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On the rigidity of spacelike hypersurfaces immersed
in the steady state space Hn+1

By A. GERVASIO COLARES (Fortaleza) and HENRIQUE F. DE LIMA (Campina Grande)

Abstract. In this paper, as a suitable application of the well known generalized

Maximum Principle of Omori–Yau, we obtain rigidity results concerning to complete

spacelike hypersurfaces immersed in the half Hn+1 of the de Sitter space Sn+1
1 , which

models the so-called steady state space. Moreover, by using an isometrically equivalent

model for Hn+1, we extend our results to a wider family of spacetimes. Finally, we also

study the uniqueness of entire vertical graphs in such ambient spacetimes.

1. Introduction

In the last years, the study of spacelike hypersurfaces in the Lorentz-

Minkowski space Ln+1 has been of substantial interest from both the physical

and mathematical aspects. From a physical point of view, that interest is moti-

vated by their role in the study of different problems in general relativity. From a

mathematical point of view, that interest is also motivated by the fact that these

hypersurfaces exhibit nice Bernstein-type properties. For example, R. Aiyama

in [1] and Y. L. Xin in [27] simultaneous and independently characterized the

spacelike hyperplanes as the only complete constant mean curvature spacelike

hypersurfaces in Ln+1 having the image of its Gauss map contained in a geodesic

ball of the hyperbolic space (see also [24] for a weaker first version of this result
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given by B. Palmer). In [6], among other interesting results, J. A. Aledo and

L. J. Aĺıas characterized the spacelike hyperplanes in Ln+1 as the only complete

spacelike hypersurfaces with constant mean curvature which are bounded between

two parallel spacelike hyperplanes.

As for the case of de Sitter space Sn+1
1 , Goddard in [14] conjectured that

every complete spacelike hypersurface with constant mean curvature should be

totally umbilical. Although the conjecture turned out to be false in its original

form, it motivated a great deal of work of several authors trying to find a positive

answer to the conjecture under appropriate additional hypotheses. For instance,

J. A. Aledo and L. J. Aĺıas [7] showed that a complete spacelike hypersurface

in Sn+1
1 such that its image under the Gauss map is contained in a hyperbo-

lic geodesic ball is necessarily compact. As an application of their result, they

also conclude that Goddard’s conjecture is true under the assumption that the

hyperbolic image of the hypersurface is bounded.

In this paper we are concerning to complete spacelike hypersurfaces immersed

with bounded mean curvature in the half Hn+1 of the de Sitter space Sn+1
1 ,

which models the so-called steady state space (cf. Section 2). The importance of

considering Hn+1 comes from the fact that, in Cosmology, H4 is the steady state

model of the universe proposed by H. Bondi and T. Gold [10], and F. Hoyle

[16], when looking for a model of the universe which looks the same not only at

all points and in all directions (that is, spatially isotropic and homogeneous), but

also at all times (cf. [26], Section 14.8, and [15], Section 5.2).

Related to our work, A. L. Albujer and L. J. Aĺıas [3] have proved that

if a complete spacelike hypersurface with constant mean curvature is bounded

away from the infinity of the steady state space Hn+1, then its mean curvature

must be identically 1. As a consequence of this result, they concluded that the

only complete spacelike surfaces with constant mean curvature in H3 which are

bounded away from the infinity are the totally umbilical flat surfaces.

In [11], the second author jointly with A. Caminha have studied complete

vertical graphs of constant mean curvature in the hyperbolic and steady state

spaces. They first derived suitable formulas for the Laplacians of the height

function h and of a support-like function naturally attached to the graph; then,

under appropriate restrictions on the values of the mean curvature and the growth

of the height function, they obtained necessary conditions for the existence of such

a graph. Further, in the 3-dimensional case, they proved Bernstein-type results

in each of these ambient spaces.

More recently, the authors have obtained in [12] height estimates concerning

to a compact spacelike hypersurface Σn immersed with constant mean curvature
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H in Hn+1, when its boundary is contained into some hyperplane of this space-

time. Furthermore, they apply these estimates to describe the end of a complete

spacelike hypersurface and to get theorems of characterization concerning to spa-

celike hyperplanes in Hn+1.

Motivated by the works described above, as a suitable application of the

well known generalized Maximum Principle of Omori–Yau [22], [28], we obtain

rigidity results in the steady state space Hn+1. At first, by imposing a restric-

tion on the normal hyperbolic angle of the hypersurface (that is, the hyperbolic

angle between the Gauss map of the hypersurface and the unitary timelike vector

field which determines on Hn+1 a codimension one spacelike foliation by hyper-

planes; see Sections 4 and 2), we prove the following (cf. Theorem 3.2; see also

Corollary 3.5).

Let ψ : Σn → Hn+1 ⊂ Sn+1
1 be a complete spacelike hypersurface bounded

away from the future infinite of Hn+1, with bounded mean curvature H ≥ 1.

If the normal hyperbolic angle θ of Σn satisfies cosh θ ≤ infΣ H, then Σn is a

hyperplane and its hyperbolic image is exactly a horosphere.

At this point notice that, since there is not exist complete noncompact spa-

celike hypersurfaces with constant mean curvature 0 ≤ H < 1 in the steady state

space which are umbilical, it is natural to consider the restriction H ≥ 1 (see

Remark 3.3). Moreover, we also observe that when Σn is a compact spacelike hy-

persurface immersed with constant mean curvature H > 1 in Hn+1, and with its

boundary ∂Σ contained into a spacelike hyperplane of Hn+1, a gradient estimate

due to S. Montiel (cf. [21], Theorem 7) guarantees that the normal hyperbolic

angle θ of Σn satisfies cosh θ ≤ H (see Remark 3.4).

In Section 5, we reobtain that previous result in the context of the steady

state type spacetimes (see Theorems 5.1). Moreover, by applying a classical result

due to A. Huber [17] concerned with parabolic surfaces, we also obtain another

rigidity result concerning to the 3-dimensional case (cf. Theorem 5.3). Finally,

in Section 6, we study the rigidity of entire vertical graphs in such ambient spa-

cetimes (cf. Corollaries 6.1 and 6.2).

2. The steady state space Hn+1

Let Ln+2 denote the (n+ 2)-dimensional Lorentz–Minkowski space (n ≥ 2),

that is, the real vector space Rn+2 endowed with the Lorentz metric defined by

〈v, w〉 =
n+1∑

i=1

viwi − vn+2wn+2,
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for all v, w ∈ Rn+2. We define the (n + 1)-dimensional de Sitter space Sn+1
1 as

the following hyperquadric of Ln+2

Sn+1
1 =

{
p ∈ Ln+2; 〈p, p〉 = 1

}
.

The induced metric from 〈 , 〉 makes Sn+1
1 into a Lorentz manifold with constant

sectional curvature one. Moreover, if p ∈ Sn+1
1 , we can put

Tp

(
Sn+1
1

)
=

{
v ∈ Ln+2; 〈v, p〉 = 0

}
.

Let a ∈ Ln+2 be a past-pointing null vector, that is, 〈a, a〉 = 0 and 〈a, en+2〉 > 0,

where en+2 = (0, . . . , 0, 1). Then the open region of the de Sitter space Sn+1
1 ,

given by

Hn+1 =
{
x ∈ Sn+1

1 ; 〈x, a〉 > 0
}

is the so-called steady state space. Observe that Hn+1 is a non-complete manifold,

being only half of the de Sitter space. Its boundary, as a subset of Sn+1
1 , is the

null hypersurface {
x ∈ Sn+1

1 ; 〈x, a〉 = 0
}
,

whose topology is that of R× Sn−1 (cf. [21]).

A smooth immersion ψ : Σn → Hn+1 of an n-dimensional connected manifold

Σn is said to be a spacelike hypersurface if ψ induces a Riemannian metric on Σn,

which as usual is also denoted by 〈 , 〉. In that case, there exists a unique unitary

timelike normal field N globally defined on Σn which is future-directed (that is,

〈N, en+2〉 < 0). Throughout this paper we will refer to N as the future-pointing

Gauss map of Σn. The mean curvature function of a spacelike hypersurface Σn

is defined as

H = − 1

n
tr(A),

where A stands for the shape operator (or second fundamental form) of Σn with

respect to its future-pointing Gauss map N .

Now, we shall consider in Hn+1 the timelike field

K = −〈x, a〉x+ a.

We easily see that

∇V K = −〈x, a〉V, ∀V ∈ X(Hn+1),

that is, K is closed and conformal field on Hn+1 (cf. [18], Section 5). Then, from

Proposition 1 of [20], we have that the n-dimensional distribution D defined on

Hn+1 by

p ∈ Hn+1 7−→ D(p) =
{
v ∈ TpHn+1; 〈K(p), v〉 = 0

}
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determines a codimension one spacelike foliation F(K) which is oriented by K.

Moreover, from Example 1 of [19], we conclude that the leaves of F(K) are gi-

ven by

Lτ =
{
x ∈ Sn+1

1 ; 〈x, a〉 = τ
}
, τ > 0,

which are totally umbilical hypersurfaces of Hn+1 isometric to the Euclidean

space Rn, and having constant mean curvature one with respect to the unit normal

fields

Nτ = x− 1

τ
a, x ∈ Lτ . (2.1)

Remark 2.1. An explicit isometry between the leaves Lτ and Rn can be found

at Section 2 of [3].

According to [3], we will say that a spacelike hypersurface Σn in Hn+1 is

bounded away from the future infinity if there exists τ > 0 such that

ψ(Σ) ⊂ {x ∈ Hn+1; 〈x, a〉 ≤ τ},

and we will say that it is bounded away from the past infinity if there exists τ > 0

such that

ψ(Σ) ⊂ {x ∈ Hn+1; 〈x, a〉 ≥ τ}.
We will say that Σn is bounded away from the infinity if it is both bounded away

from the past and the future infinity. In other words, Σn is bounded away from

the infinity if there exist 0 < τ < τ such that ψ(Σ) is contained in the slab

bounded by Lτ and Lτ .

3. Rigidity theorems in Hn+1

We observe that the Gauss map N of a spacelike hypersurface Σn immersed

in the steady state space Hn+1 can be thought of as a map

N : Σn → Hn+1

taking values in the hyperbolic space

Hn+1 =
{
x ∈ Ln+2; 〈x, x〉 = −1, 〈x, a〉 < 0

}
,

where a is a non-zero null vector in Ln+2, which will be chosen as in the previous

section. In this setting, the image N(Σ) is called the hyperbolic image of Σn.
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Furthermore, we note that all the horospheres of Hn+1 can be realized in the

Minkowski model in the following way

Lρ =
{
x ∈ Hn+1; 〈x, a〉 = ρ

}
, ρ > 0.

In this setting, we refer to the normal hyperbolic angle θ of Σn as being

the hyperbolic angle between the future-pointing Gauss map N of Σn and the

unitary timelike vector field ν = K
|K| , where |K| =

√
−〈K,K〉. In other words,

cosh θ = −〈N, ν〉.
In order to establish our results, we also will need the well known generalized

maximum principle due to H. Omori and S. T. Yau [22], [28].

Lemma 3.1. Let Σn be an n-dimensional complete Riemannian manifold

whose Ricci curvature is bounded from below and u : Σn → R be a smooth

function which is bounded from above on Σn. Then there is a sequence of points

{pk} in Σn such that

lim
k→∞

u(pk) = sup
Σ

u, lim
k→∞

|∇u(pk)| = 0 and lim
k→∞

∆u(pk) ≤ 0.

Now, we can state and prove our first result

Theorem 3.2. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface

bounded away from the future infinite of Hn+1, with bounded mean curvature

1 ≤ H ≤ α, for some constant α. If the normal hyperbolic angle θ of Σn satisfies

cosh θ ≤ infΣH, then Σn is a hyperplane and its hyperbolic image is exactly a

horosphere.

Proof. Let us recall that the Gauss equation of Σn in Hn+1 describes the

curvature of Σn, denoted by R, in terms of its shape operator A, and it is given by

〈R(X,Y )X,Y 〉 = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 − 〈AX,X〉〈AY, Y 〉+ 〈AX,Y 〉2,

being X,Y ∈ X(Σ). Thus, for all X ∈ X(Σ) with |X| = 1, we have

RicΣ(X,X) = n− 1 + nH〈AX,X〉+ 〈AX,AX〉

= n− 1 +
∣∣∣AX +

nH

2
X
∣∣∣
2

− n2H2

4
|X|2,

where RicΣ stands for the Ricci curvature of Σn. Hence,

RicΣ ≥ n− 1− n2H2

4
. (3.1)
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Thus, since we are supposing that 1 ≤ H ≤ α for some constant α, from (3.1)

we get

RicΣ ≥ n− 1− n2α2

4
,

that is, RicΣ is bounded from below on Σn.

Now, let u : Σn → R be a smooth function given by

u(p) = 〈ψ(p), a〉,

for all p ∈ Σn. We easily see that the gradient of u in is

∇u = a>,

where a> denotes the tangential component of a along Σn, that is,

a = a> − 〈N, a〉N + 〈ψ, a〉ψ = ∇u− 〈N, a〉N + 〈ψ, a〉ψ. (3.2)

Using Gauss and Weingarten formulas, we obtain

∇X∇u = −〈N, a〉AX − uX

for every X ∈ X(Σ). Therefore, the Laplacian of the function u on Σn is given by

∆u = nH〈N, a〉 − nu. (3.3)

From equation (3.2), it is also easy to see that

|∇u|2 = 〈N, a〉2 − u2. (3.4)

Recall here that a is a past-pointing null vector and N is future-pointing, so that

〈N, a〉 > 0.

On the other hand, since Σn is supposed to be bounded away from the

future infinite of Hn+1 and RicΣ is bounded from below, we are in position to

apply Lemma 3.1 to the function u, obtaining a sequence {pk} in Σn such that

lim
k→∞

u(pk) = sup
Σ

u, lim
k→∞

|∇u(pk)| = 0 and lim
k→∞

∆u(pk) ≤ 0.

Consequently, since the mean curvature H is bounded on Σn, from equations

(3.3) and (3.4), we get a subsequence {pkj} of {pk} such that

0 ≥ lim
j→∞

∆u(pkj ) = n sup
Σ

u
(
lim
j→∞

H(pkj )− 1
)
≥ 0.
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Then, since supΣ u > 0, we get limj→∞H(pkj
) = 1 and, hence, infΣH = 1.

Thus, from our hypothesis on the normal hyperbolic angle θ of Σn, cosh θ = 1

on Σn. Therefore, we see that Σn is a hyperplane Lτ , for some τ > 0. Moreover,

from equation (2.1), we get

〈N, a〉 = 〈Nτ , a〉 = 〈ψ, a〉 = τ

and, hence, we conclude that the hyperbolic image of Σn is exactly the horosp-

here Lτ . ¤

Remark 3.3. As a consequence of Bonnet-Myers theorem, a complete spa-

celike hypersurface ψ : Σn → Hn+1 having (not necessarily constant) mean cur-

vature H, such that |H| ≤ c < 2
√
n−1
n (c a positive real constant), has to be

compact. In fact, for such a bound on H, from (3.1) we get

RicΣ ≥ (n− 1)− n2c2

4
> 0.

However, if Σn is bounded away from the future infinity of Hn+1, then Σn is

diffeomorphic to Rn; in particular, Hn+1 does not possess any compact (without

boundary) spacelike hypersurface (cf. [3], Lemma 1). Furthermore, we observe

that 2
√
n−1
n ≤ 1 for n ≥ 2. On the other hand, taking into account the classifi-

cation of totally umbilical spacelike hypersurfaces of the de Sitter space (cf. [19],

Example 1), it follows from the main theorem of [2] that there exists no to-

tally umbilical complete immersed spacelike hypersurfaces with mean curvature

0 ≤ H < 1 in the steady state space. Therefore, motivated by these reasons, it is

natural to restrict our attention to spacelike hypersurfaces immersed with mean

curvature H ≥ 1 in Hn+1.

Remark 3.4. Let ψ : Σn → Hn+1 be a spacelike immersion from a compact

manifold Σn with mean convex boundary ∂Σ contained into a hyperplane Lτ ,

for some τ > 0. Suppose that ψ has constant mean curvature H > 1. From

Theorem 7 of [21] and taking into account our choice of orientation of Σn, we get

0 < 〈N, a〉 ≤ Hτ. (3.5)

Consequently, from (2.1) and (3.5), we conclude that the normal hyperbolic

angle θ of Σn satisfies

cosh θ = −〈N, ν〉 ≤ −〈N,Nτ 〉 = 1

τ
〈N, a〉 ≤ H.

From Theorem 3.2 we obtain the following
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Corollary 3.5. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface

bounded away from the infinite ofHn+1, with bounded mean curvature 1≤H ≤α,

for some constant α. Suppose that the hyperbolic image N(Σ) is contained in the

closure of the interior domain enclosed by a horosphere Lρ. If
ρ
τ ≤ infΣH, where

τ > 0 is such that 〈ψ(p), a〉 ≥ τ for all p ∈ Σn, then Σn is a hyperplane and its

hyperbolic image is exactly a horosphere.

Proof. Initially, we observe that the normal hyperbolic angle θ of Σn is

such that

cosh θ = −〈N, ν〉 = −〈N,ψ − 1

〈ψ, a〉a〉 =
1

〈ψ, a〉 〈N, a〉.

Consequently, since we are supposing that Σn is over the hyperplane Lτ ,

cosh θ ≤ 1

τ
〈N, a〉.

Therefore, our hypothesis on the hyperbolic image of Σn amounts to

cosh θ ≤ ρ

τ
≤ inf

Σ
H

and, hence, we finish the proof by applying Theorem 3.2. ¤

Remark 3.6. Let ψ : Σn → Hn+1 be a spacelike immersion from a compact

manifold Σn with mean convex boundary ∂Σ contained into a hyperplane Lτ , for

some τ > 0. One can reason as in Remark 3.4 to conclude that the hyperbolic

image of Σn is contained in the closure of the interior domain enclosed by a

horosphere Lρ, with
ρ
τ ≤ H.

4. Generalized Robertson–Walker spacetimes

Let Mn be a connected, n-dimensional (n ≥ 2) Riemannian manifold, I ⊂ R
an interval and f : I → R a positive smooth function. In the product differentiable

manifold M
n+1

= I×Mn, let πI and πM denote the projections onto the factors I

and M , respectively.

A particular class of Lorentzian manifolds is the one obtained by furnishing

M
n+1

with the metric

〈v, w〉p = −〈(πI)∗v, (πI)∗w〉+ (f ◦ πI) (p)
2〈(πM )∗v, (πM )∗w〉,
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for all p ∈ M
n+1

and all v, w ∈ TpM . Such a space is called (following the

terminology introduced in [9]) a generalized Robertson-Walker (GRW) spacetime,

and in what follows we shall write M
n+1

= −I×f M
n to denote it. In particular,

when Mn has constant sectional curvature, then −I ×f M
n is classically called a

Robertson-Walker (RW) spacetime (cf. [23]).

A smooth immersion ψ : Σn → −I ×f Mn of an n-dimensional connected

manifold Σn is said to be a spacelike hypersurface if the induced metric via ψ is a

Riemannian metric on Σn, which, as usual, is also denoted by 〈 , 〉. In this setting,

H = − 1
n tr(A) is the mean curvature of Σn.

For each t ∈ I, we orient the (spacelike) slice Mn
t = {t} ×Mn by using its

unit normal vector field ∂t. According to [9], Mn
t has constant mean curvature

H = f ′

f (t) with respect to ∂t.

We observe that, since ∂t is a unitary timelike vector field globally defined

on the ambient spacetime, there exists a unique timelike unitary normal vector

field N globally defined on the spacelike hypersurface Σn which is in the same

time-orientation as ∂t. By using the Cauchy–Schwarz inequality, we get

〈N, ∂t〉 ≤ −1 < 0 on Σn.

We will refer to that normal vector field N as the future-pointing Gauss map of

the spacelike hypersurface Σn. In the context of the RW spacetimes, the normal

hyperbolic angle θ of Σn is the smooth function θ : Σn → [0,+∞) given by

cosh θ = −〈N, ∂t〉. (4.1)

As in the previous section, we say that a spacelike hypersurface ψ : Σn →
−I ×f Mn is bounded away from the future infinity of −I ×f Mn if there exists

t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ −I ×f Mn; t ≤ t }.
Analogously, we say that Σn is bounded away from the past infinity of −I ×f M

n

if there exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ −I ×f Mn; t ≥ t}.

Finally, Σn is said to be bounded away from the infinity of −I ×f M
n if it is both

bounded away from the past and future infinity of −I×f M
n. In other words, Σn

is bounded away from the infinity if there exist t < t such that ψ(Σ) is contained

in the slab bounded by the slices Mn
t and Mn

t
.
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Now, let h denote the (vertical) height function naturally attached to Σn,

namely, h = (πI)|Σ. Let ∇ and ∇ denote gradients with respect to the metrics of

I ×f Mn and Σn, respectively. A simple computation shows that the gradient of

πI on I ×Mn is given by

∇πI = −〈∇πI , ∂t〉 = −∂t, (4.2)

so, from (4.2), we have that the gradient of h on Σn is

∇h = (∇πI)
> = −∂>

t = −∂t − 〈N, ∂t〉N. (4.3)

In particular, from (4.3) and (4.1), we get

|∇h|2 = 〈N, ∂t〉2 − 1 = cosh2 θ − 1, (4.4)

where | | denotes the norm of a vector field on Σn.

The formula collected in the following lemma is a particular case of one

obtained by L. J. Aĺıas jointly with the first author (cf. [8], Lemma 4.1).

Lemma 4.1. Let ψ : Σn → −I×f M
n be a spacelike hypersurface immersed

into a GRW spacetime, with Gauss map N . Then, by denoting h = πI ◦ ψ the

height function of Σ, we have

∆h = −(ln f)′(h)(n+ |∇h|2)− nH〈N, ∂t〉.

5. Steady state type spacetimes

We observe that the steady state space Hn+1 can also be expressed in an

isometrically equivalent way as the RW spacetime

−R×et Rn.

To see it, take b ∈ Ln+2 another null vector such that 〈a, b〉 = 1 and let

Φ : Hn+1 → −R×et Rn be the map given by

Φ(x) =

(
ln(〈x, a〉), x− 〈x, a〉b− 〈x, b〉a

〈x, a〉
)
.

Then it can easily be checked that Φ is an isometry between both spaces which

conserves time orientation (see [3], Section 4). In particular, for all τ > 0, we

have that

Φ (Lτ ) = {ln τ} × Rn
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and

Φ∗(Nτ ) = ∂t.

Following the ideas of A. L. Albujer and L. J. Aĺıas [3], we now consider

a natural extension of the steady state space Hn+1 = −R ×et Rn. Let Mn be a

connected n-dimensional Riemannian manifold and consider the GRW spacetime

−R×et M
n.

We will refer to such wider family of GRW spacetimes as steady state type spa-

cetimes. For instance, when Mn is the flat n-torus we get the de Sitter cusp as

defined in [13].

In this setting, by applying a similar procedure as in the proof of Theorem 3.2,

we obtain the following

Theorem 5.1. Let Mn be a complete Riemannian manifold with nonnega-

tive sectional curvature and let ψ : Σn → −R ×et M
n be a complete spacelike

hypersurface bounded away from the future infinite of −R×et M
n, with bounded

mean curvature 1 ≤ H ≤ α, for some constant α. If the normal hyperbolic angle θ

of Σn satisfies cosh θ ≤ infΣH, then Σn is a slice Mn
t , for some t ∈ R.

Proof. From Lemma 4.1 and (4.1), we have that

∆h = n (−H〈N, ∂t〉 − 1)− |∇h|2 = n (H cosh θ〉 − 1)− |∇h|2. (5.1)

On the other hand, since we are supposing thatH is bounded, from inequality

(16) of [3] we have that the Ricci curvature of Σn is bounded from below. Thus,

since Σn is supposed to be bounded away from the future infinite of Hn+1, we

are in position to apply Lemma 3.1 to the function h, obtaining a sequence {pk}
in Σn such that

lim
k→∞

h(pk) = sup
Σ

h, lim
k→∞

|∇h(pk)| = 0 and lim
k→∞

∆h(pk) ≤ 0.

Consequently, since cosh θ is also bounded on Σn, from (5.1) we have that

0 ≥ lim
j→∞

∆h(pkj ) ≥ n
(
lim
j→∞

H(pkj )− 1
)
≥ 0,

for some subsequence {pkj} of {pk}. Then, limj→∞H(pkj ) = 1 and, hence,

infΣH = 1. Thus, from our hypothesis on the normal hyperbolic angle θ of

Σn, we conclude that cosh θ = 1 on Σn. Therefore, Σn is a slice Mn
t , for some

t ∈ R. ¤
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Remark 5.2. From Lemma 7 of [3], we see that if a steady state type spacetime

−R×et M
n admits a complete spacelike hypersurface Σn which is bounded away

from the future infinity, then the Riemannian fiber Mn is necessarily complete.

On the other hand, by supposing that Mn has nonnegative sectional curvature

and that the spacelike hypersurface Σn has bounded mean curvature, from the

inequality (16) of [3] we get that the Ricci curvature of Σn is bounded from below.

Consequently, as in Remark 3.3, when the mean curvature H of Σn satisfies

|H| ≤ c < 2
√
n−1
n (c > 0 constant) we conclude that Σn must be compact. Hence,

in this case, the ambient steady state type spacetime is necessarily spatially closed

(that is, its Riemannian fiber is compact; see [9], Proposition 3.2).

In the 3-dimensional case, we obtain the following rigidity result concerning

to complete spacelike surfaces of nonnegative Gaussian curvature

Theorem 5.3. Let M2 be a complete Riemannian surface with nonnegative

Gaussian curvature and let ψ : Σ2 → −R×et M
2 be a complete spacelike surface

of nonnegative Gaussian curvature, with mean curvature H ≥ 1. If the normal

hyperbolic angle θ of Σ2 satisfies cosh θ ≤ H, then Σ2 is a slice M2
t , for some

t ∈ R.

Proof. By applying Lemma 4.1, we get

∆e−h = e−h
(|∇h|2 −∆h

)
= 2e−h

(|∇h|2 + 1 +H〈N, ∂t〉
)
. (5.2)

Thus, from (4.1), (4.4) and (5.2), we obtain that

∆e−h = 2e−h cosh θ (cosh θ −H)

and, hence, our hypothesis on the normal hyperbolic angle θ of Σ2 guarantees

that the function e−h is a superharmonic positive function on Σ. However, a clas-

sical result due to A. Huber [17] assures that complete surfaces of nonnegative

Gaussian curvature must be parabolic. Therefore, h is constant on Σ2, that is,

Σ2 is a slice M2
t , for some t ∈ R. ¤

Remark 5.4. In Proposition 13 of [21], S. Montiel have proved that when

Σn is a complete spacelike hypersurface immersed with constant mean curvature

H ≥ 1 in Sn+1
1 , by supposing that the hyperbolic image of Σn is contained in the

closure of the interior domain enclosed by a horosphere, then we have that H = 1.

When n = 2, from the main theorem of [2] (see also [25]), this implies that Σ2 is

also an umbilical surface and its hyperbolic image is exactly a horosphere.
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6. Entire vertical graphs in −R×et Mn

Let Ω ⊆ Mn be a connected domain of Mn. A vertical graph over Ω is

determined by a smooth function u ∈ C∞(Ω) and it is given by

Σn(u) = {(u(x), x) : x ∈ Ω} ⊂ −R×et M
n.

The metric induced on Ω from the Lorentzian metric on the ambient space via

Σn(u) is

〈 , 〉 = −du2 + e2u〈 , 〉Mn . (6.1)

The graph is said to be entire if Ω = Mn. It can be easily seen that a graph

Σn(u) is a spacelike hypersurface if and only if |Du|2Mn < e2u, Du being the

gradient of u in Ω and |Du|Mn its norm, both with respect to the metric 〈 , 〉Mn

in Ω. Observe that by Lemma 3.1 in [9], in the case where Mn is a simply

connected manifold, every complete spacelike hypersurface Σn bounded away from

the infinity of −R ×et M
n is an entire spacelike graph in such space. However,

in contrast to the case of graphs into a Riemannian space, an entire spacelike

graph in a Lorentzian spacetime is not necessarily complete, in the sense that the

induced Riemannian metric (6.1) is not necessarily complete on Mn.

In this context, by using the ideas of [4], we obtain the following non-

parametric result

Corollary 6.1. Let Mn be a complete Riemannian manifold with nonne-

gative sectional curvature and let Σn(u) be an entire spacelike vertical graph

bounded away from the infinity of −R×et M
n and with bounded mean curvature

1 ≤ H ≤ α, for some constant α. If

|Du|2Mn ≤ e2u

(
1− sup

Σ(u)

1

H2

)
, (6.2)

then Σn(u) is a slice.

Proof. Observe first that, under the assumptions of the theorem, Σn(u) is

a complete hypersurface. In fact, from (6.1) and the Cauchy–Schwarz inequality

we get

〈X,X〉 = −〈Du,X〉2Mn + e2u〈X,X〉Mn ≥ (
e2u − |Du|2Mn

) 〈X,X〉Mn ,

for every tangent vector field X on Σn(u). Therefore,

〈X,X〉 ≥ c〈X,X〉Mn
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for the positive constant c = e2 infΣ(u) u supΣ(u)
1
H2 . This implies that L ≥ √

cLMn ,

where L and LMn denote the length of a curve on Σn(u) with respect to the

Riemannian metrics 〈 , 〉 and 〈 , 〉Mn , respectively. As a consequence, as Mn is

complete by assumption, the induced metric on Σn(u) from the metric of −R×et

Mn is also complete.

On the other hand, we have that

N = −〈N, ∂t〉∂t +N∗, (6.3)

where N∗ denotes the projection of N onto the fiber Mn. Consequently, from

(4.3) and (6.3), we obtain

N∗>
= −〈N, ∂t〉∇h (6.4)

and

|∇h|2 = e2h〈N∗, N∗〉Mn . (6.5)

Moreover, with a straightforward computation we verify that

N =
eu√

e2u − |Du|2Mn

(
∂t +

1

e2u
Du

)
. (6.6)

Thus, from (6.4), (6.5) and (6.6) we get

|∇h|2 =
|Du|2Mn

e2u − |Du|2Mn

. (6.7)

Therefore, taking into account equations (4.4) and (6.7), we easily see that the

hypothesis (6.2) guarantees that cosh θ ≤ infΣ H, and the result follows from

Theorem 5.1. ¤

Following the same ideas of the proof of Corollary 6.1, we also obtain a

non-parametric version of Theorem 5.3

Corollary 6.2. Let M2 be a complete Riemannian surface with nonnegative

Gaussian curvature and let Σ2(u) be an entire spacelike vertical graph bounded

away from the past infinite of −R ×et M
2. Suppose that Σ2(u) has nonnegative

Gaussian curvature and mean curvature H ≥ 1. If

|Du|2M2 ≤ e2u
(
1− 1

H2

)
,

then Σ2(u) is a slice.

Remark 6.3. In [5], the second author jointly with A. Albujer and F. Ca-

margo obtained uniqueness results concerning to complete spacelike hypersurfa-

ces with constant mean curvature immersed in a RW spacetime. As an application

of such uniqueness results for the case of vertical graphs in a RW spacetime, they

also get non-parametric rigidity results.
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