no integral cycles with fewer than qi+1
k terms.

Proof. For m < qi+1
k , we have

dm log2 3e
m

≥ Ci
k, by Prop. 4.1 (2).

From proposition 3.2, the least element of any m-cycle is less than

1
2(dm log2 3e/m) − 3

<
1

2Ci
k − 3

,

which is less than N . This least element is not an integer by assumption,
so there are no integral m-cycles.

For instance, with the presently best known bound of N = 240, we
find that k = 13, i = 0, with a15 = 1. So the upper bound on cycles is
q15 = 1.07813×107 — any integral cycle, with today’s data on the Collatz
problem, would have to have at least 10 million odd terms!

References

[1] Shiro Ando, Letter to J.C. Lagarias, Feb. 18, 1983, Reports that Prof. Nabuo
Yoneda (Dept. of Information Science, Tokyo Univ.) has verified the 3x+1 conject-
ture for all n < 240 ≈ 1.2× 1012.

[2] G. Chrystal, Algebra, an elementary text-book Part II, Chelsea, 1952.
[3] R. E. Crandall, On the “3x + 1” problem, Math. Comp. 32 (1978), 1281–1292.
[4] L. E. Garner, On the Collatz 3n + 1 algorithm, Proc. A.M.S 82 (1981), 19–22.
[5] J. C. Lagarias, The 3x + 1 problem and its generalizations, American Math.

Monthly 92 (1985), 3–23.
[6] I. Niven and H. Zuckermann, An introduction to the theory of numbers, Wiley

& Sons, 1968.
[7] R. Terras, A stoppings time problem on positive integers, Acta Arith. 30 (1976),

241–252.

BUSISO P. CHISALA
MATHEMATICS DEPARTMENT
UNIVERSITY OF ZIMBABWE

(Received January 25, 1993)


