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Holonomy of a class of bundles with fibre metrics

By MIKE CRAMPIN (Gent) and DAVID J. SAUNDERS (Ostrava)

Abstract. This paper is concerned with the holonomy of a class of spaces which

includes Landsberg spaces of Finsler geometry. The methods used are those of Lie gro-

upoids and algebroids as developed by Mackenzie. We prove a version of the Ambrose–

Singer Theorem for such spaces. The paper ends with a discussion of how the results

may be extended to Finsler spaces and homogeneous nonlinear connections in general.

1. Introduction

In most conventional accounts of the holonomy of a principal connection (the

one by Kobayashi and Nomizu [5] has in our view rarely if ever been bettered,

so we take it as a standard reference) attention is focussed on the holonomy

group or algebra at a single point in the base manifold. It is, of course, proved

that holonomy groups at different points are isomorphic, and likewise holonomy

algebras: but these facts are treated almost in passing. Yet the holonomy objects

are pointwise representatives of global structures, and one yearns for a theory of

holonomy that adequately reflects this fact. It seems clear that, for example, the

collection of holonomy algebras at all points of the base manifold M will form a

Lie algebra bundle over M (a vector bundle whose fibres are Lie algebras, with

local trivializations which are fibrewise Lie algebra isomorphisms with a standard

Lie algebra fibre). One would like to know how the structure of this bundle is

determined by the connection from which it is derived.
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A theory of holonomy which provides the answers to such questions has been

developed by Mackenzie [7]. Mackenzie’s fundamental insight is that holonomy

should be seen as a branch of the theory of Lie groupoids and Lie algebroids.

Consider the case of a connection in a principal G-bundle π : P → M . Parallel

displacement along a piecewise smooth curve in M joining points x and y is an

isomorphism (strictly, G-equivariant diffeomorphism) of the fibre Px = π−1(x)

with the fibre Py. The collection of all such fibre isomorphisms, for all curves c,

is a groupoid Θ over M , with source projection the initial point x of c, target

projection the final point y. The holonomy group at a point x is the vertex group

at x of Θ, that is, the set of elements with the same source and target x. This

groupoid is in fact a Lie groupoid, and has therefore associated with it a Lie

algebroid AΘ over M , which is transitive; the holonomy Lie algebra bundle is

just the kernel of AΘ.

It seems to us that the theory of the holonomy of nonlinear connections,

such as those that arise naturally in Finsler geometry, has so far lacked a really

satisfactory conceptual framework, and we believe that the groupoid approach

provides one. The underlying purpose of this paper is to initiate the development

of the theory of the holonomy of nonlinear connections from this point of view.

(For a survey of previous work on this subject see [6].) For technical reasons, which

will be discussed in some detail at the end of the main part of the paper, we shall

in fact restrict our attention for the most part to a certain class of geometrical

structures admitting nonlinear connections, of which Landsberg spaces in Finsler

geometry provide the best-known examples.

The fundamental tensor of a Finsler space over a manifold M defines on

each fibre T ◦
xM of the slit tangent bundle a Riemannian metric. This is evidently

a particular case of a more general notion, that of a fibre bundle with a fibre

metric. Quite a large proportion of this paper is devoted in fact to investigating

relevant aspects of the differential geometry of such spaces in general, before we

even consider such matters as nonlinear connections and holonomy. When we do

come to deal with holonomy we restrict our attention to a special class of such

spaces, which stand in relation to spaces with fibre metrics in general as Landsberg

spaces do to the full class of Finsler spaces. For technical reasons we deal only

with bundles with compact fibres (we can of course treat a Finsler structure as

defined on a bundle having compact fibres by restricting to the indicatrix bundle).

We prove a version of the Ambrose–Singer Theorem for this class of spaces, which

specifies the holonomy Lie algebra bundle in terms of curvature. In any account

of holonomy a distinction needs to be made between the full holonomy algebra at

a point and the algebra generated by the covariant derivatives of the curvature;
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the latter is in general a proper subalgebra of the former, and indeed may differ

from point to point. We discuss this matter in relation to Landsberg spaces in

some detail.

The paper is laid out as follows. In the following section we give a brief

resumé of Mackenzie’s theory of holonomy. The geometry of bundles with fibre

metrics is described in Section 3. The application to Landsberg spaces and their

holonomy occupies Section 4. We deal with covariant derivatives of the curvature

in Section 5. Section 6 concludes the main part of the paper with a discussion of

how our results might apply to Finsler spaces and nonlinear connections in greater

generality. There are two appendices: in the first we give the basic definitions

of groupoids and Lie algebroids, for the reader’s convenience; in the second we

present proofs of various results concerning vector bundles with connection which

are needed in the main text.

2. Groupoids and holonomy

In this section we summarise some general results regarding groupoids and

holonomy. The reader is referred to [7, Section 6.3] for details of the proofs.

We start by describing a connection on a locally trivial Lie groupoid Ω over a

connected base manifold M , with source projection α and target projection β, as

a means of lifting curves in M to curves in Ω.

Definition. Let C(M) denote the set of continuous, piecewise-smooth curves

c : [0, 1] → M , and let C(Ω) denote the corresponding set of curves in Ω. A

connection on Ω is a map Γ : C(M) → C(Ω), c 7→ cΓ, satisfying the following

properties:

(1) cΓ(0) = 1c(0) and, for all t ∈ [0, 1],

α
(
cΓ(t)

)
= c(0), β

(
cΓ(t)

)
= c(t);

(2) if [a, b] ⊂ [0, 1], and if φ : [0, 1] → [a, b] is a diffeomorphism, then

(c ◦ φ)Γ = rcΓ(φ(0))−1 ◦ cΓ ◦ φ;
(3) if c is smooth at t ∈ [0, 1] then so is cΓ;

(4) if c1, c2 ∈ C(M) and, for some t ∈ [0, 1],

ċ1(t) = ċ2(t)

then

ċΓ1 (t) = ċΓ2 (t);
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(5) if c1, c2, c3 ∈ C(M) and, for some t ∈ [0, 1],

ċ1(t) + ċ2(t) = ċ3(t)

then

ċΓ1 (t) + ċΓ2 (t) = ċΓ3 (t).

It is a consequence of the properties listed above that lifts are consistent

with reparametrization, so that the definition of a lift may be extended to curves

whose domains are arbitrary intervals in R.
In the remainder of this paper we shall be concerned with Lie algebroids as

much as with Lie groupoids, and so we shall also need the equivalent definition,

that of an infinitesimal connection.

Definition. Let π : A → M be a transitive Lie algebroid, with anchor map

a : A → TM . A connection on A is a vector bundle map γ : TM → A over the

identity on M satisfying a ◦ γ = idTM . If Ω is a locally trivial Lie groupoid then

an infinitesimal connection on Ω is a connection on the Lie algebroid AΩ.

Proposition 1. There is a bijective correspondence between connections Γ

and infinitesimal connections γ on Ω, given by

ċΓ(t) = rcΓ(t)∗
(
γ(ċ(t))

)
.

We now consider a fixed connection Γ on Ω. It is a consequence of the

definition that the lift of a constant curve is an identity in Ω, that the lift of a

concatenation of curves is the product of the separate lifts, and that the lift of

a curve traversed in the reverse direction is the inverse of the lift of the original

curve. We may therefore make the following definition.

Definition. The holonomy subgroupoid Θ ⊂ Ω of the connection Γ is defined

by

Θ = {cΓ(1) : c ∈ C(M)}.
For any x ∈ M the holonomy group of Γ at x is defined by

Hx = {cΓ(1) ∈ Θ : c(0) = c(1) = x},

and the restricted holonomy group is the normal subgroup H◦
x C Hx where the

loops c are contractible in M .

Theorem 2. The holonomy groupoid Θ is a Lie subgroupoid of Ω.
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Proof. It is clear that Θ will be a subgroupoid under the operations induced

from Ω. The proof that it is a Lie subgroupoid is a modification of the classical

proof that the holonomy groups of a connection on a principal bundle are Lie

groups, as described in [5, Theorem 4.2].

The proof starts by writing Ωx,x for the subset {ω ∈ Ω : α(ω) = β(ω) = x}; it
is clear that Ωx,x is both a group and a submanifold of Ω; the Lie groupoid proper-

ties of Ω then imply that Ωx,x is a Lie group. Thus Hx and H◦
x are (topological)

subgroups of Ωx,x.

The next step of the argument is to show that H◦
x is path-connected. An

intricate argument known as the Factorization Lemma (see [5, Appendix 7]) shows

that it is sufficient to consider elements cΓ(1) ∈ H◦
x of a particular type, where

the curve c is known as a lasso, and is a small loop based at some point y ∈ M

preceded by a path from x to y and followed by the reverse path from y to x. The

small loop may be taken to lie within a single coordinate chart of M , and thus

the lasso c may be shrunk to the single point x ∈ M , giving a path in H◦
x from

cΓ(1) to the identity. It then follows from a standard theorem that the restricted

holonomy group H◦
x , as a path-connected subgroup of a Lie group, is itself a Lie

group.

It follows from this that the full holonomy group Hx is also a Lie group.

Here we use the fact that M is second countable, a consequence of the assumed

connectedness of M and the standard assumption that M is paracompact. Thus

the homotopy group π1(M,x) is countable, and the existence of a homomorphism

π1(M,x) → Hx/H
◦
x shows that the quotient group Hx/H

◦
x is countable. It then

follows from another standard theorem that Hx is a Lie group.

Finally, we have to show that Θ is a Lie groupoid. The argument here is

similar to the one we give below in Theorem 8, using the Lie group structure

of each Hx and the manifold structure of M ; more details may be found in [7,

Theorem 6.3.19]. ¤

Given the connection Γ on Ω, the corresponding infinitesimal connection γ

will be defined on the Lie algebroid AΩ. We have seen that the holonomy gro-

upoid Θ of Γ is a Lie groupoid, and so it will have a Lie algebroid AΘ which

may be identified with a Lie subalgebroid of AΩ. We now wish to see if this

particular subalgebroid may be characterised in some way by γ. To find such a

characterisation, we need to use the covariant differentiation and the curvature

associated with γ.

Definition. Let γ be an infinitesimal connection on AΩ. Define, for any

vector field X ∈ X(M), the covariant derivative map ∇γ
X : Sec(AΩ) → Sec(AΩ)
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by

∇γ
X(φ) = [γ(X), φ].

Define the curvature of the connection to be the map Rγ : X(M) × X(M) →
Sec(AΩ) given by

Rγ(X,Y ) = γ([X,Y ])− [γ(X), γ(Y )],

describing the extent to which γ : X(M) → Sec(AΩ) fails to be a Lie algebra

homomorphism.

We shall also need to consider Lie algebra sub-bundles L of LΩ, the kernel

of AΩ. Given such an L, define A ⊂ AΩ as the span of certain sections of AΩ,

Sec(A) = {φ ∈ Sec(AΩ) : φ− γa(φ) ∈ Sec(L)}.

Proposition 3. If L is invariant under covariant differentiation, so that

∇γ
X(Sec(L)) ⊂ Sec(L) for every X ∈ X(M), and if the curvature takes its values

in L, so that Rγ(X,Y ) ∈ Sec(L) for every X,Y ∈ X(M), then A → M is a Lie

algebroid with kernel L.

The fundamental result ([7, Theorem 6.4.20]) is as follows.

Theorem 4. There is a least Lie algebra sub-bundle (LΩ)γ of LΩ satisfying

the conditions of the proposition above, and the corresponding Lie subalgebroid

(AΩ)γ of AΩ satisfies

(AΩ)γ = AΘ.

This description may appear somewhat formal, so let us explain how it works

in a familiar situation, that of a linear connection on a manifoldM . We may think

of such a connection in various ways: as a covariant derivative; as a law of parallel

transport; or as a horizontal distribution on the tangent bundle TM , spanned by

local vector fields (
∂

∂xi

)H

=
∂

∂xi
− Γj

iku
k ∂

∂uj
,

in the usual notation.

We first remark that if a vector field on TM takes the form

ξi
∂

∂xi
+ ηjku

k ∂

∂uj

in terms of some coordinates xi on M , where ξi and ηjk are functions of the

xi alone, then (as may easily be checked) it takes the same form when new
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coordinates are chosen for M . We call such a vector field projectable fibre-linear;

evidently it projects onto ξi∂/∂xi on M .

To start the groupoid description of the holonomy of a linear connection we

take for the ambient groupoid Ω the Lie groupoid whose elements with source x

and target y are the (linear) fibre isomorphisms TxM → TyM . The elements of

the Lie algebroid AΩ over x are projectable fibre-linear vector fields along TxM →
TM : such a vector field is defined on, but is not necessarily tangent to, the fibre

TxM , and takes the form displayed above, where now ξi and ηjk are constants.

Notice that points of (AΩ)x are vector fields along TxM → TM . The space of

projectable fibre-linear vector fields along TxM → TM is finite-dimensional, and

AΩ is indeed a vector bundle. Sections of AΩ → M are projectable fibre-linear

vector fields on TM , and the Lie algebroid bracket is just the ordinary bracket of

vector fields on TM (of course the bracket of projectable fibre-linear vector fields

is projectable fibre-linear). The anchor is projection, and the kernel LΩ consists

of vertical fibre-linear vector fields on TM .

We turn next to the connection on Ω corresponding to the given linear con-

nection. Let c ∈ C(M): we have to define cΓ ∈ C(Ω). Thus for each t ∈ [0, 1],

cΓ(t) should be a fibre isomorphism Tc(0)M → Tc(t)M . Parallel translation along

c from c(0) to c(t) is such a fibre isomorphism, and if we take this for cΓ(t) we see

it satisfies all the requirements for a connection on Ω. The corresponding element

of the holonomy groupoid is parallel translation along c from c(0) to c(1).

The corresponding infinitesimal connection γ : TM → AΩ is just the hori-

zontal lift: for v ∈ TxM , v = vi∂/∂xi

γ(v) = vH = vi
(

∂

∂xi
− Γj

iku
k ∂

∂uj

)
.

Of course we have to ensure that γ(v) is an element of (AΩ)x, that is, a projectable

fibre-linear vector field along TxM → TM — which indeed vH is.

Now any projectable fibre-linear vector field on TM (section of AΩ → M in

other words) can be written uniquely in the form XH + SV where X is a vector

field and S a type (1, 1) tensor field on M , and the ‘vertical lift’ SV of S is given

by

SV = Si
ju

j ∂

∂ui
.

(One needs the connection to make the vertical part a tensor: ηij in the previous

incarnation is not a tensor.) We can therefore identify AΩ with TM ⊕ T 1
1M . By

straightforward calculations

[XH, Y H] = [X,Y ]
H −R(X,Y )

V
; [XH, TV] = (∇XT )

V
; [SV, TV] = −{S, T}V

,
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where R is the curvature tensor of the linear connection (so R(X,Y ) is a type

(1, 1) tensor), and {S, T} is the commutator of S and T (considered as matrices).

So the bracket of sections of AΩ is given by

[X ⊕ S, Y ⊕ T ] = [X,Y ]⊕ (−R(X,Y ) +∇XT −∇Y S − {S, T}) .

In particular, we can identify LΩ with T 1
1M , with bracket the negative of the

commutator. The objects of interest now are the Lie algebra sub-bundles of

T 1
1M whose section spaces are closed under covariant derivative and contain all

curvature tensors R(X,Y ); the holonomy Lie algebra bundle is the least such.

3. Fibre metrics

We now turn to the definition and properties of fibre metrics: but first we

prove a result which has an important role to play at several points in this section.

Proposition 5. Let π : E → M be a fibre bundle whose standard fibre is

compact. Let Z be any vector field on E, with flow χt. Then for any x ∈ M there

is an open interval I containing 0 such that for all u ∈ Ex, χt(u) is defined for all

t ∈ I. If Z is projectable to a vector field Z ∈ X(M), its flow χt is projectable to

the flow χt of Z; then χt(x) is also defined for all t ∈ I.

Proof. For each u ∈ Ex there is an open neighbourhood Uu of u in E and

an open interval Iu containing 0 such that χt(v) is defined for all t ∈ Iu and

v ∈ Uu, and in particular for all v ∈ Uu ∩Ex. The open sets Uu ∩Ex cover Ex, so

we can find a finite subcover: let I be the intersection of the corresponding open

intervals Iu. Then I, being the intersection of a finite number of open intervals,

is open, and contains 0, and for every v ∈ Ex, χt(v) is defined for all t ∈ I. ¤

Let π : E → M be a fibre bundle, and V π → E the vertical sub-bundle of TE.

By a type (0, 2) fibre tensor on E we mean a smooth bilinear map V π×EV π → R.
If g is a type (0, 2) fibre tensor on E then gx, its restriction to Ex = π−1(x), is a

type (0, 2) tensor field on Ex. A fibre metric on E is a type (0, 2) fibre tensor for

which gx is a Riemannian metric on Ex for all x.

Let Z be a projectable vector field on E; then for any vector field V on E

which is vertical over M , [Z, V ] is vertical. So for any vertical vector fields V , W

on E we may set

LZg(V,W ) = Z
(
g(V,W )

)− g
(
[Z, V ],W

)− g
(
V, [Z,W ]

)
.
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Clearly, LZg(V,W ) is C∞(E)-bilinear in V and W , so this formula defines a type

(0, 2) fibre tensor LZg, which is evidently symmetric.

The operator LZ is a form of Lie derivative, as can be seen in two different

ways. In the first place, we can think of V 7→ [Z, V ] as a Lie derivative of vertical

vector fields (identifying the Lie derivative and Lie bracket in the usual way);

then the formula for LZg above can be written

LZg(V,W ) = LZ

(
g(V,W )

)− g
(LZV,W

)− g
(
V,LZW

)
,

which mimics the usual method of extending the Lie derivative from vector fields

to tensor fields. This formulation makes it clear that to evaluate LZg(V,W ) at

any u ∈ E we need consider only the values of V and W (and of course g) along

the integral curve of Z through u.

Secondly, when the fibres of E are compact we can interpret the formula in

terms of flows, as follows. Since Z is projectable, to Z ∈ X(M), its flow χt is

projectable to the flow χt of Z. Given x ∈ M , by Proposition 5 χt(u) is defined

for all u ∈ Ex for t in some open interval I containing 0. Denote the restriction

of χt, t ∈ I, to Ex by χx;t; thus χx;t is a diffeomorphism of Ex with Eχt(x)
. The

pullback χ∗
x;t(gχt(x)

) is defined for any t ∈ I, and is another symmetric type (0, 2)

tensor field on Ex. We claim that

d

dt
χ∗
x;t

(
gχt(x)

)∣∣∣∣
t=0

= (LZg)x .

To establish the claim, choose vertical vector fields Vx,Wx on Ex, and extend

them along xt = χt(x) by Lie transport, so that Vxt = χx;t∗Vx. Then

(
χ∗
x;tgxt

)
(Vx,Wx) = gxt (χx;t∗Vx, χx;t∗Wx) = gxt (Vxt ,Wxt) = g(V,W )(xt).

Thus
d

dt
χ∗
x;tgxt

∣∣∣∣
t=0

(Vx,Wx) = Zx (g(V,W )) .

But LZV = LZW = 0 by construction, so in this case

d

dt
χ∗
x;tgxt

∣∣∣∣
t=0

(Vx,Wx) = (LZg)x (Vx,Wx).

But each of d/dt(χ∗
x;tgxt)t=0 and (LZg)x is a tensor field on Ex, and so they are

equal (as tensors).

Of course if Z1 and Z2 are projectable so is [Z1, Z2]. It is easy to see that

LZ1 (LZ2g)− LZ2 (LZ1g) = L[Z1,Z2]g.
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So far, so fairly predictable; but now an unexpected feature emerges. For

any f ∈ C∞(M),

LfZg(V,W ) = fZ
(
g(V,W )

)− g
(
[fZ, V ],W

)− g
(
V, [fZ,W ]

)
= fLZg(V,W ),

since V f = Wf = 0. That is to say, LZg(V,W ) is C∞(M)-linear in Z. Thus so

far as its dependence on Z is concerned, LZg behaves like a covariant derivative

rather than a Lie derivative. In particular, (LZg)x depends only on the value of

Z on Ex. To put things another way, for any vector field Zx along Ex → E which

is projectable to TxM , there is a well-defined symmetric type (0, 2) tensor field

LZx
g on Ex, given by LZx

g = (LZg)x where Z is any vector field on E defined

in a neighbourhood of Ex which agrees with Zx on Ex. This feature is clear also

from the coordinate representation of LZg. Take coordinates xi on M and ua on

the fibre; let

Z = ξi
∂

∂xi
+ ηa

∂

∂ua
, g

(
∂

∂ua
,

∂

∂ub

)
= gab,

where ξi = ξi(x); then

(LZg)ab = ξi
∂gab
∂xi

+ ηc
∂gab
∂uc

+ gcb
∂ηc

∂ua
+ gac

∂ηc

∂ub
.

The point to note is that no derivatives of the components of Z with respect

to the xi appear on the right-hand side. It is also clear from this formula, if it

wasn’t already, that if Zx is actually vertical then LZxg is just the ordinary Lie

derivative of gx considered as a tensor field on Ex.

We call LZg = 0 the isometry equation for (projectable) vector fields, and

LZxg = 0 the isometry equation at x. Every vector field solution of the isometry

equation gives rise to a solution of the isometry equation at x, but it is not

necessarily the case that a solution of the isometry equation at x can be extended

to a vector field solution, even locally.

Suppose that Z is a solution of the isometry equation; denote its flow by

χt, and the flow of its projection Z by χt. We know from Proposition 5 that for

any x ∈ M , χx;t is well-defined for all t in some open interval I containing 0. It

follows from the fact that LZg = 0, by a standard argument, that

d

dt

(
χ∗
x;tgxt

)
= 0

for all t ∈ I, and hence that χ∗
x;tgxt = gx. Thus a solution of the isometry

equation for vector fields is the infinitesimal generator of fibre isometries of the
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fibre metric. We call such a vector field an infinitesimal fibre isometry of the fibre

metric, and denote the space of infinitesimal fibre isometries by J. Then J is a

C∞(M)-module of vector fields on E which is closed under bracket.

The solutions of the isometry equation at x form a vector space over R which

we denote by Jx. Those solutions which are vertical are simply infinitesimal

isometries, or Killing fields, of the metric gx. Since a solution of the isometry

equation at x is projectable to TxM , the linear map π∗ restricts to a linear map

Jx → TxM , and we see that the solution space Jx is of finite dimension at most

m + 1
2n(n − 1) where m = dimM and n = dimEx. The kernel of π∗|Jx , which

we denote by Kx, is the space of infinitesimal isometries of gx, and in particular

is a Lie algebra (under Lie bracket), not just a vector space.

It is tempting to think of J as consisting of the sections of a vector bundle over

M whose fibre at x is Jx, but this will not normally be permissible: for example,

there is no guarantee that the spaces Jx at different points x are isomorphic. We

next describe a situation in which this difficulty does not arise.

Consider a fibre bundle π : E → M whose standard fibre is compact and

whose base is connected, which is equipped with a fibre metric g such that the

map π∗ : J → X(M), taking each infinitesimal fibre isometry to its projection on

M , is surjective. In such a case we say that J is transitive.

Proposition 6. Let π : E → M be a fibre bundle with compact standard

fibre and connected base, equipped with a fibre metric g such that J is transitive.

The fibres of E, considered as Riemannian manifolds, are pairwise isometric.

Proof. Let x and y be points of M that both lie on an integral curve of

some vector field X. We show that Ex and Ey are isometric. Let ϕt be the flow

of X, and suppose that y = ϕs(x) (without loss of generality we may assume

that s > 0). By assumption there is a vector field X̃ on E such that X̃ ∈ J and

π∗X̃ = X. Let ϕ̃t be the flow of X̃: then π ◦ ϕ̃t = ϕt, and for any z ∈ M there

is an open interval I containing 0 such that ϕ̃t is an isometry of Ez with Eϕt(z)

for all t ∈ I. This holds in particular for z = ϕr(x) for all r ∈ [0, s]. So we have a

covering of [0, s] by open intervals say (r− δr, r+ δr) on each of which ϕ̃t(Eϕr(x))

is defined. From this covering we can extract a finite subcovering. Then using the

one-parameter group property we see that in fact ϕ̃t(Ex) is defined for all t ∈ [0, s],

and therefore ϕ̃s : Ex → Ey is an isometry (and indeed ϕ̃r : Ex → Eϕr(x) is an

isometry for all r ∈ [0, s]). Now any pair of points in M can be joined by a

piecewise smooth curve which is made up of segments each of which is part of the

integral curve of some vector field; the general result follows. ¤
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Since the fibres are all isometric, we can choose a Riemannian manifold isom-

etric to each of them, for example any one fibre Ex with its metric gx. We denote

this representative Riemannian manifold by E .
Proposition 7. Let π : E → M be a fibre bundle with compact standard

fibre and connected base, equipped with a fibre metric g such that J is transitive.

About every point of M there is a neighbourhood U and a local trivialization

τ : U ×E → E|U , compatible with the smooth bundle structure, such that for all

x ∈ U , the map τx : E → Ex given by τx = τ(x, ·) is an isometry.

Proof. Fix a point in M and take a coordinate neighbourhood U with this

point as origin; we shall denote it by o. Without loss of generality we may assume

that the image of U is the open unit ball in Rm, and we may further assume that

U is contained in some neighbourhood over which E is locally trivial. Since J

is a C∞(M)-module, with each coordinate field Xi = ∂/∂xi we may associate a

vector field X̃i on E such that X̃i ∈ J and π∗X̃i = Xi on U . For each x ∈ U let rx
be the ray joining the origin to x with respect to the coordinates: it is an integral

curve of xi(x)Xi, where the xi(x) are the coordinates of x (which of course are

to be treated as constants). Since J is a vector space over R, xi(x)X̃i ∈ J. Let

σx : Eo → Ex be the isometry determined by xi(x)X̃i. Let u
a be fibre coordinates

on E over U . Then

X̃i =
∂

∂xi
+Na

i

∂

∂ua

for certain functions Na
i on E|U , and so

xi(x)X̃i = xi(x)

(
∂

∂xi
+Na

i

∂

∂ua

)
.

Thus for any u ∈ Eo, u = (0, ua), the fibre coordinates of σx(u) are determined

as the solution of the system of ordinary differential equations

u̇a = xi(x)Na
i (tx

j(x), ub), ua(0) = ua,

in which the coordinates xi(x) play the role of parameters. But the solutions

of such equations depend smoothly on parameters, so σx(u) depends smoothly

on the coordinates (xi, ua). Now let φ : E → Eo be an isometry. We define

τ : U ×E → E|U by τ(x, v) = σx(φ(v)) for v ∈ E . Then τ is a local trivialization,

compatible with the smooth bundle structure, such that for all x ∈ U , τx = σx◦φ :

E → Ex is an isometry. ¤

For any bundle E → M with fibre metric g the set of isometries between

fibres is evidently a groupoid, which we call the fibre-isometry groupoid (the

precise definition is the first paragraph of the proof of the following theorem).
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Theorem 8. The fibre-isometry groupoid of a fibre bundle π : E → M

with compact standard fibre and connected base, equipped with a fibre metric g

such that J is transitive, is a locally trivial Lie groupoid. The corresponding Lie

algebroid has the spaces Jx for its fibres and the space J as its sections.

Proof. Given the bundle π : E → M , we let Ωy,x denote the set of isom-

etries from the fibre Ex to the fibre Ey, and let Ω =
⋃

x,y∈M Ωy,x. If θ ∈ Ωy,x

put α(θ) = x and β(θ) = y; this defines maps α, β : Ω → M . Let 1x : Ex → Ex

denote the identity isometry; then 1 : x 7→ 1x maps M to Ω. Finally, let the par-

tial multiplication be composition of maps, and the inverse be the usual inverse

of maps. It is immediate that, with these definitions, Ω is a groupoid.

To give Ω a smooth structure we modify the technique used in [7, Exam-

ple 1.1.12]. Let {Uλ}, for λ in some indexing set Λ, be a covering of M by sets of

the kind defined in Proposition 7. Let τλ : Uλ × E → E|Uλ
be the corresponding

isometric local trivialisation of E|Uλ
, and for x ∈ Uλ set τλ,x = τλ(x, ·) : E → Ex.

Let

ΩUµ,Uλ
=

⋃

x∈Uλ,y∈Uµ

Ωy,x

and define

ψµ,λ : ΩUµ,Uλ
→ Uµ ×G(E)× Uλ,

where G(E) is the isometry group of E (a Lie group), as follows. If θ ∈ ΩUµ,Uλ

then θ ∈ Ωy,x for some x ∈ Uλ and y ∈ Uµ. Thus
(
τµ,y

)−1 ◦ θ ◦ τλ,x is a map

E → E , which is evidently an isometry, say G ∈ G(E). We may therefore put

ψµ,λ(θ) = (y,G, x),

and it is straightforward to see that this defines a bijection.

To show that Ω has a smooth structure, we need to show that if ψµ2,λ2 ◦(
ψµ1,λ1

)−1
has a non-empty domain then it is smooth. The non-empty domain

condition is that

(
ψµ1,λ1

)−1
(Uµ1 ×G(E)× Uλ1) ∩ Ω|Uµ2 ,Uλ2

6= ∅,

which translates as

ΩUµ1 ,Uλ1
∩ ΩUµ2 ,Uλ2

6= ∅,
in other words that Uλ1 ∩ Uλ2 6= ∅ and Uµ1 ∩ Uµ2 6= ∅. If this condition holds

then the domain of ψµ2,λ2 ◦
(
ψµ1,λ1

)−1
is

(Uµ1 ∩ Uµ2)×G(E)× (Uλ1 ∩ Uλ2).
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If (y,G, x) is in the domain then
(
ψµ1,λ1

)−1
(y,G, x) is the isometry τµ1,y ◦ G ◦(

τλ1,x

)−1
: Ex → Ey. Thus

ψµ2,λ2 ◦
(
ψµ1,λ1

)−1
(y,G, x) = ψµ2,λ2

(
τµ1,y ◦G ◦ (τλ1,x

)−1
)

=
(
y,
((
τµ2,y

)−1 ◦ τµ1,y

) ◦G ◦ ((τλ1,x

)−1 ◦ τλ2,x

)
, x

)
.

Note that
(
τλ1,x

)−1◦τλ2,x ∈ G(E), and also
(
τµ2,y

)−1◦τµ1,y ∈ G(E), so the central

term above is an element of G(E), as required. Moreover, x 7→ (
τλ1,x

)−1 ◦ τλ2,x is

the transition function Uλ1
∩Uλ2

→ G(E) for the bundle structure on π : E → M

defined in Proposition 7, and likewise y 7→ (
τµ1,y

)−1 ◦ τµ2,y is the transition

function Uµ1 ∩ Uµ2 → G(E). So ψµ2,λ2 ◦
(
ψµ1,λ1

)−1
is constructed from smooth

maps by smooth operations, and therefore is smooth.

Now Uλ, Uµ ⊂ M are coordinate patches, by assumption. Taking a coordi-

nate patch V ∈ G(E) we obtain a coordinate patch
(
ψµ,λ

)−1
(Uµ ×V ×Uλ) on Ω.

The transition functions for such patches are smooth as a consequence of the im-

mediately preceding result about ψµ2,λ2 ◦
(
ψµ1,λ1

)−1
. Thus Ω is a differentiable

manifold of dimension 2m+ d, d = dimG(E).
It is now straightforward to show that the structure maps of the groupoid

are smooth and that the source and target projections are surjective submersions,

both separately and as the pair (α, β), so we conclude that Ω is a locally trivial

Lie groupoid of dimension 2m+ d.

We turn now to the Lie algebroid of Ω, which we denote by AΩ. We can

identify points of AΩ over x ∈ M with tangent vectors at t = 0 to curves κ in

the α fibre of Ω over x such that κ(0) = 1x. For such a curve α(κ(t)) = x, while

β(κ(t)) = κ(t) say is a smooth curve in M ; so κ(t) is an isometry of Ex with Eκ(t)

and κ(0) is the identity map of Ex. Since κ(t) is an isometry, for every u ∈ Ex

κ(t)∗gκ(t)u = gu,

or in terms of fibre coordinate fields

gκ(t)u

(
κ(t)∗

∂

∂ua
, κ(t)∗

∂

∂ub

)
= gab(u).

Let us set κ(t)u = (κi(t), κa(t, u)); then

κ(t)∗

(
∂

∂ua

∣∣∣∣
u

)
=

∂κb

∂ua
(t, u)

∂

∂ub

∣∣∣∣
κ(t)u

,
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whence

gκ(t)u

(
κ(t)∗

∂

∂ua
, κ(t)∗

∂

∂ub

)
=

∂κc

∂ua
(t, u)

∂κd

∂ub
(t, u)gcd(κ(t)u).

Note that since κ(0) is the identity,

∂κc

∂ua
(0, u) = δca.

The tangent vector Zu to the curve t 7→ κ(t)u at t = 0 is

dκ̄i

dt
(0)

∂

∂xi
+

∂κa

∂t
(0, u)

∂

∂ua
= ξi

∂

∂xi
+ ηa(u)

∂

∂ua

say. Then Z is a vector field along Ex → E, which projects onto a vector at

x ∈ M , namely the initial tangent vector to κ. By differentiating the isometry

condition
∂κc

∂ua
(t, u)

∂κd

∂ub
(t, u)gcd(κ(t)u) = gab(u)

with respect to t and setting t = 0 we obtain

ξi
∂gab
∂xi

+ ηc
∂gab
∂uc

+ gcb
∂ηc

∂ua
+ gac

∂ηc

∂ub
= 0.

This is just the condition for Z to belong to Jx.

Conversely, suppose that Z ∈ Jx. Let X be any vector field on M such

that Xx = π∗Z. Let X̃ be a vector field on E such that X̃ ∈ I and π∗X̃ = X.

Then X̃x −Z is a vertical vector field on Ex belonging to Jx, and is therefore an

infinitesimal isometry of gx. Let ϕ̃t be the flow of X̃. By Proposition 5 there is an

open interval containing 0 such that ϕ̃t : Ex → Eϕt(x) is an isometry for all t ∈ I,

where ϕt = π ◦ ϕ̃t. Set V (t) = ϕ̃t∗(X̃x − Z): since ϕ̃t is an isometry, V (t) is a

vertical vector field which is an infinitesimal isometry of gϕt(x). Consider X̃ + V :

this is a vector field over the curve ϕt(x) which projects onto X and belongs to

Jϕt(x) for all t ∈ I. It generates a curve of isometries Ex → Eϕt(x), defined on

some open interval containing 0 (possibly smaller than I), whose tangent at t = 0

is just Z, as required. ¤

When the conditions of Theorem 8 apply we shall denote the Lie algebroid

of the fibre-isometry groupoid by I. Then I is a vector bundle over M , whose

fibre Ix over X ∈ M consists of the vector fields along Ex → E which satisfy the

isometry equation at x. We denote by Sec(I) the C∞(M)-module of sections of I;

elements of Sec(I) are vector fields on E which satisfy the isometry equation. The
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anchor is π∗|I, and the bracket is just the bracket of vector fields on E, restricted

of course to elements of Sec(I). We denote the kernel by K → M ; it is a Lie

algebra bundle, and for each x ∈ M the fibre Kx is the Lie algebra of infinitesimal

isometries of the Riemannian manifold (Ex, gx).

We have the following short exact sequence of vector bundles over M :

0 → K → I → TM → 0.

We now specialise further to the case where this sequence splits; that is to say,

we suppose that there is a linear bundle map γ : TM → I over the identity of M

such that π∗ ◦ γ = idTM . Such a splitting is an infinitesimal connection on I,

in the terminology of Section 2. There is a corresponding connection Γ on the

fibre-isometry groupoid. We now set out to identify its holonomy Lie algebra

bundle.

Proposition 9. Suppose we have an infinitesimal connection γ on I. For

any X ∈ X(M) and V ∈ Sec(K) set

∇γ
XV = [γ(X), V ].

Then ∇γ is a covariant differentiation operator on Sec(K). Furthermore, ∇γ
X is a

derivation of the bracket:

∇γ
X [V,W ] = [∇γ

XV,W ] + [V,∇γ
XW ].

Proof. Since γ(X) ∈ Sec(I) and Sec(I) is closed under bracket, ∇γ
XV ∈

Sec(I). But ∇γ
XV is clearly vertical, so ∇γ

XV ∈ Sec(K). Evidently ∇γ
XV is

R-linear in both arguments, and for f ∈ C∞(M),

∇γ
fXV = f∇γ

XV, ∇γ
X(fV ) = f∇γ

XV +X(f)V.

The fact that ∇γ
X is a derivation of the bracket follows from the Jacobi identity.

¤

The conclusion that ∇γ
XV ∈ Sec(K) for all X ∈ X(M) and V ∈ Sec(K) is

abbreviated to ∇γ(Sec(K)) ⊂ Sec(K).

A connection for which the derivation property is satisfied is called a Lie con-

nection. It is a consequence of the fact that the connection is Lie that the parallel

translation operator τγc corresponding to ∇γ along a curve c in M from x to y is

an isomorphism of Lie algebras Kx → Ky (see Proposition 25 in Appendix 2).
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For any X,Y ∈ X(M) we set

Rγ(X,Y ) = γ([X,Y ])− [γ(X), γ(Y )].

Then Rγ(X,Y ) is a vertical vector field on E which depends C∞(M)-linearly

on X and Y , so for any x ∈ M and any v, w ∈ TxM , Rγ
x(v, w) is a well-defined

vertical vector field on the fibre Ex. We call Rγ the curvature of γ and we call

Rγ
x(v, w) a curvature vector field at x.

Proposition 10. For all X,Y ∈ X(M), Rγ(X,Y ) ∈ Sec(K).

Proof. Since Sec(I) is closed under bracket, [γ(X), γ(Y )] ∈ Sec(I). Thus

both γ([X,Y ]) and [γ(X), γ(Y )] belong to Sec(I); their difference, which is ver-

tical, therefore belongs to Sec(K). ¤

Corollary 11. For every x ∈ M and v, w ∈ TxM , Rγ
x(v, w) ∈ Kx.

We can also compute the curvature of ∇γ ; we obtain

∇γ
X∇γ

Y V −∇γ
Y ∇γ

XV −∇γ
[X,Y ]V = [V, γ([X,Y ])− [γ(X), γ(Y )]] = [V,Rγ(X,Y )].

Due to the existence of the splitting we have I ≡ TM ⊕ K. Thus sections of

I → M are vector fields on E of the form γ(X) + V with V ∈ Sec(K). In terms

of the direct sum decomposition the algebroid bracket is given by

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ (−Rγ(X,Y ) +∇γ
XW −∇γ

Y V + [V,W ]).

Every term in the second component on the right belongs to Sec(K).

By Theorem 4, the holonomy Lie algebra bundle is the least Lie algebra sub-

bundle H of K which contains all curvature vector fields (that is, such that for all

x ∈ M and all v, w ∈ TxM , Rγ
x(v, w) ∈ Hx), and satisfies ∇γ(Sec(H)) ⊂ Sec(H).

(That there is a least Lie algebra sub-bundle with these properties is a consequence

of the following result, whose proof is to be found in Appendix 2, Corollary 26:

let E → M be a Lie algebra bundle equipped with a Lie connection, and let E1

and E2 be Lie algebra sub-bundles of E such that ∇(Sec(Ei)) ⊂ Sec(Ei), i = 1, 2;

then E1 ∩ E2 is a Lie algebra bundle.) The holonomy algebra at x is Hx.

We now prove a version of the Ambrose–Singer Theorem in the present con-

text. For this purpose we define, for every x ∈ M , a vector subspace Rx of the

vector space Kx, as follows. Since for any y ∈ M and any curve c in M joining

y to x parallel translation τγc along c maps Ky to Kx, τ
γ
c R

γ
y(v, w) ∈ Kx for any

v, w ∈ TyM . We define Rx to be the least subspace of Kx containing all parallel

translates of curvature vector fields to x, that is, all τγc R
γ
y(v, w).
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Theorem 12. Hx = Rx.

In the proof we use the following result. Let π : E → M be a vector bundle

equipped with a linear connection ∇. Let E′ be a subset of E such that: π maps

E′ onto M ; for each x ∈ M , E′
x = π|−1

E′ (x) is a linear subspace of Ex; and for

any pair of points x, y ∈ M and any curve c in M joining them, τc(E
′
x) ⊆ E′

y.

Then E′ is a vector sub-bundle of E and ∇(Sec(E′)) ⊂ Sec(E′). The proof is to

be found in Appendix 2, Proposition 23.

Proof. Set R =
⋃

x Rx. It follows from Proposition 23 (with E = K and

E′ = R) that R is a vector sub-bundle of K, and ∇γ(Sec(R)) ⊂ Sec(R). Thus for

any V ∈ Sec(R) and any X,Y ∈ X(M),

∇γ
X∇γ

Y V −∇γ
Y ∇γ

XV −∇γ
[X,Y ]V = [V,Rγ(X,Y )] ∈ Sec(R).

Thus [τγc R
γ
y(vy, wy), R

γ
x(vx, wx)] ∈ Rx for any vx, wx ∈ TxM and vy, wy ∈ TyM .

But since ∇γ is a Lie connection, parallel translation preserves brackets (Propo-

sition 25), so for any y, z ∈ M , any curve c in M joining y to x and any curve

d in M joining z to x, [τγc R
γ
y(vy, wy), τ

γ
dR

γ
z (vz, wz)] ∈ Rx. Thus Rx is a Lie

subalgebra of Kx. Moreover, the Lie algebras Rx at different points are isomor-

phic, so R is a Lie algebra sub-bundle of K, and as we have pointed out already,

∇γ(Sec(R)) ⊂ Sec(R). Evidently Rγ
x(v, w) ∈ Rx for every v, w ∈ TxM . It follows

that H ⊆ R. On the other hand, any Lie algebra sub-bundle K′ of K which con-

tains all curvature vector fields and satisfies ∇γ(Sec(K′)) ⊂ Sec(K′) must contain

all the parallel translates of curvature vector fields, and so must contain R. Thus

R ⊆ H, and so R = H. Thus Rx = Hx. ¤

4. Holonomy of Landsberg spaces

We now discuss the application of the results of the previous section to Lands-

berg spaces in Finsler geometry. (Some earlier and much more rudimentary steps

in this direction are to be found in [4].)

It is well known [1], [2], [10] that a Finsler space over a manifold M supports

a canonical nonlinear connection or horizontal distribution, that is, a distribution

on the slit tangent bundle π : T ◦M → M which is everywhere transverse to the

fibres. (The term ‘connection’ has two distinct uses in this section — a second

one will be introduced below — not to mention the uses in the context of the

groupoid theory. We therefore prefer the term horizontal distribution since it

reduces the possibilities of confusion.) We shall not need the explicit definition
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of the horizontal distribution, only the fact that it exists, that it is positively-

homogeneous, and that it enjoys one or two other properties to be introduced in

due course.

Suppose given a Finsler space, together with its canonical horizontal distri-

bution. A smooth curve in T ◦M is horizontal if its tangent vector is everywhere

horizontal; the definition extends to piecewise-smooth curves in the obvious way.

Let c be a piecewise-smooth curve in M , x a point in the image of c and u ∈ T ◦
xM .

A piecewise-smooth curve in T ◦M which is horizontal, projects onto c and passes

through (x, u) is called a horizontal lift of c through u. If c is defined on the finite

closed interval [a, b] and u ∈ T ◦
xM , x = c(a), then there is a unique horizontal lift

of c through u which is also defined on [a, b]. If one makes a reparametrization

of c, carrying out the same reparametrization on its horizontal lift produces a

horizontal lift of the reparametrization of c. As a consequence of this repara-

metrization property we may standardize the domains of definition of curves to

[0, 1]. We may therefore make the definition of the horizontal lift more specific, as

follows. Let c : [0, 1] → M be any piecewise-smooth curve, with c(0) = x. For any

u ∈ T ◦
xM the horizontal lift of c to u is the unique piecewise-smooth horizontal

curve cHu : [0, 1] → T ◦M such that π ◦ cHu = c and cHu(0) = u.

For any x, y ∈ M and any piecewise-smooth curve c with c(0) = x, c(1) = y,

we may define a map ρc : T
◦
xM → T ◦

yM by setting ρc(u) = cHu(1), which is in fact

a diffeomorphism. (The map ρc is sometimes called nonlinear parallel transport

[1], but again we prefer to avoid this term for the sake of clarity.) Slightly more

generally, for t ∈ [0, 1] we define ρc(t) : T
◦
xM → T ◦

c(t)M by ρc(t)(u) = cHu(t).

The canonical horizontal distribution of a Finsler space has the property that

the Finsler function F is constant along horizontal curves. Because of this, and

because the horizontal distribution is positively-homogeneous, we may restrict

our attention to the indicatrix bundle I = {(x, u) ∈ T ◦M : F (x, u) = 1}; this
is a fibre bundle over M with compact fibres (each indicatrix is diffeomorphic

to a sphere). In particular, each ρc restricts to a diffeomorphism of indicatrices,

ρc : Ix → Iy.
For any vector field X on M we denote by XH its horizontal lift to T ◦M with

respect to the canonical horizontal distribution; it is the unique horizontal vector

field such that π∗XH = X. Another version of the constancy property is that for

every X ∈ X(M), XH(F ) = 0; in particular, XH is tangent to I.
In any Finsler space the fundamental tensor g defines a fibre metric on T ◦M ,

and by restriction one on I. A Landsberg space, according to one possible defi-

nition (see for example [1]), is a Finsler space for which, for every pair of points

x, y ∈ M and every curve c joining x and y, ρc is an isometry of the Riemannian
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spaces (Ix, gx) and (Iy, gy). In the light of the previous section we may put things

another way: a Finsler space is a Landsberg space if the holonomy groupoid of

its canonical horizontal lift, acting on its indicatrix bundle, is a subgroupoid of

the fibre-isometry groupoid. Then the connection Γ associated with the canonical

horizontal lift is just cΓ(t) = ρc(t).

There is an equivalent differential version of this definition. A Landsberg

space is one for which LXHg = 0, or in other words XH ∈ J, for all X ∈ X(M).

It is certainly the case, therefore, that for a Landsberg space J is transitive, and

we conclude from Theorem 8 that the fibre-isometry groupoid is a Lie groupoid.

We denote by I its Lie algebroid, as before. It is moreover the case that the

horizontal lift defines an infinitesimal connection on I: for v ∈ TxM we define

γ(v) = vH ∈ Ix (where vH is considered as a vector field along Ix → I satisfying

the isometry equation at x).

The theory of the previous section applies to Landsberg spaces, therefore.

There is one point of interest which deserves closer inspection, and that concerns

the identification of the covariant derivative operator ∇γ . To discuss this point

it will be worthwhile to revert temporarily to the consideration of the canonical

horizontal distribution as a distribution on T ◦M .

We may associate with every vector field X on M an operator ∇X on vertical

vector fields V on T ◦M by

∇XV = [XH, V ].

Then ∇XV is vertical, is R-linear in both arguments, and for f ∈ C∞(M)

∇fXV = f∇XV, ∇X(fV ) = f∇XV +X(f)V ;

so ∇ has the properties of a (linear) covariant differentiation operator. Further-

more, ∇X is a derivation of the bracket:

∇X [V,W ] = [∇XV,W ] + [V,∇XW ]

by the Jacobi identity. Of course, to call this a covariant derivative would be

stretching a point, since to do so we should have to regard the space of vertical

vector fields on T ◦
xM as the fibre of a vector bundle over M , and a vertical vector

field on T ◦M as a section of this bundle.

If the canonical horizontal distribution is spanned locally by vector fields

Hi =
∂

∂xi
− Γj

i

∂

∂uj

then

∇∂/∂xi

(
∂

∂uj

)
=

[
Hi,

∂

∂uj

]
=

∂Γk
i

∂uj

∂

∂uk
.
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Now the connection coefficients Γk
ij of the Berwald connection are given by

∂Γk
i

∂uj
= Γk

ij .

That is to say, ∇ is closely related to the Berwald connection. The Berwald

connection is usually thought of as a connection on the vector bundle π∗TM , the

pullback of TM over T ◦M ; it is of course a linear connection. But for us it will be

more convenient to work with vertical vector fields on T ◦M than with sections of

π∗TM , though there is no essential difference (every section of π∗TM defines a

vertical vector field on T ◦M by the vertical lift procedure, and the correspondence

is 1 − 1). In fact for a curve c on M , ∇ċ is effectively covariant differentiation

with respect to the Berwald connection along horizontal lifts of c.

There is a further point of interest, concerned with the differential of the

map ρc for a curve c joining x and y in M . What we have to say initially applies

to any Finsler space, and it will continue to be convenient initially to consider

the action of ρc on T ◦M . Since T ◦
xM is a vector space (though deprived of its

origin), its tangent space at any point may be canonically identified with itself

(with origin restored); so for any u ∈ T ◦
xM , ρc∗u may be regarded as a (linear)

map TxM → TyM . This map may be described as follows. For v ∈ TxM ,

u ∈ T ◦
xM , let v(t) be the (unique) vector field along cHu which is parallel with

respect to the Berwald connection of the Finsler space and satisfies v(0) = v:

then ρc∗u(v) = v(1). This may be seen as follows. Consider the pullback c∗T ◦M .

The canonical horizontal distribution on T ◦M induces one on c∗T ◦M , which is

1-dimensional and is spanned by the vector field

(
∂

∂t

)H

=
∂

∂t
− ċjΓi

j(c
k, uk)

∂

∂ui
.

In view of the definition of ρc it is clear that ρc∗u(v) is the Lie translate by (∂/∂t)
H

of v, considered as a vertical vector at u, to ρc(u). For any vertical vector field

V = V i(t, uk)
∂

∂ui

on c∗T ◦M ,

[(
∂

∂t

)H

, V i ∂

∂ui

]
=

((
∂

∂t

)H

(V i) + Γ i
jk ċ

jV k

)
∂

∂ui
=

(
ċHu(V

i) + Γ i
jk ċ

jV k
) ∂

∂ui
.

Thus V is Lie transported by (∂/∂t)
H
if and only if

ċHu(V
i) + Γ i

jk ċ
jV k = 0,
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that is, if and only if it is parallelly translated along cHu with respect to the Berwald

connection. We can conveniently summarise this in terms of ∇, as follows. For

any curve c on M with c(0) = x, c(1) = y, the map ρc∗, considered as a map from

vertical vector fields on T ◦
xM to vertical vector fields on T ◦

yM , is given by parallel

translation with respect to ∇, in the sense that if V (t) is a field of vertical vector

fields along c(t) with ∇ċV = 0, then ρc∗V (0) = V (1).

We can formally compute the curvature of ∇; we obtain

∇X∇Y V −∇Y ∇XV −∇[X,Y ]V = [V,R(X,Y )]

where R is the curvature of the canonical horizontal distribution; note that

R(X,Y ) is a vertical vector field.

One version of the Landsberg property is that LXHg = 0 for all X ∈ X(M).

But

LXHg(V,W ) = XH
(
g(V,W )

)− g
(
[XH, V ],W

)− g
(
V, [XH,W ]

)

= XH
(
g(V,W )

)− g
(∇XV,W

)− g
(
V,∇XW

)
;

so if we extend the action of ∇ to fibre metrics in the obvious way we may write

the condition as ∇g = 0.

We return to consideration of I, the Lie algebroid I and its kernel K, in a

Landsberg space. We now consider XH, for any X ∈ X(M), as a vector field on I;
then in a Landsberg space we have XH ∈ Sec(I). The infinitesimal connection is

just γ(X) = XH, and ∇γ is the restriction of the operator ∇ to Sec(K). Since K

is a vector bundle the restriction of ∇ is a genuine covariant derivative. From the

theory of the previous section we deduce the following proposition (which may

also be proved directly from the definitions of K and ∇).

Proposition 13. In a Landsberg space

(1) ∇(Sec(K)) ⊂ Sec(K);

(2) for all X,Y ∈ X(M), R(X,Y ) ∈ Sec(K).

We can now apply the results of the previous section to the case of a Lands-

berg space. We have a locally trivial Lie groupoid, the fibre-isometry grou-

poid of I, whose Lie algebroid I is equipped with an infinitesimal connection

γ : TM → I, where for v ∈ TxM , γ(v) = vH. The corresponding connection Γ

is the map c 7→ ρc (where ρc is regarded as a curve in the fibre-isometry grou-

poid). The covariant derivative operator ∇γ corresponding to γ, which acts on

sections of the kernel, is just ∇ operating on Sec(K). The holonomy groupoid
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is a Lie groupoid, and the holonomy Lie algebra bundle is the least Lie algebra

sub-bundle H of K which contains all curvature vector fields Rx(v, w) for x ∈ M

and v, w ∈ TxM and satisfies ∇(Sec(H)) ⊂ Sec(H). We may further specialise

the Ambrose–Singer Theorem, Theorem 12, from the previous section. For this

purpose we recall that the parallel translation operator corresponding to ∇ along

a curve c from y to x is the restriction to Ky of ρc∗, the differential of ρc. This is

an isomorphism of Lie algebras Ky → Kx, as follows from the general theory, and

also directly from the fact that ρc is an isometry. We now define Rx to be the

least subspace of Kx containing all elements of the form ρc∗Ry(v, w).

Theorem 14. In a Landsberg space Hx = Rx.

5. Covariant derivatives of the curvature

This section is devoted to clarifying the relationship between the holonomy

algebra Hx of a Landsberg space and the algebra generated by the curvature and

its covariant derivatives. It is based on Section 10 of Chapter II of Kobayashi

and Nomizu [5].

We define, for each k = 2, 3, . . . , an R-linear space of vertical vector fields

Ck on I inductively as follows: C2 is the set of all finite linear combinations over

R of vertical vector fields of the form R(X,Y ) for any pair of vector fields X,

Y on M ; Ck is the set of all finite linear combinations over R of vertical vector

fields which either belong to Ck−1 or are of the form ∇XV for some vector field

X on M , where V ∈ Ck−1.

Theorem 15. With Ck defined as above

(1) each Ck is a C∞(M)-module;

(2) [Ck,Cl] ⊂ Ck+l;

(3) for m = 0, 1, 2, . . . , Cm+2/Cm+1 is spanned by equivalence classes of vertical

vector fields of the form

∇X1∇X2 · · · ∇Xm (R(Y, Z)) ,

where X1, X2, . . . , Xm, Y and Z are any vector fields on M (and C1 = {0}).
(Note that in the third assertion, every ∇ operates on a vertical vector field.

There is no question of writing this formula in terms of covariant differentials of

the curvature tensor, as one would for a linear connection, essentially because (for

example) ∇XaY would make no sense in this context.)
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Proof. (1) We have to show that Ck is closed under scalar multiplication

by smooth functions on M . For any f ∈ C∞(M), fR(X,Y ) = R(fX, Y ) ∈ C2.

Suppose that Ck−1 is closed under scalar multiplication by smooth functions

on M . Then for any V ∈ Ck−1 we know that fV ∈ Ck−1 ⊂ Ck, and f∇XV =

∇fXV ∈ Ck; so Ck is closed under scalar multiplication by smooth functions

on M .

(2) We show first that [Ck,C2] ⊂ Ck+2 for all k ≥ 2. We have

[V,R(X,Y )] = ∇X∇Y V −∇Y ∇XV −∇[X,Y ]V,

and if V ∈ Ck, each term on the right-hand side belongs to Ck+2. Now suppose

that [Ck,Cl] ⊂ Ck+l for all k and all l < L. Let V ∈ CL. It will be sufficient to

consider V = ∇XW with W ∈ CL−1. Then

[U, V ] = [U,∇XW ] = ∇X [U,W ]− [∇XU,W ].

For U ∈ Ck, by the induction assumption [U,W ] ∈ Ck+L−1, so ∇X [U,W ] ∈ Ck+L;

while ∇XU ∈ Ck+1, so by the induction assumption again [∇XU,W ] ∈ Ck+L.

(3) Obvious. ¤

Let us set
⋃

k C
k = C. Then C is a C∞(M)-linear space of vertical vector

fields on I contained in Sec(K), which is closed under bracket, contains R(X,Y )

and is invariant under ∇; and it is minimal with respect to these properties. It

is clear, moreover, that Ck ⊂ Sec(H) for all k = 2, 3, . . . so C ⊂ Sec(H). However,

we have no guarantee that C consists of the sections of a Lie algebra bundle, so

in particular we cannot identify it with Sec(H).

For x ∈ M we set Cx = {Vx : V ∈ C}. Then Cx consists of vertical vector

fields on Ix, and is a Lie algebra with respect to the bracket of vertical vector

fields. Clearly, Cx is a Lie subalgebra of the holonomy algebra Hx for each x ∈ M .

However, we have no reason to suppose that Cx and Cy are isomorphic Lie algebras

for x 6= y, or even that they have the same dimension.

Proposition 16. For each x ∈ M there is a neighbourhood U of x in M

such that for all y ∈ U , dimCy ≥ dimCx.

Proof. Every element of Cx is the restriction to Ix of an element of C. Let

Va, a = 1, 2, . . . , dimCx, be elements of C such that {Va|x} is a basis for Cx. Since

the Va|x are linearly independent, there is a neighbourhood U of x such that

the Va|y are linearly independent for all y ∈ U . Then dimCy ≥ dimCx for all

y ∈ U . ¤
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Proposition 17. Let µ be the maximum value of dimCx as x ranges overM .

Then the set {x ∈ M : dimCx = µ} is an open subset of M . Let U be a path-

connected component of it: then for each x ∈ U , Cx is the holonomy algebra at x

of the Landsberg space defined over U by the restriction of the Landsberg Finsler

function F to T ◦U .

Proof. By Proposition 16, every point x with dimCx = µ has a neighbour-

hood at all of whose points y, dimCy = µ; so {x ∈ M : dimCx = µ} is open.

Let U be a path-connected component of this set, and restrict both the Landsberg

structure and C to this open submanifold of M . If Va, a = 1, 2, . . . , µ, are elements

of C|U such that {Va|x} is a basis for Cx for some x ∈ U , then they also form a

basis for Cy for all y in some neighbourhood of x in U ; so
⋃

x∈U Cx is a vector

bundle over U , and C|U consists of its sections. Each of its fibres is a Lie algebra,

and ∇ is a Lie connection for the corresponding bracket of sections: so it is a

Lie algebra bundle. We denote it by K. Now K evidently contains all curvature

vector fields Rx(v, w) for x ∈ U , v, w ∈ TxU , and of course ∇(Sec(K)) ⊂ Sec(K).

Moreover, by construction K is contained in any Lie algebra sub-bundle of K|U
with these properties. It is therefore the least such Lie algebra bundle, which is to

say that it is the holonomy Lie algebra bundle of the restriction of the Landsberg

structure to U . ¤
Corollary 18. If dimCx is constant on M then K = H, and Cx = Hx for all

x ∈ M .

Theorem 19. If the data are analytic (that is, if M is an analytic manifold

and F an analytic function) then Cx = Hx for all x ∈ M .

Proof. We shall show that dimCx is constant on M , so the result will follow

from the corollary above. We proceed via a couple of lemmas.

Lemma 20. Take any x ∈ M and any analytic curve c(t) with c(0) = x.

Let V be any analytic section of H. For |t| sufficiently small

Vc(t) = ρc∗|t0
( ∞∑

r=0

tr

r!
(∇r

ċV )x

)

where ρc∗|t0 is the operator of parallel translation along c from c(0) = x to c(t).

Proof. Let {vα(0)} be a basis for Hx, and for each α let vα(t) = ρc∗|t0vα(0)
be the element of Hc(t) defined by parallel translation of vα(0). Then {vα} is a

basis of sections of H along c, and ∇ċvα = 0 by construction. An analytic section

V of H, restricted to c, may be expressed in terms of {vα} as

Vc(t) = να(t)vα(t),
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where the coefficients να are analytic functions of t. Thus

να(t) =

∞∑
r=0

tr

r!

drνα

dtr
(0)

for |t| sufficiently small: to be precise, for |t| less than the smallest of the radii of

convergence of the functions να at 0. For each r = 1, 2, . . . ,

(∇r
ċV )(t) =

drνα

dtr
(t)vα(t)

since ∇ċvα = 0. Thus

Vc(t) =

( ∞∑
r=0

tr

r!

drνα

dtr
(0)

)
ρc∗|t0vα(0) = ρc∗|t0

( ∞∑
r=0

tr

r!
(∇r

ċV )x

)
,

as required. ¤

We wish to apply this formula with V an element of C ⊂ Sec(H). Now C is

spanned (over Cω(M)) by elements of the form

∇X1∇X2 · · · ∇Xm (R(Y, Z)) ,

where X1, X2, . . . , Xm, Y and Z are any vector fields on M . If we restrict our

attention to a coordinate patch U from the given analytic atlas then it will be

enough to take X1, X2, . . . , Xm, Y and Z to be coordinate fields. We take a

local basis {Vα} of sections of H over U and set

R

(
∂

∂xj
,

∂

∂xk

)
= Rjk = Rα

jkVα;

the coefficients Rα
jk are functions on U , analytic in the coordinates. We abbreviate

∇∂/∂xi to ∇i; since ∇(Sec(H)) ⊂ Sec(H) we may set

∇iVα = Γβ
iαVβ ;

the connection coefficients Γβ
iα are functions on U , analytic in the coordinates.

Thus for any x ∈ U there is an open Euclidean coordinate ball Bδ(x) centred at x

such that the power series expansions about x, in terms of coordinates, of all the

functions Rα
jk and Γβ

iα converge in Bδ(x).

Lemma 21. The coefficients with respect to {Vα} of all sections of H of the

form ∇i1∇i2 · · ·∇imRjk can be expanded in convergent power series about x ∈ U

in the same open coordinate ball Bδ(x).
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Proof. If f is an analytic function whose power series expansion about x

converges in Bδ(x), the power series expansion about x of ∂f/∂xi also converges in

Bδ(x); and if f1 and f2 are analytic functions whose power series expansions about

x converge in Bδ(x), the power series expansion about x of f1f2 also converges in

Bδ(x). But

∇i(ν
αVα) =

(
∂να

∂xi
+ Γα

iβν
β

)
Vα.

Thus if the coefficients with respect to {Vα} of an analytic section V of H have

power series expansions about x that converge in Bδ(x) then the coefficients of

∇iV have power series expansions about x that also converge in Bδ(x). It follows

that the coefficients of all sections of H of the form ∇i1∇i2 · · · ∇imRjk can be

expanded in convergent power series about x in Bδ(x). ¤

We can now complete the proof of the theorem.

Let U be a coordinate neighbourhood of x in M (from the analytic atlas)

with x as origin, whose image in Rm contains the ball Bδ(x). For any fixed

w ∈ TxM whose coordinate representation has Euclidean length δ let rw be the

ray starting at x with initial tangent vector w, so that in coordinates rw(t) = (twi)

with
∑

(wi)2 = δ2. Set W = wi∂/∂xi, so that rw is the integral curve of W

starting at x. By Lemma 21 the formula of Lemma 20, which here becomes

Vrw(t) = ρrw∗|t0
( ∞∑

r=0

tr

r!
(∇r

WV )x

)
,

holds for all t with 0 ≤ t < 1, and for all w, where V is any vector field of the

form ∇i1∇i2 · · · ∇imRjk. The Vrw(t) span Crw(t); each term in the sum belongs

to Cx. That is to say, for each t with 0 ≤ t < 1, Crw(t) ⊆ ρrw∗|t0(Cx). Since

parallel translation is an isomorphism, dimCrw(t) ≤ dimCx. There is thus a

neighbourhood of x in M (namely Bδ(x)) on which dimCy ≤ dimCx. But we

know that there is also a neighbourhood of x in M on which dimCy ≥ dimCx; so

there is a neighbourhood of x on which dimCy = dimCx. Thus dimCx is locally

constant on M , and so (assuming M is connected) it is constant on M . ¤

6. Concluding remarks

In this paper we have used techniques from the theory of Lie groupoids and

Lie algebroids to investigate the infinitesimal holonomy of a certain class of fibre

bundles whose the fibres are compact and support a fibre metric. We chose this
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particular case because it has an immediate application to the holonomy of the

canonical horizontal lift or nonlinear connection of a Landsberg space in Finsler

geometry, where the horizontal lifts of curves determine isometries between the

fibres. We should, of course, like to generalise this approach, so as to be able

to deal with Finsler spaces in general, and more generally with homogeneous

nonlinear connections as in [6].

To do so we have to face a difficulty. One important role of the fibre metric in

this paper was to ensure that the holonomy groupoid, in the case of a Landsberg

space for example, is a subgroupoid of a Lie groupoid, namely the fibre-isometry

groupoid. Without it, we have no obvious choice of an ambient Lie groupoid

within which to locate the holonomy groupoid, even for Finsler spaces. Indeed,

Muzsnay and Nagy [9] give an example of a Finsler space whose holonomy group

is not a (finite-dimensional) Lie group. However, we can always work within the

groupoid of fibre diffeomorphisms, though it will not have a finite-dimensional

smooth structure. We expect, however, that it will still be possible to construct

the equivalent of a Lie algebroid for this more general structure, and to represent

sections of this ‘algebroid’ as projectable vector fields on the total space of the

bundle. This expectation is based on material to be found in [8]; the fact that the

fibres are actually (for Finsler spaces) or effectively (for homogenous nonlinear

connections) compact is significant.

If this is indeed correct, then it seems to us that what remains of our account

above when references to fibre metrics and fibre isometries are omitted should be a

good guide to a theory of holonomy of Finsler spaces and homogeneous nonlinear

connections. In particular, one can think of the horizontal lift as providing an

‘infinitesimal connection’ γ, with respect to which each projectable vector field

can be written uniquely as the sum of a horizontal and a vertical vector feld. The

vertical vector fields should then be thought of as sections of the ‘kernel’ of the

‘algebroid’; that is, we now take seriously the suggestion made in Section 4 that

the space of vertical vector fields on T ◦
xM should be regarded as the fibre of a

‘vector bundle’, indeed ‘Lie algebra bundle’, V over M . The covariant-derivative-

like operator ∇, which acts on Sec(V), and is related to the Berwald connection

in the Finsler case or more generally to a so-called connection of Berwald type [3],

will continue to play the role of ∇γ for the ‘infinitesimal connection’. The objects

of interest are the ‘Lie algebra sub-bundles’ L of V which contain all curvature

vector fields (that is, such that for all x ∈ M and all v, w ∈ TxM , Rx(v, w) ∈ Lx),

and satisfy ∇(Sec(L)) ⊂ Sec(L).

Let us for definiteness consider the Finsler case. For any x ∈ M we may

define the vector subspace Rx of Vx, the space of vertical vector fields on Ix,
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much as before: it is the smallest subspace of Vx containing all fields ρc∗Ry(v, w)

for any y ∈ M and any curve c in M joining y to x, and (now an extra condition)

which is closed with respect to the compact C∞ topology (for details see [8]).

Evidently for any curve c joining x and y, ρc∗ : Rx → Ry is an isomorphism. Set

R =
⋃

x Rx. Then by the ray construction used in the proof of Proposition 7, R

is locally trivial, in the sense that R|U ' U ×Ro where U is a suitable coordinate

chart and o its origin. We shall allow ourselves to think of R as a vector bundle

over M . We claim that ∇(Sec(R)) ⊂ Sec(R). Indeed, let c be a curve in M and

V a local section of R over some U containing c(0) = x, so that in particular

V (t) = Vc(t) depends smoothly on t and V (t) ∈ Rc(t). Now

∇ċ(0)V =
d

dt

((
ρc∗|t0

)−1
V (t)

)
t=0

,

where ρc∗|t0 : Rx → Rc(t) is the isomorphism. Thus (ρc∗|t0)−1
V (t) ∈ Rx for all t,

and so ∇ċ(0)V ∈ Rx. That is, for any local section V of R, for any x in its domain

and for any v ∈ TxM , ∇vV ∈ Rx. We can now argue exactly as in the proof of

Theorem 12 to conclude that R is a Lie algebra sub-bundle of V.
The drawback, of course, is that one cannot use the theory of Section 2

(which applies only to Lie groupoids) to argue that the holonomy Lie algebra

bundle is the least Lie algebra sub-bundle of V which contains curvature fields

and whose section space is invariant under ∇. But it is certainly the case that R

satisfies these latter requirements, and Rx is the obvious candidate for the role

of holonomy algebra at x.

In [8], Michor also proposes that (in our notation) Rx should be considered

as the holonomy algebra at x; his analysis is different from ours, but leads ne-

vertheless to the result that Rx is a Lie algebra (his Lemma 12.3).

In a recent paper about holonomy of Finsler spaces [9], Muzsnay and Nagy

express some reservations about this proposal of Michor’s: they say, not unrea-

sonably on the face of it, that ‘the introduced holonomy algebras [i.e. the algebras

Rx] could not be used to estimate the dimension of the holonomy group since their

tangential properties to the holonomy group were not clarified’. It is true that

Michor doesn’t directly address the question of how one gets from the holonomy

group at x to Rx; his justification for calling Rx the holonomy algebra at x seems

to be that when Rx is finite-dimensional and generated by complete vector fields

(as will be automatically the case when the fibre is compact) then it really is the

holonomy algebra of a principal bundle with connection, as he shows. (We, of

course, could argue in a somewhat similar vein, namely by pointing out that on

specializing for example to the Landsberg case we obtain the correct answer.) But
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in fact Muzsnay and Nagy have the solution to their problem ready to hand,

since a major part of Section 2 of their paper is devoted to discussing what it

means for a vector field on Ix to be tangent to the holonomy group, and they

show in Section 3 of their paper that the curvature fields Rx(v, w) are tangent

to the holonomy group at x according to their definition. We shall show below,

using their methods for the most part, that the elements of Rx are indeed tangent

to the holonomy group at x.

Before discussing this further, we wish to resolve a potential cause of confu-

sion between their paper and ours. In [9] Muzsnay and Nagy introduce, for any

Finsler space, the notion of the curvature algebra at x ∈ M , which they denote

by Rx: it is the Lie subalgebra of Vx ‘generated by the curvature vector fields’,

i.e. the vector fields Rx(v, w) as v, w range over TxM , for fixed x. We point out,

for the sake of clarity, that their curvature algebra at x is not the same as our

Rx, and in general will be a proper subalgebra of it.

Now the restricted holonomy group at x, H◦
x , which corresponds to closed

curves in M which are contractible, is a subgroup of the diffeomorphism group

diff(Ix) of Ix. Moreover, it has the property that every one of its elements can be

connected to the identity diffeomorphism idIx by a piecewise-smooth curve lying

in H◦
x ; just as in Section 2 this follows from the Factorization Lemma.

Let φ(t) be a curve in diff(Ix), defined on some open interval I contain-

ing 0, such that φ(0) = idIx , and which is differentiable enough for the following

construction to make sense. For u ∈ Ix consider the curve φu in Ix defined by

φu(t) = φ(t)u. Set

Vu =
dk

dtk
(φu)t=0,

where k ≥ 1 is the smallest integer for which the derivative is not zero for all u.

Assume this defines a smooth vector field V on Ix. Muzsnay and Nagy show in

effect that if we take curves φ(t) in the restricted holonomy group H◦
x then the

set of all such vector fields is an R-linear space, closed under bracket; that is to

say, it is a Lie algebra of vector fields. (It is necessary to allow k > 1 in order to

deal with, for example, the problem with the parametrization when defining the

bracket in terms of the commutator of curves in the group.) But as we remarked

above, every element of H◦
x is connected to the identity by a curve in H◦

x , which

makes this a pretty strong candidate to be called the holonomy algebra; we denote

it by hol(x) as in [9].

For any curve c in M joining y to x, the map H◦
y → H◦

x defined by ψ 7→
ρc ◦ ψ ◦ ρ−1

c , where ψ ∈ H◦
y , is an isomorphism. Now let ψ(t) be a curve in H◦

y

with ψ(0) = idIy ; then φ : t 7→ ρc ◦ ψ(t) ◦ ρ−1
c is a curve in H◦

x with φ(0) = idIx .
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For u ∈ Ix we have

φu(t) = ρc

(
ψρ−1

c (u)(t)
)
,

so the element V of hol(x) determined by φ is just ρc∗W where W is the element

of hol(y) determined by ψ. It follows that W 7→ ρc∗W is an isomorphism of Lie

algebras hol(y) → hol(v). Now as Muzsnay and Nagy themselves show, for every

y ∈ M , hol(y) contains the curvature fields Ry(v, w). Thus hol(x) must contain

their parallel translates ρc∗Ry(v, w). It follows immediately that Rx ⊂ hol(x).

Appendix 1: groupoids and algebroids

In this section we recall the relevant definitions from the theory of Lie groupo-

ids and Lie algebroids (more details may be found inMackenzie’s comprehensive

work [7]).

Definition. A groupoid consists of two sets Ω and M , called respectively

the groupoid and the base, together with two maps α and β from Ω to M , called

respectively the source projection and target projection, a map 1 : x 7→ 1x, M → Ω

called the object inclusion map, and a partial multiplication (h, g) 7→ hg in Ω

defined on the set Ω ∗ Ω = {(h, g) ∈ Ω × Ω | α(h) = β(g)}, all subject to the

following conditions:

(1) α(hg) = α(g) and β(hg) = β(h) for all (h, g) ∈ Ω ∗ Ω;
(2) j(hg) = (jh)g for all j, h, g ∈ Ω such that α(j) = β(h) and α(h) = β(g);

(3) α(1x) = β(1x) = x for all x ∈ M ;

(4) g1α(g) = g and 1β(g)g = g for all g ∈ Ω;

(5) each g ∈ Ω has a two-sided inverse g−1 such that α(g−1) = β(g), β(g−1) =

α(g) and g−1g = 1α(g), gg
−1 = 1β(g).

We use the notation rg, lg to denote right and left translation by g ∈ Ω.

A Lie groupoid is a groupoid Ω on base M together with smooth structures

on Ω and M such that the maps α, β : Ω → M are surjective submersions, the

object inclusion map x 7→ 1x, M → Ω is smooth, and partial multiplication

Ω ∗ Ω → Ω is smooth. We say that Ω is locally trivial if the map (α, β) : Ω →
M ×M is a surjective submersion.

We adopt the convention that the elements of Ω ∗ Ω satisfy α(h) = β(g) as

this is appropriate when the elements of the groupoid are maps whose arguments

are on the right.
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Definition. A Lie algebroid is a vector bundle π : A → M together with a

Lie bracket on the (infinite-dimensional) vector space Sec(π) of sections of π and

a vector bundle map a : A → TM over the identity on M , the anchor map, which

satisfies

[θ, fφ] = f [θ, φ] + (La◦θf)φ

for any sections θ, φ ∈ Sec(π) and any function f on M , and whose action on

sections by composition is a Lie algebra homomorphism from Sec(π) to X(M),

the Lie algebra of vector fields on M .

We say that A is transitive if the anchor map is surjective on each fibre.

The kernel L of the anchor map a is again a Lie algebroid, but of a rather

special kind: its anchor map is by definition zero, and so the Lie bracket on

sections of L → M induces a Lie bracket on each fibre of L. It may be shown

that if A is transitive then the fibres of L are pairwise isomorphic as Lie algebras,

so that L is a Lie algebra bundle.

Every Lie groupoid Ω gives rise to an associated Lie algebroid AΩ, in the

following way. Put AΩ = V α|1(M) ⊂ TΩ, the bundle of tangent vectors to Ω

at points of the image of 1 : M → Ω which are vertical with respect to the

source projection α; this is a vector bundle over M in the obvious way. For any

g ∈ Ω with x = α(g), right translation by g induces a map rg∗ : T1xΩ → TgΩ

which restricts to a map V1xα → Vgα; in this way, any section of AΩ → M may

be extended by right translation to a vector field on Ω which is vertical over α.

The Lie bracket of any two such vector fields is again vertical over α, and so we

may define the Lie bracket of two sections to be the restriction, to 1(M), of the

Lie bracket of the corresponding right-invariant vector fields. Finally, the map

a = β∗|AΩ, the restriction of the tangent map to the target projection β, satisfies

the conditions for an anchor map. We write LΩ for the kernel of the anchor map

a : AΩ → TM .

If the base manifold M is connected then the Lie groupoid Ω is locally trivial

if, and only if, the associated Lie algebroid AΩ is transitive.

Appendix 2: general results about vector bundles with connections

Proposition 22. Let E → M be a vector bundle equipped with a linear

connection. Denote by ∇ the corresponding covariant derivative, and for any

curve c in M let τc : Ex → Ey (where c(0) = x, c(1) = y) be the isomorphism

given by parallel translation along c. For any vector sub-bundle E′ of E, the

following conditions are equivalent:
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(1) ∇(Sec(E′)) ⊂ Sec(E′); that is, for every section ξ of E′ and every vector field

X on M , ∇Xξ is again a section of E′;

(2) for every curve c, τc restricts to an isomorphism of E′
x with E′

y.

Proof. (1) ⇒ (2) By the usual properties of connections we can define

covariant derivatives of sections along curves. Let {ξa(t)} be a local basis of

sections of E′ along c(t): then any local section of E′ along c can be written

as a linear combination of the ξa with coefficients which are functions of t. By

assumption, ∇ċξa is a section of E′; it may therefore be expressed as a linear

combination of the ξa, say ∇ċξa = Kb
aξb for some functions Kb

a of t. We shall

modify the ξa so as to obtain a new local basis {ηa} of sections of E′ along c such

that ∇ċηa = 0. Consider the equations

d

dt
(Λb

a) + Λc
aK

b
c = 0

for functions Λb
a of t. These are first-order linear ordinary differential equations

for the unknowns Λb
a, and have a unique solution for initial conditions specified

at t = 0, which we may take to be Λb
a(0) = δba: then the solution, considered as a

matrix, will be nonsingular at all points of c sufficiently close to x. Without loss

of generality we may assume that y lies within the neighbourhood on which (Λb
a)

is nonsingular. Then if ηa(t) = Λb
a(t)ξb(t), {ηa} is a new basis of sections of E′

along c such that

∇ċηa = Λb
a∇ċξb +

d

dt
(Λb

a)ξb = 0.

But this is just the condition for ηa to be parallel along c, that is, for τcηa(0) =

ηa(1). So there are bases of E′
x and E′

y with respect to which τc is represented by

the identity matrix.

(2) ⇒ (1) Let c be smooth a curve in M and η a local section of E′ over
some neighbourhood of c(0) = x, so that η(t) = ηc(t) depends smoothly on t and

η(t) ∈ E′
c(t). Now

∇ċ(0)V =
d

dt

((
τc|t0

)−1
η(t)

)
t=0

,

where τc|t0 : E′
x → E′

c(t) is the isomorphism determined by parallel transport.

Thus (τc|t0)−1
η(t) ∈ E′

x for all t, and so ∇ċ(0)η ∈ E′
x. ¤

Proposition 23. Let π : E → M be a vector bundle equipped with a linear

connection ∇. Let E′ be a subset of E such that

(1) π maps E′ onto M ;

(2) for each x ∈ M , E′
x = π|−1

E′ (x) is a linear subspace of Ex;
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(3) for any pair of points x, y ∈ M and any curve c in M joining them,

τc(E
′
x) ⊆ E′

y.

Then E′ is a vector sub-bundle of E and ∇(Sec(E′)) ⊂ Sec(E′).

Proof. For any curve c, τc : Ex → Ey has an inverse, namely τc̄, where

c̄ is the curve with the same image as c but followed in the opposite direction:

c̄(t) = c(1 − t). Thus any point e ∈ E′
y is the image under τc of a point of E′

x,

namely τc̄(e); and so τc : E′
x → E′

y is both injective and surjective and so an

isomorphism.

We use the ray construction, as in the proof of Proposition 7. Fix a point

o ∈ M and take a coordinate neighbourhood U of o with o as origin such that

the image of U is the open unit ball in Rm. For each x ∈ U let rx be the ray

joining o to x with respect to the coordinates. We further assume that U is

contained in some neighbourhood over which E is locally trivial; then in terms

of the coordinates on M and the corresponding fibre coordinates on E, for any

e ∈ Eo, τrxe is the solution of a system of ordinary differential equations in which

the coordinates of x play the role of parameters. The solutions of such equations

depend smoothly on parameters, so if we set ξ(x) = τrxe then ξ is a smooth

local section of E. Now choose a basis {ea} for E′
o, and for each x ∈ U set

ξa(x) = τrxea. Then {ξa(x)} is a basis of E′
x, and {ξa} is a basis of smooth local

sections of E′.
This construction provides at the same time local fibre coordinates on E′

and bases of local sections of it. Let U be one coordinate neighbourhood in M ,

with origin o, for such a system of local sections, and V , with origin p, another.

We choose a basis {ea} for E′
o and a basis {fa} of E′

p to begin the construction

in each case. We may assume that {fa} is the parallel translate of {ea} along

some curve c joining o and p (to assume otherwise merely involves interposing an

additional constant non-singular coefficient matrix in the expression for transition

functions shortly to be derived). We denote by {ξa} the basis of local sections

of E′ determined by o, U and {ea}, and {ηa} the basis determined by p, {fa}
and V . Then for any x ∈ U ∩ V , ηa(x) = τV,xτcτ

−1
U,xξa(x), where we have indexed

the parallel transport operators along rays by the relevant coordinate patch. But

τV,xτcτ
−1
U,x is an isomorphism of E′

x, whose matrix with respect to the basis {ξa(x)}
depends smoothly on x ∈ U∩V . This shows that E′ is a smooth vector sub-bundle

of E. By Proposition 22, ∇(Sec(E′)) ⊂ Sec(E′). ¤

Corollary 24. Let E → M be a vector bundle equipped with a linear

connection, and let E1 and E2 be vector sub-bundles of E such that∇(Sec(Ei)) ⊂
Sec(E), i = 1, 2. Then E1 ∩ E2 is a vector bundle.
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Proof. By Proposition 22, parallel translation preserves both E1 and E2,

so preserves their intersection. The result now follows from Proposition 23. ¤

Proposition 25. If E → M is a Lie algebra bundle and ∇ a connection on

E then ∇ is a Lie connection if and only if for every curve c in M , τc : Ex → Ey

is an isomorphism of Lie algebras.

Proof. Suppose that τc is always a Lie algebra isomorphism. Take a ba-

sis {ea} for the Lie algebra Ex, and set ea(t) = τc|t0ea, where τc|t0 is parallel

translation along c from x = c(0) to c(t). Then {ea(t)} is a basis for Ec(t),

and [ea(t), eb(t)] = τc|t0[ea, eb]. So if we set [ea, eb] = Cc
abec then [ea(t), eb(t)] =

Cc
abec(t). Now ∇ċea(t) = 0, and so for any section ξ(t) of E along c, say

ξ(t) = ξa(t)ea(t), we have ∇ċξ = ξ̇aea. But for sections ξ, η along c we have

[ξ, η] = ξaηbCc
abec, whence

∇ċ[ξ, η] =
d

dt
(ξaηb)Cc

abec = (ξ̇aηb + ξaη̇b)Cc
abec = [∇ċξ, η] + [ξ,∇ċη].

Conversely, suppose that ∇ is Lie. Let {ea(t)} be a basis of parallel sections

of E along c(t), so that ∇ċea = 0. Then if we set [ea(t), eb(t)] = Cc
ab(t)ec(t),

it is evident from the Lie property that the Cc
ab are actually constants. But

ea(t) = τc|t0ea(0), so

[τc|t0ea(0), τc|t0eb(0)] = [ea(t), eb(t)]

= Cc
ab(t)ec(t) = Cc

ab(0)τc|t0ec(0) = τc|t0[ea(0), eb(0)],

which says that τc|t0 is a Lie algebra isomorphism. ¤

Corollary 26. Let E → M be a Lie algebra bundle equipped with a Lie

connection, and let E1 and E2 be Lie algebra sub-bundles of E such that for

i = 1, 2, ∇(Sec(Ei)) ⊂ Sec(Ei). Then E1 ∩ E2 is a Lie algebra bundle.

Proof. By Corollary 24, E1 ∩ E2 is a vector bundle; each fibre is a Lie

algebra; by Proposition 25 the fibres are pairwise isomorphic as Lie algebras. ¤
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