
Publ. Math. Debrecen

81/1-2 (2012), 167–177

DOI: 10.5486/PMD.2012.5178

Nonlinear connections for conformal gauge theories
on path-spaces and duality

By MIRCEA CRASMAREANU (Iaşi)

Abstract. Weyl structures and compatible nonlinear connections are introduced

in the geometry of semisprays as a natural generalization of similar notions from Rie-

mannian geometry. The existence and formula for the set of all compatible nonlinear

connections are derived by using the Obata tensors naturally associated to a fixed metric

in the given conformal class; this formula is also expressed in terms of dual nonlinear

connections which generalize the Norden’s notion of dual linear connections. A geomet-

ric meaning for pairs (Weyl structure, compatible nonlinear connection) is provided in

terms of gauge conformal invariance.

1. Introduction

Soon after the creation of general theory of relativity, Hermann Weyl at-

tempted in [11] an unification of gravitation and electromagnetism in a model of

space-time geometry combining conformal and projective structures.

Let G be a conformal structure on the smooth manifold M i.e. an equivalence

class of Riemannian metrics: g ∼ g if there exists a smooth function f ∈ C∞(M)

such that g = e2fg. Denoting by Ω1(M) the C∞(M)-module of 1-forms on M

a (Riemannian) Weyl structure is a map W : G → Ω1(M) such that W (g) =

W (g) + 2df . In [5] it is proved that for a Weyl manifold (M,G,W ) there exists

an unique torsion-free linear connection ∇ on M such that for every g ∈ G:

∇g = W (g)⊗ g. (∗)
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The parallel transport induced by∇ preserves the given conformal class G. For ot-
her physical meanings of Weyl structures see [6] and an interesting generalization

to statistical geometry appears in [9].

The aim of present paper is to extend the Weyl structures and compatible

connections (∗) in the framework of systems of second order differential equations

on M . More precisely, given such a system S, on short semispray, we can derive

a type of differential ∇ if S is considered as a vector field on the tangent bundle

TM . A necessary tool in the definition of ∇ is given by a splitting of the iterated

tangent bundle T (TM) provided by a distribution N on TM . Such an object N

is called nonlinear connection. A remarkable result is that every S yields such a

nonlinear connection,
c

N , indexed by us with c from canonical and on this way

we recover the above Riemannian case (∗). Let us point out that two previous

generalizations of Weyl structures in the tangent bundle geometry are: i) for

Finsler metrics, in [1]–[2], [7]–[8], ii) for (generalized) Lagrange geometry in [4].

2. Nonlinear connections and semisprays on tangent bundles

Let M be a smooth, n-dimensional manifold for which we denote: C∞(M)-

the algebra of smooth real functions on M , X (M)-the Lie algebra of vector fields

on M , T r
s (M)-the C∞(M)-module of tensor fields of (r, s)-type on M .

A local chart x = (xi) = (x1, . . . , xn) on M lifts to a local chart on the

tangent bundle TM given by: (x, y) = (xi, yi). If π : TM → M is the canonical

projection then the kernel of the differential of π is an integrable distribution

V (TM) with local basis
(

∂
∂yi

)
. An important element of V (TM) is the Liouville

vector field C = yi ∂
∂yi . V (TM) is called the vertical distribution and its elements

are vertical vector fields.

The tensor field J ∈ T 1
1 (TM) given by J = ∂

∂yi ⊗ dxi is called the tangent

structure. Two of its properties are: the nilpotence J2 = 0 and im J(= kerJ) =

V (TM).

A well-known notion in the tangent bundles geometry is:

Definition 2.1 ([3, p. 336]). A supplementary distribution N to the vertical

distribution V (TM):

T (TM) = N ⊕ V (TM) (2.1)

is called horizontal distribution or nonlinear connection. A vector field belonging

to N is called horizontal.
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A nonlinear connection has a local basis:

δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj
(2.2)

and the functions (N i
j(x, y)) are called the coefficients of N . So, a basis of X (TM)

adapted to the decomposition (2.1) is
(

δ
δxi ,

∂
∂yi

)
called Berwald basis. The dual

of the Berwald basis is: (dxi, δyi = dyi +N i
jdx

j).

A second remarkable structure on TM is provided by:

Definition 2.2 ([3, p. 336]). S ∈ X (TM) is called semispray if:

J(S) = C. (2.3)

In canonical coordinates:

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
(2.4)

and the functions (Gi(x, y)) are the coefficients of S. The flow of S is a system of

second order differential equations: d2xi

dt2 = 2Gi
(
x, dx

dt

)
and then the pair (M,S)

will be called path-space.

An important result is that a nonlinear connectionN = (N i
j) yields an unique

horizontal semispray denoted S(N) with:

Gi =
1

2
N i

jy
j (2.5)

In other words:

S(N) = yi
δ

δxi
. (2.6)

The converse of this result is that a semispray S yields a nonlinear connec-

tion
c

N given by:
c

N
i

j=
∂Gi

∂yj
. (2.7)

Definition 2.3. A semispray S for which the coefficients (Gi) are homogeneous

of degree 2 with respect to the variables (yi) will be called spray.

Locally this means, via Euler theorem:

2Gi = yj
∂Gi

∂yj
(2.8)

and then
c

N is 1-homogeneous:

c

N
i

j= ya
∂

c

N
i

j

∂ya
(2.9)

which yields that S is horizontal with respect to
c

N i.e. S has the expression (2.7).
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3. Weyl structures and conformal path-gauge invariance

Let us fix a semispray S = (Gi) and a nonlinear connection N = (N i
j).

Following [3, p. 337] let us consider:

Definition 3.1. The dynamical derivative associated to the pair (S,N) is the

map
SN

∇ : V (TM) → V (TM) given by:

SN

∇ X =
SN

∇
(
Xi ∂

∂yi

)
:= (S(Xi) +N i

jX
j)

∂

∂yi
. (3.1)

Properties:

I)
SN

∇
(

∂
∂yi

)
= N j

i
∂

∂yj ,

II)
SN

∇ (X + Y ) =
SN

∇ X+
SN

∇ Y ,

III)
SN

∇ (fX) = S(f)X + f
SN

∇ X.

It is straightforward to extend the action of
SN

∇ to general vertical tensor fields

by requiring to preserves the tensor product and the Leibniz rule. Moreover, we

will extend
SN

∇ to a special class of tensor fields:

Definition 3.2. A d-tensor field (d from distinguished) on TM is a tensor field

whose change of components, under a change of canonical coordinates (x, y) →
(x̃, ỹ) on TM , involves only factors of type ∂x̃

∂x and (or) ∂x
∂x̃ .

Example 3.3. i)
(

δ
δxi

)
and

(
∂

∂yi

)
are components of d-tensor fields of (1, 0)-

type.

ii) (dxi) and (δyi) are components of d-tensor fields of (0, 1)-type.

iii) (Gi) are not components of a d-tensor field since a change of coordinates

implies:

2G̃i = 2
∂x̃i

∂xj
Gj − ∂ỹi

∂xj
yj

but it results that given two semisprays
1

S and
2

S their difference X =
2

S − 1

S
is a vertical (and then d-) vector field.

iv) (N i
j) are not components of a d-tensor field since a change of coordinates

implies:
∂x̃j

∂xk
Nk

i = Ñ j
k

∂x̃k

∂xi
+

∂ỹj

∂xi
.

It follows that given two nonlinear connections
1

N and
2

N their difference

F =
2

N − 1

N=
(
F i
j =

2

N
i

j −
1

N
i

j

)
is a d-tensor field of (1, 1)-type.



Nonlinear connections for conformal gauge theories. . . 171

Definition 3.4. A metric g on TM is a d-tensor field of (0, 2)-type which is

symmetric and non-degenerated.

It results for the components gij = g( ∂
∂yi ,

∂
∂yj ) the following properties:

1) (symmetry) gij = gji,

2) (non-degeneration) det(gij) 6= 0; then there exists the d-tensor field of (2, 0)-

type g−1 = (gij).

The name is justified from the fact that gijdx
i⊗dxj+gijδy

i⊗δyj is a Riemannian

metric on TM for which N and V (TM) are orthogonal distributions.

Using the Leibniz rule we arrive at:

Definition 3.5. The dynamical derivative of metric g with respect to the pair

(S,N) is
SN

∇ g : V (TM)× V (TM) → C∞(TM) given by:

SN

∇ g(X,Y ) = S(g(X,Y ))− g
( SN

∇ X,Y
)
− g

(
X,

SN

∇ Y
)
. (3.2)

One of the main notions of this section is:

Definition 3.6. Two metrics g, g are called conformal equivalent if there exists

f ∈ C∞(TM) such that g = e2fg.

In the following let G be a conformal structure i.e. an equivalence class of

conformal equivalent metrics. Our generalization of classical Weyl structures is:

Definition 3.7. A Weyl structure on the path-space (M,S) is a map

W : G → C∞(TM) such that for every g, g ∈ G:

W (g) = W (g) + 2df(S). (3.3)

The data (M,S,G,W ) will be called path-Weyl manifold.

Another main notion is:

Definition 3.8. Let (M,S,G,W ) be a path-Weyl manifold. The nonlinear

connection N is called compatible with g ∈ G if:

SN

∇ g = W (g)g. (3.4)

An important result is:

Proposition 3.9. If N is compatible with g ∈ G then N is compatible with

the whole class G.



172 Mircea Crasmareanu

Proof. From the Leibniz rule and (3.4) we get:

SN

∇ g = S(e2f )g + e2f
SN

∇ g = 2df(S)g + e2fW (g)g = (W (g) + 2df(S))g = W (g)g

which means the conclusion. ¤

Let us end this section with a geometrical interpretation for pairs (Weyl

structure, compatible nonlinear connection). In addition to the pair (S,N) let us

consider a pair (metric g, F ∈ C∞(TM)) and define, inspired by [9, p. 109], the

map: CSN (g, F ) : V (TM)× V (TM) → C∞(TM):

CSN (g, F ) =
SN

∇ g − Fg. (3.5)

Then, CSN (g, F ) is, in fact, a d-tensor field of (0, 2)-type and a pair (Weyl

structure, compatible nonlinear connection) is characterized by the vanishing of

CSN (g,W (g)).

Definition 3.10. A function f ∈ C∞(TM) induces the conformal path-gauge

transformation:

(g, F ) → (g′, F ′) := (e2fg, F + 2df(S)). (3.6)

Proposition 3.11. The d-tensor field CSN (g, F ) is not conformal path-gauge

invariant but a pair (Weyl structure, compatible nonlinear connection) is a con-

formal path-gauge invariant notion.

Proof. A calculus similar to that of the previous Proof above gives:

CSN (g′, F ′) = e2fCSN (g, F ) (3.7)

which get the all conclusions. ¤

4. The general expression of a compatible nonlinear connection

The aim of this section is to find all nonlinear connections which are com-

patible with a given Weyl structure. In order to answer at this question, a look

at example 3.3 iv) gives necessary a study of two operators, called Obata in the

following, acting on the space of d-tensor fields of (1, 1)-type:

Oij
kl =

1

2
(δikδ

j
l − gijgkl),

∗
O

ij

kl=
1

2
(δikδ

j
l + gijgkl). (4.1)
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The Obata operators are supplementary projectors on the space of tensor

fields of (1, 1)-type:

Oia
bj

∗
O

bk

la=
∗
O

ia

bj O
bk
la = 0, Oia

bjO
bk
la = Oik

lj ,
∗
O

ia

bj

∗
O

bk

la=
∗
O

ik

lj (4.2)

and the tensorial equations involving these operators has solutions as follows:

Proposition 4.1. The system of equations:

∗
O

ia

bj (X
b
a) = Ai

j , (Oia
bj(X

b
a) = Ai

j) (4.3)

with X as unknown has solutions if and only if:

Oia
bj(A

b
a) = 0,

( ∗
O

ia

bj (A
b
a) = 0

)
(4.4)

and then, the general solution is:

Xi
j = Ai

j +Oia
bj(Y

b
a ),

(
Xi

j = Ai
j+

∗
O

ia

bj (Y
b
a )

)
(4.5)

with Y an arbitrary d-tensor field of (1, 1)-type.

We are ready for the main results of paper:

Theorem 4.2. Let (M,S,G,W ) be a path-Weyl manifold. The family

N (S,G,W ) of all compatible nonlinear connections is infinite. More precisely,

N (S,G,W ) is a C∞(TM)-affine module over the C∞(TM)-module of d-tensor

fields of (1, 1)-type.

Proof. Fix g ∈ G and search (N i
j) of the form:

N i
j =

c

N
i

j +F i
j (4.6)

with (F i
j ) a d-tensor field of (1, 1)-type to be determined. The local expression of

equation (3.4) is:

S(guv)− gumNm
v − gmvN

m
u = W (g)guv (4.7)

and inserting (4.6) in (4.7) gives:

S(guv)− gum
c

N
m

v −gmv

c

N
m

u = gumFm
v + gmvF

m
u +W (g)guv.
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Multiplying the last relation with gku we get:

gkuS(guv)−
c

N
k

v −gkugmv

c

N
m

u −W (g)δkv = F k
v + gkugmvF

m
u

= 2
∗
O

kb

av (F a
b ). (4.8)

Let us search for the condition (4.4):

Okb
av(g

amS(gmb)−
c

N
a

b −gamgbl
c

N
l

m −W (g)δab )

= gkmS(gmv)−
c

N
k

v −gkmgvl
c

N
l

m −gkmS(gmv) + gkmgvl
c

N
l

m +
c

N
k

v= 0.

It follows:

F i
j =

1

2
gimS(gmj)− 1

2

c

N
i

j −
1

2
giagjb

c

N
b

a −W (g)

2
δij +Oib

aj(X
a
b )

and returning to (4.6) we have the conclusion:

N i
j =

1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +
1

2
giaS(gaj)− W (g)

2
δij +Oia

bj(X
b
a) (4.9)

with X = (Xb
a) an arbitrary d-tensor field of (1, 1)-type. ¤

In the spray case the equation (4.9) admits a simplification:

Proposition 4.3. If S is a spray then the set N (S,G,W ) is:

N i
j =

1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +
1

2
giaym

δgaj
δxm

− W (g)

2
δij +Oia

bj(X
b
a). (4.10)

Example 4.4 Classical Weyl structures

Let us consider g = g(x) a Riemannian metric on M and let S be its corres-

ponding spray i.e. S gives the geodesics of g. Recall also that a symmetric linear

connection on M with coefficients (Γi
jk(x)) yields the nonlinear connection with

the coefficients:

N i
j = Γi

jay
a. (4.11)

and then the associated semispray S(N) is a spray:

Gi =
1

2
Γi
jky

jyk. (4.12)

In order to work on M we consider, from 1-homogeneity reasons, W (g) to be the

function W (g)(x, y) = W (g)a(x)y
a.
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It is well known that the solution of (∗) is the unique Weyl connection [5,

p. 147]:

Γi
jk =

c

Γ
i

ij +
1

2
(W (g)igjk − δijW (g)k − δikW (g)j) (∗W )

where
c

Γ is the Levi-Civita connection of g and W (g)i = giaW (g)a is the g-

contravariant version of the basic 1-form WM (g) = W (g)adx
a which is exactly

the 1-form of (∗). We recover this last formula from (4.9) with:

Xi
j = −W (g)jy

i (4.13)

which is a d-tensor field of (1, 1)-type since: ỹa = ∂x̃a

∂xb y
b while WM (g) is a tensor

field on the base manifold M . In fact, X is the tensor product X = −WM (g)⊗C;
also the basic 1-form WM (g) admits the lift WTM (g) = W (g)ady

a to TM and

then:

W (g) = WTM (g)(C). (4.14)

5. Dual nonlinear connections in metric path-spaces

A natural question about the general formula (4.9) is to find a geometric

meaning for some remarkable choices of X. The aim of this section is to provide

an answer to the case X = 0:

0

N
i

j=
1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +
1

2
giaS(gaj)− W (g)

2
δij . (5.1)

In order to explain more geometrically this relation let us recall the notion

of dual connections introduced by A. P. Norden:

Definition 5.1 ([10, p. 913]). Two linear connections ∇, ∇∗ on the Riemann-

ian manifold (M, g) are called dual (or g-conjugated) if, for all vector fields X,

Y , Z:

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗
XZ). (5.2)

We generalize this notion to:

Definition 5.2. Let (M,S, g) be a metric path-space and N a nonlinear con-

nection on M . The nonlinear connection
Sg

N is called dual or (S, g)-conjugated

to N if:

S(g(X,Y )) = g
( SN

∇ X,Y
)
+ g

(
X,

S
Sg

N∇ Y
)

(5.3)
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for all vector fields X, Y on TM .

Let us remark that
Sg

N exists since g is non-degenerated. In local coefficients,

the last formula becomes:

S(guv) = Na
ugav +

( Sg

N
)a

v
gua (5.4)

and then: ( Sg

N
)a

b
= gauS(gub)− gaugbvN

v
u . (5.5)

A straightforward computation gives that the dual of
Sg

N is exactly N , a result

well-known for dual linear connections, [10, p. 913].

Denoting with I the Kronecker tensor we derive a global formula for compa-

tible nonlinear connections and comparing (5.1) and (5.5) we get:

Theorem 5.3. Let (M,S,G,W ) be a path-Weyl structure. The family

N (S,G,W ) of all compatible nonlinear connections is given by:

N =
1

2

( c

N +
Sg,c

N
)
− W (g)

2
I +O(X). (5.6)

In the particular case of W (g) = 0 we obtain a global expression for the

Theorem 2.4. of [3, p. 339]: the family of all metric nonlinear connections on

(M,S, g) is given by:

N =
1

2

( c

N +
Sg,c

N
)
+O(X) (5.7)

and, on this way, we generalize the fact that for a pair (∇,∇∗) of g-conjugate

linear connections, the mean linear connection 1
2 (∇+∇∗) is a metric connection,

[10, p. 913].
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Sér. Rech. Déform. 49 (2006), 19–26.

[9] H. Matsuzoe, Geometry of semi-Weyl manifolds and Weyl manifolds, Kyushu J. Math.
55 (2001), 107–117.

[10] U. Simon, Affine differential geometry, Chapter 9 of Handbook of differential geometry,
Vol. I, North-Holland, Amsterdam, 2000, 905–961.

[11] H. Weyl, Space, time, matter, 4th ed., rep., Dover Publications, New York, 1951.

MIRCEA CRASMAREANU

FACULTY OF MATHEMATICS

UNIVERSITY “AL. I.CUZA”
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