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Acute triangulations of double planar convex bodies

By LIPING YUAN (Shijiazhuang) and TUDOR ZAMFIRESCU (Dortmund)

Abstract. A (2-dimensional) double convex body 2K is a surface homeomorphic

to the sphere consisting of two planar isometric compact convex bodies, K and K
′,

with boundaries glued in the obvious way. In this note we prove that, if K admits

two perpendicular axes of symmetry and bdK satisfies a certain curvature condition,

then 2K admits an acute triangulation of size 72. In particular, each double ellipse

admits such a triangulation.

1. Introduction

A triangulation of a two-dimensional space means a collection of (full) tri-

angles covering the space, such that the intersection of any two triangles is either

empty or consists of a vertex or of an edge. A triangle is called geodesic if all its

edges are segments, i.e., shortest paths between the corresponding vertices. We

are interested only in geodesic triangulations, all the members of which are, by

definition, geodesic triangles. The number of triangles in a triangulation is called

its size.

In rather general two-dimensional spaces, like Alexandrov surfaces, two geo-

desics starting at the same point determine a well defined angle. Our interest will

be focused on triangulations which are acute, which means that the angles of all

geodesic triangles are smaller than π
2
.

The discussion of acute triangulations has one of its origins in a problem

of Stover reported in 1960 by Gardner in his Mathematical Games section of

the Scientific American (see [3], [4], [5]). There the question was raised whether

Mathematics Subject Classification: 52A10, 52C20.
Key words and phrases: acute triangulation, segment, double planar convex body.



122 Liping Yuan and Tudor Zamfirescu

a triangle with one obtuse angle can be cut into smaller triangles, all of them

acute. In the same year, independently, Burago and Zalgaller [1] investigated

in considerable depth acute triangulations of polygonal complexes, being led to

them by the problem of their isometric embedding into R3. However, their method

could not give an estimate on the number of triangles used in the existing acute

triangulations. In 1980, Cassidy and Lord [2] considered acute triangulations of

the square. Recently, Maehara investigated acute triangulations of quadrilaterals

[10] and other polygons [11], and a result on the latter was improved by Yuan

[14] and C. T. Zamfirescu [19].

On the other hand, compact convex surfaces have also been triangulated.

Acute triangulations of all Platonic surfaces, which are surfaces of the five well-

known Platonic solids, have been investigated in [6], [8], and [9]. Furthermore,

some other well-known surfaces have also been acutely triangulated, such as flat

Möbius strips [15] and flat tori [7]. For a survey on acute triangulations, see [18].

However, the case of arbitrary compact convex surfaces is more difficult, even

for polyhedra with small number of vertices. So, for example, even the family of

all tetrahedral surfaces is far from being easy to treat.

Concerning non-polyhedral surfaces only the sphere and pieces of it have

been considered so far. We shall construct here, for the first time, acute triangu-

lations for another type of non-polyhedral surface, namely a double convex body,

which is a surface 2K homeomorphic to the sphere, consisting of two planar isom-

etric compact convex bodies, K and K ′, with boundaries glued according to the

isometry.

Acute triangulations of double triangles [17], double quadrilaterals [16], and

double pentagons [13] have been investigated. In this paper, we present a fairly

small upper bound for the minimal size of an acute triangulation of 2K in case K

has two perpendicular axes of symmetry and bdK is of class C2 and satisfies a

certain curvature condition.

We regard our work as a step towards a solution to the following problem

first raised in [6].

Problem 1. Does there exist a number N such that every compact convex

surface in R
3 admits an acute triangulation with at most N triangles?

As remarked in [9], this Problem can be extended (or restricted) to other

families of surfaces (such as Riemannian surfaces), with or without boundary.
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2. Main result

We consider a planar convex body K with two orthogonal axes of symmetry,

say the x-axis and the y-axis, and with C2-boundary bdK. Let a and b be

the points of bdK on the positive x-semiaxis and y-semiaxis. We may assume

‖a‖ ≥ ‖b‖.

Let A be the arc {(x, y) ∈ bdK : x, y ≥ 0}. This arc determines of course K.

In order to obtain a relatively small acute triangulation of 2K we need some

curvature condition on A.

Theorem. If the curvature of A is monotone or bounded above by 2/‖b‖,

then 2K admits a triangulation with 72 acute triangles.

Here, monotone means non-increasing or non-decreasing.

Proof. For any point u ∈ R
2, let u∗ be the point symmetric to u with

respect to the y-axis, ux the orthogonal projection of u on the x-axis, and uy the

orthogonal projection of u on the y-axis.

For any point v ∈ K, let v′ be the image of v through the isometry between K

and K ′.

Choose c ∈ A such that ∠0ac be slightly larger than π/4. Let k be a point

of A where the tangent line to bdK is parallel with ac. Consider the orthogonal

projection m of k on ac.

We prove now that mk ∪ km′ and cyb ∪ bc′y are segments on 2K.

First assume the monotony of the curvature on A. Considering A ordered

from a to b, and denoting by ρ(u) the curvature radius of bdK at u ∈ A, from

‖a‖ ≥ ‖b‖ it follows that ρ : A → R is non-decreasing.

Suppose k is not a point in A closest to m. Then k is not closest to any point

of the line-segment ac.

For each point s ∈ ac, let p(s) be the point in A closest to s if it is unique,

or the smallest subarc of A containing all points in A closest to s otherwise. The

family {p(s) : s ∈ ac} constitutes a partition of the subarc of A from a to c. To

see why this is indeed a partition, remark that for any pair of points s1, s2 ∈ ac

and any choice of ti ∈ p(si) closest to si, the line segment s1t1 is orthogonal to

the tangent line T1 at t1 to A, and therefore the angle between s2t1 and T1 is

acute, whence s1t1 ∩ s2t2 = ∅. Thus, since k is not closest to s for any s, k ∈ p(s)

for some s, and A is externally tangent at the end-points e1, e2 of p(s) to a circle

of centre s and radius r, say. Then ρ(ei) ≥ r (i = 1, 2), but ρ(e) ≥ r cannot

hold for all e ∈ p(s). This, in turn, contradicts the monotonicity of ρ. Hence the

point k is closest to m. This implies that mk ∪ km′ is a segment in 2K.
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We already observed that ρ is non-decreasing on A. Thus, ρ attains its

maximum at b, and the whole arc A is included in the osculating circle of bdK

at b. Let C be the arc from a to −a (through b) of the circle through a, b, −a. The

arcs A and C meet at a and b only, because the existence of any further common

point obviously contradicts the monotonicity of the curvature of A. Hence C ⊂ K.

Since b is the closest point of C from cy, b is also the closest point of bdK from

cy, and cyb ∪ bc′y is a segment in 2K.

Now, assume that the curvature of A is bounded above by 2/‖b‖.

We saw above that, if k is not closest to m, then ρ(e) < r, while ‖s− ei‖ = r

(i = 1, 2) for some s ∈ ac and e ∈ p(s); remember that e1, e2 are the end-points

of p(s). Let h ∈ R
2 satisfy hx = a and hy = b. Every point of ac is at distance

less than ‖b‖/2 from ah ∪ hb, whence also from A. Hence,

ρ(e) < ‖s− ei‖ < ‖b‖/2,

which contradicts the upper bound on the curvature.

The argument used to show that k is closest to m can also be applied to

check that b is closest to cy. Just replace ac by cc∗ and A by the arc of bdK

from c to c∗ (through b).

Hence, mk ∪ km′ and cyb ∪ bc′y are both segments on 2K.

Put {g} = ccx ∩mmy. We have the following non-obtuse triangulation. The

rhombus cxmy(−cx)(−my) can be divided into two acute triangles, if it is not

a square (and in two ways into two right triangles, if it is a square). Further,

cgcy, gcymy, cgm, gcxmy, gcxmx, gmxm, mmxa are right triangles. The arc A

is covered by the non-obtuse geodesic triangles ccyc
′

y, cmm′, amm′. This partial

triangulation obviously extends to a full non-obtuse triangulation T of 2K, with

size 72, as shown in Figure 1.

Fig. 1. Non-obtuse triangulation of Γd
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Now, in six steps, we successively change the position of certain vertices of T

in order to transform right angles into acute ones. Once an angle is acute, the

next steps will be performed so gently that the angle remains acute.

Step 1. We replace cy by a point on 0b slightly closer than cy to 0 (and

replace −cy by a symmetrical point on 0(−b)). Thus, the triangles ccyc
′

y, ccyg,

and all the other 10 symmetrical right triangles become acute.

Step 2. Similarly, we replace my and −my by symmetrical points on b(−b)

closer to 0. This takes care of the triangles gcymy, gmycx and all the other 14 sym-

metrical triangles. Moreover, it produces two acute triangles replacing cxmy(−my)

and (−cx)my(−my) in case cxmy(−cx)(−my) is a square. (The same happens

in K ′.)

Step 3. Then mx and −mx are replaced by points on a(−a) closer to 0.

Step 4. Similarly, we replace the points cx and −cx.

Step 5. Now replace g by a point on gg∗ slightly closer to g∗, and perform

the other 7 analogous replacements, to take care of cgm et al.

Step 6. Finally, replace m by a point on the line through m and k farther

away from k, and make the 7 symmetrical replacements, to make all remaining

right triangles acute.

Thus we obtain an acute triangulation of 2K of size 72. �

We mention an immediate application of our Theorem to the case of a double

ellipse.

Corollary. Every double ellipse admits an acute triangulation of size 72.

Proof. Indeed, in this case the curvature being monotone on A, the The-

orem applies. �
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