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A characterization of Beckenbach families admitting
discontinuous Jensen affine functions

By MICHAÃL LEWICKI (Katowice)

Abstract. Let F : R3 → R be a continuous function such that F := {R 3 x 7→
F (x, a, b) ∈ R : a, b ∈ R} is a Beckenbach family. Additionally, we assume that for each

a, b ∈ R the functions R 3 x 7→ F (x, a, b) ∈ R are monotonic. We show that if there

exists a function which is discontinuous at some point and Jensen affine with respect to

the family F , then there exists a strictly increasing and continuous function h : R→ R
and continuous G,H : R2 → R such that

F (u, a, b) = h(G(a, b)u+H(a, b)), (∗)
for all u, a, b ∈ R. As a consequence we get an independent proof of theorem of J. Mat-

kowski. Finally, we characterize Beckenbach families of the form (∗).

1. Introduction

Let I ⊆ R be an open interval. A family F := {ψ : I → R : ψ − function}
is called a continuous Beckenbach family on I (see [1] for more details) if it

consists of continuous functions and for every pair of points (x, y), (x̃, ỹ) ∈ I × R
such that x 6= x̃ there exists exactly one function ψ ∈ F such that ψ(x) = y

and ψ(x̃) = ỹ. As a special case, it is often considered a Beckenbach family

determined by a function. Precisely, we call a function F : I × R2 → R a two-

parameter, continuous Beckenbach family on I if F is continuous and for every
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(x, y), (x̃, ỹ) ∈ I × R there exists exactly one (a, b) ∈ R2 such t hat

F (x, a, b) = y and F (x̃, a, b) = ỹ.

Furthermore, if for fixed (a, b) ∈ R2 the function I 3 x 7→ F (x, a, b) ∈ R is

monotonic, then the Beckenbach family will be called monotonic. It is easy to see

that each function in a monotonic Beckenbach family is either strictly monotonic

or constant.

Obviously, a family of affine functions, i.e.

F := {R 3 x 7→ ax+ b ∈ R : a, b ∈ R},
is a continuous, monotonic, two-parameter Beckenbach family.

An important generalization is a Beckenbach family of the form

Fα := {aα(·) + b : a, b ∈ R},
where α : I → R is a strictly monotonic and continuous function. Obviously, Fα

is a continuous, monotonic, two-parameter Beckenbach family.

For a given Beckenbach family F , we will call a function ϕ : I −→ R F-Jensen

affine or Jensen affine with respect to the family F , when for fixed x, y ∈ I we

have: if {
ϕ(x) = ψ(x),

ϕ(y) = ψ(y),
(1)

for some ψ ∈ F , then

ϕ
(x+ y

2

)
= ψ

(x+ y

2

)
. (2)

Additionally, if F : I × R2 → R is a two-parameter, continuous Beckenbach

family then a function ϕ : I → R will be called F -Jensen affine if it is F-Jensen

affine, where F := {F (·, a, b) : a, b ∈ R}.
Now, in the paper [4] Janusz Matkowski has shown that a discontinuous

at least at one point, Jensen affine function with respect to the family Fα exists

if and only if α is a homographic function. For completness, we give here a part

of this Theorem.

Theorem 1.1 (see [4, Thm. 8, p. 443]). Let I ⊆ R be an open interval and

α : I → R be continuous and strictly monotonic. There exists a discontinuous at

least at one point, Fα-Jensen affine function if and only if, there are p, q, r, s ∈ R,
ps 6= rq, such that

α(x) =
px+ q

rx+ s
, x ∈ I,

i.e., α is a homographic function.
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Obviously, in the case when I = R the function α in the above theorem is an

affine function.

Now, in this spirit prof. Janusz Matkowski asked (oral communication)

about characterization of Beckenbach families having discontinuous (at least at

one point) Jensen affine function. In this paper we give a partial answer to this

question. Namely, we give a description of two-parameter, continuous monotonic

Beckenbach families on the whole (!) real line R, having discontinuous, Jensen

affine functions with respect to this family (see Theorem 2.5). We prove that

such families are of the form (3). As a consequence, we get (see Theorem 2.4)

an independent proof of a part of the thesis of Theorem 1.1 (concerning the case

I = R).
Finally, in Theorem 3.1, we present a characterization of two-parameter,

continuous Beckenbach families of the form (3).

2. Main results

Let F : I × R2 → R be a two-parameter Beckenbach family on I given by

the formula
F (u, a, b) = h(G(a, b)u+H(a, b)), (3)

for u ∈ I and a, b ∈ R, where h : R → R is a homeomorphism and the functions

G,H : R2 → R are continuous.

We call a function ϕ : I → R Jensen affine if it satisfies Jensen functional

equation (see [3]), i.e.

ϕ
(x+ y

2

)
=

ϕ(x) + ϕ(y)

2
, x, y ∈ I. (4)

We start with a description of F -Jensen affine function, where F is given

by (3).

Theorem 2.1. Let F : I × R2 → R be a two-parameter Beckenbach family

on I of the form (3). A function ϕ̃ : I → R is F -Jensen affine if and only if there

exists a function ϕ : I → R satisfying equation (4) and such that ϕ̃ = h ◦ ϕ.
Proof. Let ϕ̃ : I → R be F -Jensen affine. Fix xi ∈ I for i ∈ {1, 2} such that

ϕ̃(xi) = h(G(a, b)xi +H(a, b)), (5)

holds for some a, b ∈ R. By F -Jensen affinity of ϕ̃ we have

ϕ̃
(x1 + x2

2

)
= h

(
G(a, b)

x1 + x2

2
+H(a, b)

)
.
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Since h is invertible we get

(h−1 ◦ ϕ̃)
(x1 + x2

2

)
= G(a, b)

x1 + x2

2
+H(a, b). (6)

By (5) we have

(h−1 ◦ ϕ̃)(x1) + (h−1 ◦ ϕ̃)(x2)

2
= G(a, b)

x1 + x2

2
+H(a, b).

Combining (6) and the above we obtain

(h−1 ◦ ϕ̃)
(x1 + x2

2

)
=

(h−1 ◦ ϕ̃)(x1) + (h−1 ◦ ϕ̃)(x2)

2
,

which completes the proof of the “If” part.

To deal with the ”only if” again fix xi ∈ I for i ∈ {1, 2}. Consider (a, b) ∈ R2

such that

(h ◦ ϕ)(xi) = h(G(a, b)xi +H(a, b)),

for i ∈ {1, 2}. By the Jensen affinity of ϕ and the above we get

(h ◦ ϕ)
(x1 + x2

2

)
= h

(ϕ(x1) + ϕ(x2)

2

)

= h

(
G(a, b)x1 +H(a, b) +G(a, b)x2 +H(a, b)

2

)

= h
(
G(a, b)

x1 + x2

2
+H(a, b)

)
= F

(
x1 + x2

2

)
.

which is the desired conclusion. ¤

Take ϕ : I → R Jensen affine and discontinuous (for existance of such func-

tions see [3]). By the above theorem the function h ◦ ϕ is a discontinuous and

F -Jensen affine, where F is of the form (3). Now, it turns out that, in the case

when I = R, families of the form (3) are the only continuous, monotonic, two-

parameter Beckenbach families having discontinuous F -Jensen affine functions.

The rest of this section is devoted to prove this assertation. Thus, we assume

that F is a Beckenbach family on R. We start with some lemmas

Lemma 2.1 (compare [1, Thm. 1]). Let ψ, ψ̃ ∈ F . If ψ(x0) = ψ̃(x0) and

(ψ−ψ̃)|(−∞,x0) < 0, then (ψ−ψ̃)|(x0,+∞) > 0. Furthermore, if (ψ−ψ̃)|(−∞,x0) > 0,

then (ψ − ψ̃)|(x0,+∞) < 0.

A subset A of a linear space X is called J-convex if A+A
2 ⊆ A and it is called

Q-convex if rA+ (1− r)A ⊆ A for all r ∈ (0, 1) ∩Q.
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Lemma 2.2 ([7, Lemma]). If A is J-convex subset of the linear space X

such that X \A is also J-convex then it is necessarily Q-convex.

Lemma 2.3. Let F be a continuous Beckenbach family on R. Assume that

ϕ : R −→ R is F-Jensen affine and ψ ∈ F . Then the set

Aψ := {u ∈ R : ϕ(u) = ψ(u)},

is Q-convex. Furthermore, if cardAψ > 1, then Aψ is dense in R.

Proof. Put

A< := {u ∈ R : ϕ(u) < ψ(u)}, B≥ := {u ∈ R : ϕ(u) ≥ ψ(u)}.

Obviously, we have A<∩B≥ = ∅ and A<∪B≥ = R. Additionally, we may assume

that each of sets A< and B≥ is nonempty.

We show that the sets A< and B≥ are J-convex. To this end, consider

x, y ∈ A< and, on the contrary, suppose that x+y
2 ∈ B≥, i.e.

ϕ
(x+ y

2

)
≥ ψ

(x+ y

2

)
.

Take η ∈ F such that η(x) = ϕ(x) and η(y) = ϕ(y). Since ϕ is F-Jensen affine,

we have η
(
x+y
2

)
= ϕ

(
x+y
2

)
. Thus,

η
(x+ y

2

)
≥ ψ

(x+ y

2

)
.

By continuity of functions η and ψ there exists ξ ∈ (x, x+y
2 ] such that η(ξ) = ψ(ξ).

Since η(x) = ϕ(x) < ψ(x), by Lemma 2.1 we get ϕ(y) = η(y) > ψ(y), i.e. y ∈ B≥.
Obtained contradiction ends the proof of J-convexity of the set A<.

It remains to prove that the set B≥ is J-convex. To this end fix x, y ∈ B≥
and suppose that x+y

2 /∈ B≥. Take η̃ ∈ F such that η̃(x) = ϕ(x) and η̃(y) = ϕ(y).

Since ϕ is F-Jensen affine we have η̃(x+y
2 ) = ϕ(x+y

2 ). Thus,

η̃
(x+ y

2

)
< ψ

(x+ y

2

)
. (7)

By continuity of functions η̃ and ψ there exist ξ ∈ [x, x+y
2 ) and ξ̃ ∈ (x+y

2 , y] such

that η(ξ) = ψ̃(ξ) and η(ξ̃) = ψ̃(ξ̃). Consequently, η = ψ̃, which contradics (7) and

ends the proof of J-convexity of the set B≥.
Now, by Lemma 2.2, A< and B≥ are Q-convex.
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In the same manner we can see that the sets

A> := {u ∈ R : ϕ(u) > ψ(u)}, B≤ := {u ∈ R : ϕ(u) ≤ ψ(u)},

are Q-convex.
Finally, the set Aψ = B≥ ∩B≤ is Q-convex.
The proof of density of Aψ is a typical calculation, and we leave it to the

reader. ¤

Directly from the above lemma we get

Lemma 2.4. Let F be a continuous Beckenbach family on R. Jf ϕ : R→ R
is F-Jensen affine and discontinuous at a point x0 ∈ R, then the graph of ϕ, i.e.

Wϕ := {(x, ϕ(x)) : x ∈ R} is dense in R2.

Proof. We begin by proving that

int clWϕ 6= ∅. (8)

Since ϕ is discontinuous at x0 its graph is not included in a graph of any function

of the family F . Thus there exist φ, φ̃ ∈ F , φ 6= φ̃ and such that cardAφ > 1

and cardAφ̃ > 1. Let z ∈ R be such that φ(z) = φ̃(z) (there exists at most one

such a point). By virtue of Lemma 2.3, the sets Aφ and Aφ̃ are Q-convex in R.
Consider the set W := {(x, rφ(x) + (1− r)φ̃(x)) : x ∈ R, r ∈ (0, 1)} \ {(z, φ(z))}.
Obviously W is open. We show that the graph Wϕ is dense in the set W . Let

P := (m,M)× (z, Z) ⊆ W . Without loss of generality we may assume that

φ|(m,M) < φ̃|(m,M).

Due to the Lemma 2.3 the sets Aφ and Aφ̃ are dense in R. Thus, there exist

m′,M ′ ∈ R such that m < m′ < M ′ < M and ϕ(m′) = φ(m′), ϕ(M ′) = φ̃(M ′).
Take β ∈ F such that β(m′) = φ(m′) and β(M ′) = φ̃(M ′).

Since Aβ is Q-convex, by virtue of Lemma 2.1 we have {(x, ϕ(x)) :x∈Aβ}∩
P 6= ∅. That completes the proof of (8).

Now, fix (u, ϕ(u)) ∈ int clWϕ and let U ⊆ R be nonepmty open set. Let

(v, w), (v, w̃) ∈ U be such that w < w̃. Without loss of generality we may assume

that u < v.

Take functions ψ, ψ̃ ∈ F such that ψ(u) = ψ̃(u) = ϕ(u) and ψ(v) = w, a

ψ̃(v) = w̃. By Lemma 2.1 we have ψ|(u,+∞) < ψ̃|(u,+∞). Thus the set

O := {(x, rψ(x) + (1− r)ψ̃(x)) : r ∈ (0, 1), x ∈ (u,+∞)},
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is open. Now, by (8), there exists r > 0 such that K((u, ϕ(u)), r) ⊆ clWϕ.

Hence, we get O ∩ K((u, ϕ(u)), r) ⊆ clWϕ. Thus, there exists x̃ > u such that

(x̃, ϕ(x̃)) ∈ O.

Take a function β ∈ F satisfying β(u) = ϕ(u) and β(x̃) = ϕ(x̃). Since

ϕ(x̃) < β(x̃) < ϕ̃(x̃) we have ϕ|(u,+∞) < β|(u,+∞) < ϕ̃|(u,+∞). Particularly

ϕ(v) < β(v) < ϕ̃(v).

Let s > 0 be such that K((v, β(v)), s) ⊆ U . Since the set Aβ is Q-convex and

dense in R, there exists a point ṽ ∈ R such that (ṽ, ϕ(ṽ)) ∈ K((v, β(v)), s) ⊆ U .

This completes the proof. ¤

As an immidiate consequence we get

Corollary 2.1. Let F be a continuous Beckenbach family on R. Jf ϕ : R→ R
is F-Jensen affine and discontinuous at x0 ∈ R, then ϕ is discontinuous at each

point.

Now, the existence of discontinuous F-Jensen affine function allows us to

prove the crucial result for the proof Theorem 2.3. We state it as

Corollary 2.2. Let F : R3 → R be a continuous, two-parameter Beckenbach

family. Furthermore, let a function ϕ : R→ R be F -Jensen affine and discontinu-

ous at least at one point. Then the set

Dϕ := {(a, b) ∈ R2 : cardAF (·,a,b) > 1},
is dense in R2.

Proof. Fix u, v ∈ R such that u < v. Let πu,v : R2 → R2 be function

defined by the formula

πu,v(a, b) = (F (u, a, b), F (v, a, b)), (a, b) ∈ R2.

Notice, that by assumptions on F , the function πu,v is a continuous bijection.

According to Invariance of Domain Theorem (see [2]) πu,v is a homeomorphism.

Now, consider the rectangle (c, d) × (c̃, d̃) ⊆ R2. Choose points c1, d1, c̃1, d̃1
such that c < c1 < d1 < d and c̃ < c̃1 < d̃1 < d̃. Let the functions ψ, ψ̃ ∈ F
satisfy ψ(u) = c1, ψ(v) = c̃1 and ψ̃(u) = d1, ψ̃(v) = d̃1. Obviously, by virtue of

Lemma 2.1, we get ψ|[u,v] < ψ̃|[u,v]. Hence, by continuity of ψ and ψ̃ we have

ψ|[ũ,ṽ] < ψ̃|[ũ,ṽ] for some ũ < u and v < ṽ. Since, by Lemma 2.4 the graph

of ϕ is dense, there exist points (p, ϕ(p)), (p̃, ϕ(p̃)) ∈ R2 such that (p, ϕ(p)) ∈
(ũ, u)× (ψ(p), ψ̃(p)) and (p̃, ϕ(p̃)) ∈ (v, ṽ)× (ψ(p̃), ψ̃(p̃)).

Now, let (ã, b̃) ∈ R2 be such that F (·, ã, b̃) satisfies F (p, ã, b̃) = ϕ(p) and

F (p̃, ã, b̃) = ϕ(p̃). By virtue of Lemma 2.1 we have ψ|(p,p̃) < F (·, ã, b̃)|(p,p̃) <
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ψ̃|(p,p̃). Thus, in particular, there exists (s, t)∈ (c, d)×(c̃, d̃) such that F (u, ã, b̃)= s

and F (v, ã, b̃) = t. Consequently, the set

{(F (u, a, b), F (v, a, b)) : (a, b) ∈ Dϕ} = {πu,v(a, b) : (a, b) ∈ Dϕ} = πu,v(Dϕ).

is dense in R2. Since the function π−1
u,v is continuous, we get a density of the

set Dϕ. ¤

Now, let X be a linear space and D be a convex subset of X. After [5], a

function f : D → R satisfying

min{f(x), f(y)} ≤ f
(x+ y

2

)
≤ max{f(x), f(y)}, x, y ∈ D,

will be called midpoint-quasiaffine. Furthermore, a midpoint-quasiaffine function

that satisfies

min{f(x), f(y)} < f
(x+ y

2

)
< max{f(x), f(y)} if f(x) 6= f(y),

will be called strictly midpoint-quasiaffine.

If a function f satisfies a condition

lim
r→0+
r∈Q

f((1− r)x+ ry) = f(x), (9)

for all x, y ∈ D, then we say that f is Q-radially continuous on D.

In the proof of Theorem 2.3 we will use the following

Theorem 2.2 (see [5, Thm. 4]). Let f : X → R be a nonconstant function.

Then f is a strictly midpoint-quasiaffine and Q-radially continuous function if and

only if it can be represented in the form f = g◦α, where α : X → R is an additive

function and g : R → R is an upper semicontinuous strictly increasing function

which is continuous on the range of the additive function α. Furthermore, the

representation f = g ◦ α is unique in the following sense: If f = g′ ◦ α′ with an

additive α′ and upper semicontinuous strictly increasing g′, then there exists a

positive constant q > 0 such that

α′(x) = qα(x), x ∈ X and g′(t) = g(t/q), t ∈ R. (10)

Obviously, we will use above theorem in the case X = R.
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Theorem 2.3. Let F : R3 → R be a continuous, monotonic, two-parameter

Beckenbach family. If there exists a discontinuous at least at one point, F -Jensen

affine function, then there exists continuous and strictly increasing function g :

R→ R, such that

F (u, a, b) = g((g−1(F (1, a, b))− g−1(F (0, a, b)))u+ g−1(F (0, a, b))), (11)

for all u, a, b ∈ R.
Proof. Put F := {F (·, a, b) : a, b ∈ R}. Let ϕ : R→ R be a discontinuous,

F-Jensen affine function. Obviously, ϕ is nonconstant.

We show that ϕ is strictly midpoint-quasiaffine.

To this end, consider x, y ∈ R. Since the family F consists of monotonic

functions, we have

min{ψ(x), ψ(y)} ≤ ψ
(x+ y

2

)
≤ max{ψ(x), ψ(y)}, (12)

for ψ ∈ F . Now, let ψ ∈ F satisfies ψ(x) = ϕ(x) and ψ(y) = ϕ(y). By F-Jensen

affinity of ϕ we have ψ(x+y
2 ) = ϕ(x+y

2 ). Thus,

min{ϕ(x), ϕ(y)} ≤ ϕ
(x+ y

2

)
≤ max{ϕ(x), ϕ(y)}. (13)

Moreover, if ϕ(x) 6= ϕ(y), then ψ is strictly monotonic. Consequently, each of

inequalities (12) and (13) are strict.

Now, we will show that ϕ is Q-radially continuous.

Again, fix x, y ∈ R and take ψ ∈ F such that ψ(x) = ϕ(x) and ψ(y) = ϕ(y). By

virtue of Lemma 2.3 the set Aψ is Q-convex. Hence

lim
r→0+
r∈Q

ϕ((1− r)x+ ry) = lim
r→0+
r∈Q

ψ((1− r)x+ ry) = ψ(x) = ϕ(x).

Since the function ϕ satisfies the assumptions of Theorem 2.2, there exists a

strictly increasing, upper semicontinuous function g : R → R and an additive

function α : R → R such that ϕ = g ◦ α. By virtue of Lemma 2.4 the graph of

ϕ is dense in R2. Consequently, g (as increasing) is a continuous surjection. By

(1), (2) and the fact that g is invertible we have

{
α(x) = (g−1 ◦ F )(x, a(x, y), b(x, y)),

α(y) = (g−1 ◦ F )(y, a(x, y), b(x, y)),
(14)
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and

α
(x+ y

2

)
= (g−1 ◦ F )

(x+ y

2
, a(x, y), b(x, y)

)
,

for all x, y ∈ R, where a, b : R2 → R are functions. Hence, by additivity of α we

get

α(x) + α(y)

2
= (g−1 ◦ F )

(x+ y

2
, a(x, y), b(x, y)

)
.

Combining the above and (14) we obtain

1

2

(
(g−1 ◦ F )(x, a(x, y), b(x, y)) + (g−1 ◦ F )(y, a(x, y), b(x, y))

)

= (g−1 ◦ F )
(x+ y

2
, a(x, y), b(x, y)

)
,

for all x, y ∈ R.
Now, fix (a, b) ∈ Dϕ. Notice, that for all x, y ∈ AF (·,a,b) we have a(x, y) = a

and b(x, y) = b. Thus, we get

1

2
((g−1 ◦ F )(x, a, b) + (g−1 ◦ F )(y, a, b)) = (g−1 ◦ F )

(
x+ y

2
, a, b

)
, (15)

for all x, y ∈ AF (·,a,b). By virtue of Collorary 2.2 the set AF (·,a,b) is dense in R.
By (15) and a continuity of the function g−1 ◦ F the equality

1

2
((g−1 ◦ F )(x, a, b) + (g−1 ◦ F )(y, a, b)) = (g−1 ◦ F )

(
x+ y

2
, a, b

)
,

holds for all x, y ∈ R. Now, take a notice that the above formula states a Jensen

affinity of a continuous function g−1 ◦ F (·, a, b). Hence, there exist constants

c̃(a, b), d̃(a, b) ∈ R such that

g−1(F (u, a, b)) = c̃(a, b)u+ d̃(a, b), u ∈ R, (a, b) ∈ Dϕ. (16)

Putting u = 0 we get

d̃(a, b) = g−1(F (0, a, b)), (a, b) ∈ Dϕ,

and putting u = 1 in (16) we get

c̃(a, b) = g−1(F (1, a, b))− g−1(F (0, a, b)), (a, b) ∈ Dϕ.
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Thus

g−1(F (u, a, b)) = (g−1(F (1, a, b))− g−1(F (0, a, b)))u+ g−1(F (0, a, b)),

for all u ∈ R and (a, b) ∈ Dϕ. Since the functions at each sides of the above

equality are continuous and the set Dϕ is dense, we obtain

g−1(F (u, a, b)) = (g−1(F (1, a, b))− g−1(F (0, a, b)))u+ g−1(F (0, a, b)),

for all u, a, b ∈ R, which is equivalent to (11) and completes the proof. ¤

Now, let us mention an important consequence of the above theorem.

Theorem 2.4. Let α : R → R be a strictly increasing and continuous

function. If for a two-parameter Beckenbach family F : R3 → R of the form

F (u, a, b) = aα(u) + b, u, a, b ∈ R,

exists a discontinuous at least at one point, F -Jensen affine function, then

α(u) = cu+ d, u ∈ R,
for some c, d ∈ R.

Proof. Due to [6]. Since F is a monotonic Beckenbach family, by virtue of

Theorem 2.3, there exists a strictly increasing and continuous function g : R→ R
such that

g−1(aα(u) + b) =
(
g−1(aα(1) + b)− g−1(aα(0) + b)

)
u+ g−1(aα(0) + b), (17)

for a, b, u ∈ R.
Let β : R → R be defined by the formula β(x) = α(x)−α(0)

α(1)−α(0) , for x ∈ R. By

(17) we get

g−1(a(α(1)− α(0))β(u) + aα(0) + b) = (g−1(a(α(1)− α(0))β(1) + aα(0) + b)

= −g−1(a(α(1)− α(0))β(0) + aα(0) + b))u+

= g−1(a(α(1)− α(0))β(0) + aα(0) + b),

for a, b, u ∈ R. Since β(0) = 0, β(1) = 1, we have

g−1(a(α(1)− α(0))β(u) + aα(0) + b)

=
(
g−1(aα(1) + b)− g−1(aα(0) + b)

)
u+ g−1(aα(0) + b),
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for a, b, u ∈ R. Let A = a(α(1)− α(0)) and B = aα(0) + b. We have

g−1(Aβ(u) +B) =
(
g−1(A+B)− g−1(B)

)
u+ g−1(B), (18)

for A,B, u ∈ R.
Now, let h : R → R be defined by the formula h(x) = g(x)−g(0)

g(1)−g(0) . Putting

u = 1 in (17) we get aα(u) + b = g(g−1(aα(u) + b)). Hence the function g is

a surjection. Thus, by (18) and formula g−1(u) = h−1
( u−g(0)
g(1)−g(0)

)
for u ∈ R, we

have

h−1
(Aβ(u) +B − g(0)

g(1)− g(0)

)

=

(
h−1

(A+B − g(0)

g(1)− g(0)

)
− h−1

( B − g(0)

g(1)− g(0)

))
u+ h−1

( B − g(0)

g(1)− g(0)

)
,

for A,B, u ∈ R. Now, putting A = ã(g(1)− g(0)), B = b̃(g(1)− g(0)) + g(0) we

obtain

h−1(ãβ(u) + b̃) = (h−1(ã+ b̃)− h−1(b̃))u+ h−1(b̃), (19)

for ã, b̃, u ∈ R. Take ã = 1, b̃ = 0 in (19). We have

h−1(β(u)) = (h−1(1)− h−1(0))u+ h−1(0), u ∈ R.

Since h(0) = 0, h(1) = 1 we get h−1(β(u)) = u for u ∈ R. Thus, h = β.

Using this equality and putting b̃ = 0 in (19), we get

h−1(ah(u)) = h−1(a)u, a, u ∈ R.

Since h is a bijection for every a ∈ R there exists w ∈ R such that a = h(w). Thus

h−1(h(w)h(u)) = wu, w, u ∈ R.

Or equivalently,

h(uw) = h(u)h(w), u, w ∈ R.

By virtue of Theorem 13.1.3 (see [3]), there exists a constant c > 0 such that

h(u) = |u|csgn(u) for u ∈ R.
Now, putting ã = b̃ = 1, u > 0 in (19) we get

(uc + 1)
1
c = (2

1
c − 1)u+ 1, u > 0,
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Let C = 2
1
c − 1. We have

(uc + 1) = (Cu+ 1)c, u > 0.

Differentiating both sides of equality we get

cuc−1 = Cc(Cu+ 1)c−1, u > 0.

Thus,

1

C
=

(
C +

1

u

)c−1

, u > 0.

Since the left handside of the above equality is constant we get c = 1. That means

h(u) = |u|sgn(u) = u, u ∈ R. Finally, the equality h = β and the definition of β

complete the proof. ¤

We end this section with

Theorem 2.5. Let F : R3 → R be a continuous, monotonic two-parameter

Beckenbach family on R. If there exists a discontinuous at least at one point, F -

Jensen affine function, then there exist a strictly increasing, continuous h : R→ R
and continuous functions G,H : R2 → R such that

F (u, a, b) = h(G(a, b)u+H(a, b)), u, a, b ∈ R.

Proof. Taking h := g, G(·, ·) := g−1(F (1, ·, ·))−g−1(F (0, ·, ·)) andH(·, ·) :=
g−1(F (0, ·, ·)) in formula (11), we get the thesis. ¤

3. Characterization of Beckenbach families of the form (3)

Now, we give a characterization of Beckenbach families of the form (3). We

start with an easy to prove

Remark 3.1. A family of functions F is a (continuous) Beckenbach family iff

the family h(F) is a (continuous) Beckenbach family for some homeomorphism

h : R→ R.

Lemma 3.1. Let G,H : R2 → R be functions and F : R3 → R be a

continuous function given by

F (u, a, b) = G(a, b)u+H(a, b), u, a, b ∈ R. (20)



78 MichaÃl Lewicki

The function F is a two-parameter, continuous Beckenbach family on R iff the

function Î : R2 → R2, defined by formula

Î(a, b) = (G(a, b),H(a, b)), (a, b) ∈ R2,

is a homeomorphism.

Proof. Assume, that F is a Beckenbach family. Putting u = 0 in (20) we

get continuity of the function H. Now, since the function (a, b) 7→ F (1, a, b) −
H(a, b) = G(a, b) is continuous, the function Î is also continuous.

We show that Î is a bijection. To this aim fix (c, d) ∈ R2. Consider the

points (0, d), (1, c + d) ∈ R2. There exists exactly one point (a, b) ∈ R2 such

that F (0, a, b) = d and F (1, a, b) = c+ d. Equivalently (G(a, b),H(a, b)) = (c, d).

Hence Î is bijection. The Invariance of Domain Theorem completes the “If” part

of the proof.

To the proof of reverse implication fix (xi, yi) for i ∈ {1, 2}. There exists

exactly one element (c, d) ∈ R2 such that yi = cxi + d for i ∈ {1, 2}. Since Î is

a bijection there exists exactly one (a, b) ∈ R2 such that Î(a, b) = (c, d). Finally,

there exists exactly one solution of the system of equalities G(a, b)xi+H(a, b) = yi
for i ∈ {1, 2}, which completes the proof. ¤

The last theorem provides a criterion for a function of a form (3) to be a

Beckenbach family.

Theorem 3.1. Let h : R → R be a homeomorphism and G,H : R2 → R.
Furthermore, let F : R3 → R be a continuous function given by

F (u, a, b) = h(G(a, b)u+H(a, b)), u, a, b ∈ R.

The function F is a two-parameter, continuous Beckenbach family on R iff the

function Î : R2 → R2, defined by formula

Î(a, b) = (G(a, b),H(a, b)), (a, b) ∈ R2,

is a homeomorphism.

Proof. An immediate consequence of the Lemma 3.1 and Remark 3.1. ¤
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