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Conformal invariances of two-dimensional Finsler spaces
with isotropic main scalar

By GUOJUN YANG (Chengdu) and XINYUE CHENG (Chongqing)

Abstract. In this paper, we study the conformal invariances of the two-dimen-

sional Finsler spaces with isotropic main scalar. In particular, we prove that a two-

dimensional Finsler space with isotropic main scalar is locally conformally flat if and

only if the main scalar is constant.

1. Introduction

Compared with higher dimensional Finsler spaces, two-dimensional Fins-

ler spaces have many special features. A fundamental fact is that any two-

dimensional Finsler space is of scalar flag curvature. L. Berwald made some

important pioneering work for two-dimensional Finsler spaces (see [5]).

In this paper, we mainly study the conformal invariances of the two-dimen-

sional Finsler spaces with isotropic main scalar. The main scalar is a very impor-

tant geometric quantity defined on two-dimensional Finsler spaces, which charac-

terizes many geometrical properties of two-dimensional Finsler spaces ([1], [4], [5]).

In Finsler geometry, there are several important classes of Finsler metrics:

locally Minkowski metrics, Berwald metrics, Landsberg metrics and Douglas met-

rics. Many Finsler geometers have studied these Finsler metrics ([6], [8], [12]). In

two-dimensional case, it is proved that a two-dimensional Finsler space (M,F )

with isotropic main scalar I = I(x) is a Berwald metric or Landsberg metric or
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Douglas metric if and only if I(x) = constant (see [4], [5]. Also see Lemma 3.1

below).

It is well known that all Finsler metrics with isotropic main scalar I = I(x) on

a two-dimensional manifold can be expressed as one of the following cases ([1], [5]):

F 2 = β2sγ2(1−s), (s = s(x) 6= 0, s(x) 6= 1), (1)

F 2 = β2e
2γ
β , (2)

F 2 = (β2 + γ2)e2r·arctan
(

β
γ

)
, r = r(x), (3)

where β = pi(x)y
i and γ = qi(x)y

i are two independent 1-forms. Their isotropic

main scalar I = I(x) are given respectively by

εI2 =
(2s(x)− 1)2

s(x)(s(x)− 1)
, (4)

I2 = 4, (5)

I2 =
4r(x)2

1 + r(x)2
, (6)

where ε in (4) is the index of F satisfying that ε = 1 if s(x) > 1 or s(x) < 0 and

ε = −1 if 0 < s(x) < 1. If the main scalar I = 0, which is equivalent that s = 1
2

in (1) or r = 0 in (3), then F is a Riemann metric.

Further, based on the classification of two-dimensional Finsler spaces with

isotropic main scalar as above, L. Berwald classified all two-dimensional pro-

jectively flat Finsler spaces with isotropic main scalar ([5]). In this paper, we

further characterize the locally conformal flatness and other conformal invarian-

ces of two-dimensional Finsler spaces with isotropic main scalar (see Theorem 1.1

below). It is well known that any two-dimensional Riemann metric is locally con-

formally flat. However, by our Theorem 1.1, this conclusion is no longer true for

two-dimensional Finsler metrics.

For the related definitions and fundamental properties in Finsler conformal

geometry, see [3], [7], [9], [10]. Our main theorem is as follows.

Theorem 1.1. Let F (x, y) be a two-dimensional Finsler metric with isotro-

pic main scalar I = I(x). Then the following conditions are equivalent:

(a1) I = constant.

(a2) F (x, y) is locally conformally flat.

(a3) F (x, y) is locally conformal to a Finsler metric of zero flag curvature.
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(a4) F (x, y) is locally conformal to a Berwald metric, or a Landsberg metric, or

a Douglas metric.

(a5) F (x, y) is a Berwald metric, or a Landsberg metric, or a Douglas metric.

The equivalence of (a1) and (a5) in Theorem 1.1 has actually been proved (see

[4], [5]). To simplify the proof of Theorem 1.1, we note that the independent 1-

forms β and γ in (1), (2) and (3) can be rewritten in the forms β = p(x1, x2)y1, γ =

q(x1, x2)y2 in some local coordinate system, because of the existence of an integral

factor for any 1-form a(x1, x2)dx1 + b(x1, x2)dx2.

Theorem 1.1 does not hold if the main scalar is not isotropic. For example,

there are many Randers metrics which are Douglas metrics but not Berwald

metrics. In this case, (a5) does not hold. We also see the following example:

Example 1.2. Consider an n-dimensional Randers metric F := α+ β, where

α := δij(x)y
iyj =

∑n
i=1(y

i)2 is a Riemann metric and β := bi(x)y
i is a closed

1-form with ‖β‖α < 1. Then F is a Douglas metric. If F is locally conformally

flat, then there is a local function c(x) such that ec(x)F is locally Minkowskian.

We get that ec(x)β is parallel in ec(x)α, that is,

(ec(x)bi),j = 0, (7)

where the covariant derivative is taken with respect to ec(x)α. Since β is closed,

it is easily verified that (7) is equivalent to

cibj = cjbi,
∂bi
∂xj

= −1

2
brcrδij , (8)

where ci :=
∂c
∂xi . By (8) we get

∂bi
∂xj

= 0 (∀i 6= j). (9)

Thus there are many 1-form β’s which are closed but do not satisfy (9). So we can

find many Randers metrics which are Douglas metrics but not locally conformally

flat. When n = 2, their main scalars are not isotropic.

For any two-dimensional Riemann metric, the main scalar I = 0. Hence, we

have the following well-known result in Riemann geometry.

Corollary 1.3. Any two-dimensional Riemann metric is locally conformally

flat.
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2. Preliminaries

Let (M,F ) be a Finsler manifold with the fundamental function F defined

on the manifold M . In this paper, the Finsler metrics that we consider may not

be positive definite.

The geodesic x = x(t) of a Finsler metric F is characterized by the following

system of 2nd order ordinary differential equations:

d2xi(t)

dt2
+ 2Gi

(
x(t), ẋ(t)

)
= 0,

where

Gi :=
1

4
gil

{(
∂r∂̇l(F

2)
)
yr − ∂l(F

2)
}
, (10)

where ∂̇i =
∂

∂yi , ∂i =
∂

∂xi , gij := ∂̇i∂̇j(F
2/2) and (gil) := (gil)

−1. Gi are called

the geodesic coefficients of F .

The Riemann curvature Ry = Ri
kdx

k ⊗ ∂
∂xi |p : TpM → TpM is a family of

linear transformations on tangent spaces, which is defined by

Ri
k := 2∂kG

i − yr∂rG
i
k + 2GrGi

rk −Gi
rG

r
k, (11)

where Gi
jk := ∂̇jG

i
k.

For a two-dimensional plane P ⊂ TpM and y ∈ TpM \ {0} such that P =

span{y, u}, the pair {P, y} is called a flag in TpM . The flag curvature K(P, y) is

defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

We say that F is of scalar flag curvature if for any y ∈ TpM\{0}, the flag curvature
K(P, y) = K(x, y) is independent of P containing y. If K(P, y) = constant, we

call F (x, y) is of constant flag curvature. In the case of F (x, y) being of scalar

flag curvature we have

K(x, y) =
Ri

i

(n− 1)F 2
. (12)

There are many interesting non-Riemannian quantities in Finsler geometry.

The Cartan torsion is defined by

Cijk(x, y) :=
1

2
∂̇kgij(x, y).

For a non-zero vector y ∈ TpM , the Berwald curvature By = Bi
hjkdx

h ⊗ dxj ⊗
dxk ⊗ ∂i is defined by

Bi
hjk := ∂̇h∂̇j ∂̇kG

i.
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F is called a Berwald metric if B = 0. The Landsberg curvature Ly = Lijkdx
i ⊗

dxj ⊗ dxk is defined by

Lijk := −1

2
yrB

r
ijk,

where yi := giry
r. F is called a Landsberg metric if L = 0. The Douglas curvature

Dy = Di
hjkdx

h ⊗ dxj ⊗ dxk ⊗ ∂i is defined by

Di
hjk := ∂̇h∂̇j ∂̇k

(
Gi − 1

n+ 1
Gr

ry
i

)
,

where Gj
i := ∂̇iG

j . F is called a Douglas metric if D = 0. Further, F is called a

locally Minkowski metric if F is a Berwald metric (B = 0) with zero flag curvature

(K = 0). It is known that a Finsler metric F is a Berwald metric if and only if

Cijk|l = 0

and F is a Landsberg metric if and only if

Cijk|0 = 0,

where “|” denotes the h-covariant derivative with respect to Cartan connection

(or Chern connection) and Cijk|0 := Cijk|ryr ([1], [11]).

A Finsler metric F (x, y) is said to be locally conformal to another Finsler

metric F̃ (x, y) on the same underlying manifold M if there exists a scalar function

c(x) on M such that F̃ (x, y) = ec(x)F (x, y). The scalar function c(x) is called a

conformal factor. If F̃ is locally Minkowskian and F is locally conformal to F̃ ,

then F is called locally conformally flat.

In two-dimensional Finsler spaces, we define the main scalar I = I(x, y) by

FCijk = Imimjmk, (13)

where (l,m) is the Berwald frame with li= yi/F (x, y) and gijm
imj= ε, gij l

imj=0.

We say a two-dimensional Finsler metric has isotropic main scalar if I(x, y) = I(x)

is independent of y.

3. Some basic properties of the main scalar

In this section, we introduce some basic properties of the main scalar I in

2-dimensional Finsler spaces and prove the relations (a1) ⇐⇒ (a4) ⇐⇒ (a5) in

Theorem 1.1
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Lemma 3.1 ([4], [5]). For two-dimensional Finsler spaces with isotropic

main scalar I = I(x), we have

B = 0 ⇐⇒ L = 0 ⇐⇒ D = 0 ⇐⇒ I = constant .

Lemma 3.2. For two-dimensional Finsler spaces with isotropic main scalar,

the main scalar is a conformal invariant.

Proof. Let F be one of the metrics in (1), (2) and (3) and F̃ = ec(x)F be

conformal to F for some conformal factor c(x). It is easily seen that F̃ is just the

Finsler metric obtained from F by replacing β by ec(x)β and γ by ec(x)γ. Hence

the main scalar I = I(x) is conformally invariant. ¤

Proof of (a1) ⇐⇒ (a4) ⇐⇒ (a5) in Theorem 1.1. By Lemma 3.1, it is

easily seen that (a1) ⇐⇒ (a5). It is also obvious that (a5) =⇒ (a4). Now we

assume that (a4) holds. Then by definition, the Finsler metric F̃ := ec(x)F for

some conformal factor c(x) is a metric of Berwald, or Landsberg, or Douglas type.

By Lemma 3.2, the main scalar of the metric F̃ is isotropic. So F̃ has constant

main scalar by Lemma 3.1. So F also has constant main scalar by Lemma 3.2. ¤

4. Two-dimensional Finsler spaces with constant main scalar

For convenience, we first make a convention in this and the next section: for

an arbitrary function f(x1, x2), define

f1 :=
∂

∂x1
f(x1, x2), f2 :=

∂

∂x2
f(x1, x2), f12 :=

∂2

∂x1∂x2
f(x1, x2), etc.

In this section, we study two-dimensional Finsler spaces with constant main

scalar and prove in Theorem 1.1 that (a1) =⇒ (a2) =⇒ (a3).

Lemma 4.1. Let F be a two-dimensional Finsler metric with constant main

scalar. Let β = ec(x)p(x)y1 and γ = ec(x)q(x)y2. Then we have

(i) If F is in the form

F 2 = β2sγ2(1−s) (s = constant, s 6= 0, 6= 1), (14)

then the flag curvature K is given by

K =
e−2c

s(s− 1)pq

(γ
β

)2s−1
[
c12 + (1− s)

qq12 − q1q2
q2

+ s
pp12 − p1p2

p2

]
. (15)
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(ii) If F is in the form

F 2 = β2e
2γ
β , (16)

then the flag curvature K is given by

K = −e−
γ
β−2c

p3q3

{
p3qc22 − p2(pq2 − qp2)c2

+ p2(qp22 − p2q2)− p2(qq12 − q1q2) + q2(pp12 − p1p2)
}
. (17)

(iii) If F is in the form

F 2 = (β2 + γ2)e2r·arctan
(

β
γ

)
(r = constant), (18)

then the flag curvature K is given by

K = −e−2r·arctan
(

β
γ

)
−2c

(1 + r2)p3q3

{
pq3c11 + p3qc22 + q2(pq1 − qp1)c1

+ p2(qp2 − pq2)c2 + pq(pp22 + qq11)− q2p1q1 − p2p2q2

+ r
[
p2(qq12 − q1q2)− q2(pp12 − p1p2)

]}
. (19)

Proof. The computations for (15), (17) and (19) are direct, which are from

(10), (11) and (12). We just give the main details.

First we prove (15). We get by (10) and (11) that

G1 =
1

2

p1qs+ (1− s)pq1 + pqc1
pqs

(y1)2,

G2 =
1

2

p2qs+ (1− s)pq2 + pqc2
pq(1− s)

(y2)2,

R1
1 = −1

s

[
c12 + s

pp12 − p1p2
p2

+ (1− s)
qq12 − q1q2

q2

]
y1y2,

R2
2 = − 1

1− s

[
c12 + s

pp12 − p1p2
p2

+ (1− s)
qq12 − q1q2

q2

]
y1y2.

Then we get by (12) that

K =
R1

1 +R2
2

F 2
,

which is reduced to (15).
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Next we prove (17). We have

G1 =
p2c2 + pp2 + qp1 − pq1

2pq
(y1)2,

G2 =
p(qc1 − pc2 + q1 − p2)

2q2
(y1)2 +

(pc2 + p2)

q
y1y2 +

(pq2 − qp2)

2pq
(y2)2,

R1
1 = −y1y2

p2q2

{
p3qc22 − p2(pq2 − qp2)c2

+ p2(qp22 − p2q2)− p2(qq12 − q1q2) + q2(pp12 − p1p2)
}
,

R2
2 = −y1(py1 − qy2)

p2q3

{
p3qc22 − p2(pq2 − qp2)c2

+ p2(qp22 − p2q2)− p2(qq12 − q1q2) + q2(pp12 − p1p2)
}
,

Then by (12) we get (17).

Finally we prove (19). We have

G1 =
pqc1 − p2rc2 − (pq1 − qp1)r

2 − pp2r + qp1
2(1 + r2)pq

(y1)2

+
qrc1 + pc2 + q1r + p2

(1 + r2)p
y1y2 − q2c1 − pqrc2 − q(p2r − q1)

2(1 + r2)p2
(y2)2

G2 = −pqrc1 + p2c2 + p(q1r + p2)

2(1 + r2)q2
(y1)2 +

qc1 − prc2 − p2r + q1
(1 + r2)q

y1y2

+
q2rc1 + pqc2 − (qp2 − pq2)r

2 + qq1r + pq2
2(1 + r2)pq

(y2)2,

R1
1 = − (qy2 − pry1)y2

(1 + r2)p3q2

{
pq3c11 + p3qc22 + q2(pq1 − qp1)c1

+ p2(qp2 − pq2)c2 + pq(pp22 + qq11)− q2p1q1 − p2p2q2

+ r
[
p2(qq12 − q1q2)− q2(pp12 − p1p2)

]}
,

R2
2 = − (py1 + qry2)y1

(1 + r2)p2q3

{
pq3c11 + p3qc22 + q2(pq1 − qp1)c1

+ p2(qp2 − pq2)c2 + pq(pp22 + qq11)− q2p1q1 − p2p2q2

+ r
[
p2(qq12 − q1q2)− q2(pp12 − p1p2)

]}
.

Then by (12) we get (19). ¤
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Example 4.2 ([2]). For a constant λ > 0, define a Finsler metric F (x, y) by

F (x, y) =
(y2)1+

1
λ

(y1)
1
λ

e−α1x
1+(λ+1)α2x

2+α3x
1x2

.

By (4), the main scalar is given by

I2 =
(λ+ 2)2

λ+ 1
.

By (15), the flag curvature is given by

K(x, y) =
λ2

1 + λ
α3

{y1

y2

} 2+λ
λ

e2(α1x
1−(λ+1)α2x

2−α3x
1x2).

Example 4.3 ([2]). Define a Finselr metric F (x, y) by

F (x, y) =
√
(y1)2 + (y2)2e2

α2
1+α2

2
α1+α2

(
α1x

1+α2x
2
)
+

α2−α1
α1+α2

arctan
(
y1/y2

)
.

By (6), the main scalar is given by

I2 =
2(α1 − α2)

2

α2
1 + α2

2

.

By (19), the flag curvature K(x, y) = 0. So F (x, y) is locally Minkowskian.

Proof of (a1) =⇒ (a2) =⇒ (a3) in Theorem 1.1. First (a2) =⇒ (a3) is

obvious. We consider the proof of (a1) =⇒ (a2).

Let F be a two-dimensional Finsler metric with the main scalar I = constant.

Then F is given by (1), or (2), or (3) (in which we put β = p(x)y2, γ = q(x)y2).

Consider the following conformal transformation

F̃ = ec(x)F,

such that for some c(x), F̃ is of zero flag curvature. Note that, corresponding

to (1), or (2), or (3), F̃ is in the form of (14), or (16), or (18) respectively. Then by

Lemma 4.1, the conformal factor c(x) must satisfy the following three differential

equations respectively:

c12 + (1− s)
qq12 − q1q2

q2
+ s

pp12 − p1p2
p2

= 0, (20)

p3qc22 − p2(pq2 − qp2)c2 + p2(qp22 − p2q2)

− p2(qq12 − q1q2) + q2(pp12 − p1p2) = 0, (21)
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pq3c11 + p3qc22 + q2(pq1 − qp1)c1 + p2(qp2 − pq2)c2 + pq(pp22 + qq11)

− q2p1q1 − p2p2q2 + r
[
p2(qq12 − q1q2)− q2(pp12 − p1p2)

]
= 0. (22)

It is easily seen that there is a local solution c(x) satisfying (20) or (21). Then

we consider (22). This equation is a 2-order PDE which is linear, elliptic and in

which, the coefficient of c is zero. Now according to the theory of PDEs, there

exists a local solution c(x) satisfying (22). Thus for such a solution c(x) of (20),

or (21), or (22), the corresponding Finsler metric F̃ in (14), or (16), or (18), is of

zero flag curvature. On the other hand, it is easily seen that F̃ is also a Berwald

metric by Lemma 3.1 and Lemma 3.2. So F̃ is a locally Minkowski metric. Thus

the Finsler metric F is locally conformally flat. ¤

5. Two-dimensional Finsler spaces with isotropic main scalar

In this section, we study two-dimensional Finsler spaces with isotropic main

scalar and prove in Theorem 1.1 that (a3) =⇒ (a1). After this is proved, the

proof of Theorem 1.1 is completed.

Since the metric in (2) has constant main scalar I2 = 4, we only consider in

the following the metrics in (1) and (3).

Lemma 5.1. Let

F 2(x, y) = β2sγ2(1−s), (23)

where

β = p(x)y1, γ = q(x)y2, s = s(x) (s 6= 0, s 6= 1).

Then the flag curvature K(x, y) is given by

K(x, y) =
β−2sγ2s−2

[
2s(s− 1)pq

]2
{[

A11(y
1)2 +A12y

1y2 +A22(y
2)2

]
ln
∣∣∣y

2

y1

∣∣∣

+B11(y
1)2 +B12y

1y2 +B22(y
2)2

}
, (24)

where

A11 = 2p2q2(s− 1)(s1)
2, A22 = 2p2q2s(s2)

2,

A12 = −4p2q2
[
s1s2 − s(2s1s2 + s12) + s2s12

]
,

B11 = pq
{
−pq

[
1 + 2s+ 2(s− 1)ln

∣∣∣p
q

∣∣∣
]
(s1)

2

+ 2(s− 1)
[
pqss11 − pq1s1 + (q1p− qp1)ss1

]}
,
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B12 = 4pq
{
q
[− ps2 − sp2 + p · ln

∣∣∣p
q

∣∣∣(1− 2s)s2
]
s1 − pq1(s− 1)s2

+ pq ln
∣∣∣p
q

∣∣∣s(s− 1)s12

}

+ 4s(s− 1)
[
sq2(pp12 − p1p2)− (s− 1)p2(qq12 − q1q2)

]
,

B22 = p2q2
(
2s− 3− 2s ln

∣∣∣p
q

∣∣∣
)
(s2)

2 + 2pqs
[
(s− 1)pq2 − sqp2

]
s2

− 2p2q2s(s− 1)s22.

Proof. This proof is a direct computation, similar to that in Lemma 4.1.

We only give the results of G1 and G2 as follows:

G1 =
pqs1

[
ln|βγ | − 1

]
+ s(qp1 − pq1) + pq1

2pqs
(y1)2 − s2

2s
y1y2,

G2 = − s1
2(s− 1)

y1y2 +
pqs2

[
ln|βγ |+ 1

]
+ s(qp2 − pq2) + pq2

2pq(1− s)
(y2)2. ¤

Lemma 5.2. Let

F 2(x, y) = (β2 + γ2)e2r(x) arctan
(

β
γ

)
, (25)

where

β = p(x)y1, γ = q(x)y2.

Then the flag curvature K(x, y) is given by

K(x, y) =
e−2r·arctan

(
β
γ

)

(1 + r2)2p3q3(β2 + γ2)

{[
C11(y

1)2 + C12y
1y2 + C22(y

2)2
]
arctan

(
β

γ

)

+D11(y
1)2 +D12y

1y2 +D22(y
2)2

}
,

where

C11 = p2
{
− pq(1 + r2)

(
q2r11 + p2r22

)
+ pqr

[
3q2(r1)

2 + p2(r2)
2
]

+ 2p2q2r1r2 + (1 + r2)
[
q2(p1q − pq1)r1 − p2(qp2 − pq2)r2

]}
,

C12 = 2p2q2
(
p2(r2)

2 + 2pqrr1r2 − q2(r1)
2
)
,

C22 = q2
{
− pq(1 + r2)

(
q2r11 + p2r22

)
+ pqr

[
q2(r1)

2 + 3p2(r2)
2
]

− 2p2q2r1r2 + (1 + r2)
[
q2(p1q − pq1)r1 − p2(qp2 − pq2)r2

]}
,
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and

D11 = −p4q2(1 + r2)r12 + 2p3q3(r1)
2 + p4q2rr1r2

+ p3q
[
3q(rq1 + p2)r1 + p(rp2 − q1)r2

]

− p3q(1 + r2)
(
pp22 + qq11

)
+ p3qr(1 + r2)

(
qp12 − pq12

)

+ (1 + r2)p2(rp2q1q2 − rq2p1p2 + p2p2q2 + q2p1q1),

D12 = p2q2(1 + r2)(q2r11 − p2r22)− p2q4r(r1)
2

+ pq3
[
4p2r2 + (r2pq1 − r2qp1 + 2rpp2 − pq1 − p1q)

]
r1

+ p4q2r(r2)
2 + p3q(r2pq2 − r2qp2 + pq2 + qp2 + 2rqq1)r2,

D22 = p2q4(1 + r2)r12 + 2p3q3(r2)
2 − p2q4rr1r2,

+ pq3
[
q(rq1 + p2)r1 + 3p(rp2 − q1)r2

]

− pq3(1 + r2)(pp22 + qq11) + pq3r(1 + r2)(qp12 − pq12)

+ (1 + r2)q2(rp2q1q2 − rq2p1p2 + p2p2q2 + q2p1q1).

Proof. This proof is a direct computation, similar to that in Lemma 4.1.

We only give the results of G1 and G2 as follows:

G1 =
1

2p2q(1 + r2)

{
[a11(y

1)2 + a12y
1y2 + a22(y

2)2] arctan

(
β

γ

)

+ b11(y
1)2 + b12y

1y2 + b22(y
2)2

}
,

G2 =
1

2(1 + r2)pq2
{
[c11(y

1)2 + c12y
1y2 + c22(y

2)2] arctan

(
β

γ

)

+ d11(y
1)2 + d12y

1y2 + d22(y
2)2

}
,

where

a11 = p2(qr1 − prr2), a12 = 2pq(pr2 + qrr1), a22 = −q2(qr1 − prr2),

b11 = p[(qp1 − pq1)r
2 − p(p2 + qr1)r + qp1], b12 = pq(2p2 + 2q1r − prr2 + qr1),

b22 = −q2(q1 − p2r − pr2), c11 = −p2(qrr1 + pr2), c12 = 2pq(qr1 − prr2),

c22 = q2(pr2 + qrr1), d12 = pq(2q1 − 2p2r − pr2 − qrr1),

d11 = −p2(q1r + p2 + qr1), d22 = q[(pq2 − qp2)r
2 + q(q1 − pr2)r + pq2]. ¤

Lemma 5.3. Let F be a two-dimensional Finsler metric with isotropic main

scalar I = I(x). If the flag curvature K(x, y) = 0, then I(x) = constant.
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Proof. By assumption, the flag curvature K(x, y) = 0.

If F is given by (23), then by (24) we have

A11 = 0, A12 = 0, A22 = 0, B11 = 0, B12 = 0, B22 = 0.

Now it is easily seen that A11 = 0 implies that s1 = 0 and A22 = 0 implies that

s2 = 0. Thus s(x) = constant and the main scalar of the metric in (23) is a

constant by (4).

Next we assume that F is given by (25), then by (5) we have

C11 = 0, C12 = 0, C22 = 0, D11 = 0, D12 = 0, D22 = 0.

Now it is easily seen that

0 = q2C11 − p2C22 = p2q2
{
2pqr

[
q2(r1)

2 − p2(r2)
2
]
+ 4p2q2r1r2

}

= 2p3q3
{
r
[
q2(r1)

2 − p2(r2)
2
]
+ 2pqr1r2

}
.

Then we have

r
[
q2(r1)

2 − p2(r2)
2
]
+ 2pqr1r2 = 0. (26)

Substitute (26) into C12, then we have

2p2q2(1 + r2)
[
p2(r2)

2 − q2(r1)
2
]
= 0.

Therefore,

p2(r2)
2 = q2(r1)

2. (27)

Substituting (27) into (26), we get r1 = 0 or r2 = 0. Then by (27) we obtain

r1 = r2 = 0. This fact means that r(x) = constant and the main scalar of the

metric in (25) is a constant by (6). ¤

Now by Lemma 3.1 and Lemma 5.3 we easily get

Corollary 5.4. Let F be a two-dimensional Finsler metric with isotropic

main scalar I = I(x). Then F is locally Minkowskian if and only if the flag

curvature K(x, y) = 0.

Proof of (a3) =⇒ (a1) in Theorem 1.1. Suppose that the Finsler metric

F is locally conformal to a Finsler metric of zero flag curvature. Then there is a

c(x) such that the Finsler metric F̃ (x, y) := ec(x)F (x, y) is of zero flag curvature.

Then we conclude from Lemma 5.3 and Lemma 3.2 that the main scalar I(x) of

the Finsler metric F is a constant. ¤
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