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Finite groups with hall Schmidt subgroups

By V. N. KNIAHINA (Gomel) and V. S. MONAKHOV (Gomel)

Abstract. A Schmidt group is a non-nilpotent group whose every proper subgroup

is nilpotent. We study the properties of a non-nilpotent group G in which every Schmidt

subgroup is a Hall subgroup of G.

1. Introduction

A non-nilpotent finite group whose proper subgroups are all nilpotent is

called a Schmidt group. O. Yu. Schmidt pioneered the study of such groups [9].

In a series of Chunihin’s papers, Schmidt groups were applied in order to find

criterions of nilpotency and generalized nilpotency, and also to find non-nilpotent

subgroups, (see [2]). A whole paragraph from Huppert’s monography is dedicated

to Schmidt groups, (see [4], III.5). Review of the results on Schmidt groups and

perspectives of its application in group theory as of 2001 are provided in paper [7].

Let S be a Schmidt group. Then the following properties hold: S contains

a normal Sylow subgroup N such that S/N is a primary cyclic subgroup; the

derived subgroup of S is nilpotent; the derived length of S does not exceed 3;

non-normal Sylow subgroup Q of S is cyclic and every maximal subgroup of Q

is contained in Z(S); every normal primary subgroup of S other than a Sylow

subgroup of S is contained in Z(S).

In this paper the properties of a non-nilpotent group G in which every Sch-

midt subgroup is a Hall subgroup of G are studied. In particular, for such groups

a number of properties of Schmidt groups are applicable. We prove the following

theorem.
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Theorem. Let G be a finite non-nilpotent group in which every Schmidt

subgroup is a Hall subgroup of G. Then the following statements hold:

1) if P is a non-normal Sylow p-subgroup of G, then P is cyclic and every

maximal subgroup of P is contained in Z(G);

2) if P is a normal Sylow p-subgroup of G and G is not p-decomposable, then

P is either minimal normal in G or non-abelian, Z(P ) = P ′ = Φ(P ), and

P/Φ(P ) is minimal normal in G/Φ(P );

3) if P1 is a normal p-subgroup of G, P1 is not a Sylow p-subgroup of G, and G

is not p-decomposable, then P1 is contained in Z(G);

4) if Z(G) = 1, then G has a normal abelian Hall subgroup A in which every

Sylow subgroup is minimal normal in G, G/A is cyclic and |G/A| is squaref-
ree.

Corollary. Let G be a finite non-nilpotent group in which every Schmidt

subgroup is a Hall subgroup of G. Then G contains a nilpotent Hall subgroup H

such that G/H is cyclic. In particular, G/Φ(G) is metabelian.

2. Preliminary results

Throughout this article, all groups are finite. The terminology and notation

are standart, as in [4] and [8]. Recall that a p-closed group is a group with a normal

Sylow p-subgroup and a p-nilpotent group is a group of order pam, where p

does not divide m, with a normal subgroup of order m. A group is called p-

decomposable if it is p-closed and p-nilpotent simultaneously. A group whose

order is divisible by a prime p is a pd-group. We denote by Z(G), G′, Φ(G),

F (G), Gp the center, the derived subgroup, the Frattini subgroup, the Fitting

subgroup, and a Sylow p-subgroup of G respectively. We use G = [A]B to denote

the semidirect product of A and B, where A is a normal subgroup of G. The set

of prime divisors of the order of G is denoted by π(G). As usual, An and Sn are

the alternating and the symmetric groups of degree n respectively. We use Epn to

denote an elementary abelian group of order pn and Zm to denote a cyclic group

of order m. Let G be a group of order pa1
1 pa2

2 . . . pak

k . We say that G has a Sylow

tower if there exists a series 1 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk−1 ⊂ Gk = G of

normal subgroups of G such that for each i = 1, 2, . . . , k, Gi/Gi−1 is isomorphic to

a Sylow subgroup of G. Recall that a positive integer n is said to be squarefree if n

is not divisible by the square of any prime number. A group is called metabelian if

it contains a normal abelian subgroup such that the corresponding quotent group
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is also abelian. If H is a subgroup of a group G, then CoreGH =
⋂

x∈G x−1Hx

is called the core of H in G. If a group G has a maximal subgroup M such that

CoreGM = 1, then G is called a primitive group, and M is called a primitivator

of G.

We use H to denote the class of all groups G such that each Schmidt subgroup

S of G is a Hall subgroup of G. It is clear that all nilpotent groups, all Schmidt

groups, and all squarefree groups belong to H. If T is biprimary non-nilpotent

and T ∈ H, then T is a Schmidt group. Below the other examples of groups of

this class are given.

Example 1. Let G = A× B, (|A|, |B|) = 1, A ∈ H, B ∈ H. Then, evidently,

G ∈ H.

Example 2. Let P be extraspecial of order 4093. It is clear that Φ(P ) =

Z(P ) = P ′ has prime order 409 and P/Φ(P ) is elementary abelian of order

4092. The automorphism group of P/Φ(P ) is GL(2, 409). By Theorem II.7.3 [4],

GL(2, 409) has a cyclic subgroup Z210 of order 5 · 41. Since Z210 acts irreducibly

on P/Φ(P ), there is T = [P ]Z210 such that Φ(P ) = Z(T ). The group T possesses

exactly three maximal subgroups: [P ]Z5 is a Schmidt group; [P ]Z41 is a Schmidt

group; Φ(P )×Z210 is a nilpotent subgroup. Therefore π(T ) = {p, q, r}, where p,

q, r are distinct primes and every Schmidt subgroup of T is a Hall subgroup of T .

Example 3. Let G = [(E4 ×E25 ×E7 ×E121 ×E169 × · · · )]Z3, where [E4]Z3,

[E25]Z3, [E7]Z3, [E121]Z3, [E169]Z3, . . . are Schmidt groups in which all proper

subgroups are primary. Let K be a proper subgroup of G. If 3 does not divide

|K|, then K is nilpotent. Now suppose that 3 divides |K|. Since G is p-closed for

any p 6= 3, it follows that K is p-closed too and there exists [Kp]Z3. By Hall’s

theorem, [Kp]Z3 ⊆ [Gp]Z3. However all proper subgroups of [Gp]Z3 are primary.

Thus [Kp]Z3 = [Gp]Z3 is either Hall in G or Kp = 1. Since p is an arbitrary

prime number, p 6= 3, we see that K is a Hall subgroup of G and G ∈ H.

Lemma 1 ([7], [9]). Let S be a Schmidt group. Then the following state-

ments hold:

1) S = [P ]〈y〉, where P is a normal Sylow p-subgroup, 〈y〉 is a non-normal cyclic

Sylow q-subgroup, p and q are distinct primes, yq ∈ Z(S);

2) |P/P ′| = pm, where m is the order of p modulo q;

3) if P is abelian, then P is an elementary abelian p-group of order pm and P

is a minimal normal subgroup of S;

4) if P is non-abelian, then Z(P ) = P ′ = Φ(P ) and |P/Z(P )| = pm;
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5) if P1 is a non-trivial normal p-subgroup of S such that P1 6= P , then P is

non-abelian and P1 ⊆ Z(P );

6) Z(S) = Φ(S) = Φ(P )× 〈yq〉; S′ = P , P ′ = (S′)′ = Φ(P );

7) if N is a proper normal subgroup of S, then N does not contain 〈y〉 and

either P ⊆ N or N ⊆ Φ(S). ¤

We denote by S〈p,q〉-group a Schmidt group with a normal Sylow p-subgroup

and a cyclic Sylow q-subgroup.

Lemma 2 ([6], Lemma 2). If K and D are subgroups of G such that D is

normal in K and K/D is an S〈p,q〉-subgroup, then each minimal supplement L to

D in K has the following properties:

1) L is a p-closed {p, q}-subgroup;
2) all proper normal subgroups of L are nilpotent;

3) L contains an S〈p,q〉-subgroup [P ]Q such that D does not contain Q and

L = ([P ]Q)L = QL. ¤

Lemma 3. If G ∈ H, then every subgroup of G and every quotient of G

belongs to H.

Proof. Let V ≤ G ∈ H. If V is non-nilpotent, then it contains a Schmidt

subgroup S. Since G ∈ H, we can easily observe that S is a Hall subgroup of G.

It is clear that S is a Hall subgroup of V , hence V ∈ H.

Let D be a normal subgroup of G and K/D is a Schmidt subgroup of G/D.

By the previous lemma, minimal supplement L to D in K has an S〈p,q〉-subgroup
[P ]Q such that D does not include Q. By Lemma 1, [P ]QD/D is a Schmidt

subgroup, hence [P ]QD/D = K/D. Since G ∈ H, it follows that [P ]Q is a Hall

subgroup of G. Therefore [P ]QD/D = K/D is a Hall subgroup of G/D and

G/D ∈ H. ¤

Remark 1. The class H is not closed under direct products. For example,

S3 ∈ H, Z2 ∈ H but S3 ×Z2 6∈ H. This shows that H is neither a formation nor a

Fitting class.

Lemma 4. 1) If G is not p-nilpotent, then G has a p-closed Schmidt pd-

subgroup.

2) If G is not 2-closed, then G has a 2-nilpotent Schmidt subgroup of even order.

3) If a p-solvable group G is not p-closed, then G has a p-nilpotent Schmidt

pd-subgroup.
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Proof. 1. The proof of this part follows directly from the Frobenius theorem

(see, [4], Theorem IV.5.4).

2. In [1] there is a proof based on Suzuki’s theorem on simple groups with

independent Sylow 2-subgroups. Let us show another proof. By induction, all

proper subgroups of G are 2-closed. It follows that G is not biprimary, (see part

1 of the lemma). If G is solvable, then all biprimary Hall subgroups of G are

2-closed and G is also 2-closed, a contradiction. Thus G is not solvable. It is

clear that G/Φ(G) is a simple group. Let X be the conjugacy class of involutions

of G/Φ(G). By Theorem IX.7.8 [5], there exists involutions x, y ∈ X such that

〈x, y〉 is not 2-group. It is well known that 〈x, y〉 is the dihedral group of order

2|xy|, (see [8], Theorem 2.49). It is not 2-closed, a contradiction.

3. By Theorem 5.3.13 [10], G is a D{p,q}-group for any q ∈ π(G). Suppose

that G is not p-closed. Then G contains a Hall {p, q}-subgroup H such that H is

not p-closed for some prime q ∈ π(G). It is clear that H is not q-nilpotent. By

part 1 of the lemma, H has a p-nilpotent Schmidt pd-subgroup. ¤

For any odd prime p assertion 2 of Lemma 4 is false. If p = 3, then the

counterexamples are SL(2, 2n) for any odd n and PSL(2, p) for p ≥ 5.

Lemma 5. If G ∈ H, then G possesses a Sylow tower.

Proof. First of all, we prove that if G ∈ H and p is the smallest prime

dividing |G|, then G is either p-closed or p-nilpotent. Let p = 2. If G is not

2-closed, then, by Lemma 4 (2), G has a 2-nilpotent Schmidt subgroup S of even

order. Any Sylow 2-subgroup of S is cyclic. Since G ∈ H, we deduce that S is a

Hall subgroup of G and a Sylow 2-subgroup of G is cyclic. Thus G is 2-nilpotent

by Theorem IV.2.8 [4]. Now suppose that p > 2. Then G is solvable. If G is

not p-closed, then, by Lemma 3(3), G has a p-nilpotent Schmidt pd-subgroup T .

A Sylow p-subgroup P of T is cyclic. Since G ∈ H, it follows that T is a Hall

subgroup of G and P is a Sylow p-subgroup of G. Thus G is p-nilpotent by

Theorem IV.2.8 [4].

Therefore if G ∈ H and p is the smallest prime dividing |G|, then G is either

p-closed or p-nilpotent. We use induction on |G|. Prove that G possesses a Sylow

tower. Let p be the smallest prime dividing |G|. If a Sylow p-subgroup P is

normal in G, then, by Lemma 3, G/P ∈ H and, by induction, G/P possesses a

Sylow tower. Thus G possesses a Sylow tower. If G is p-nilpotent, then G contains

a normal subgroup K such that G/K is isomorphic to a Sylow p-subgroup of G.

By Lemma 3, K ∈ H and, by induction, K possesses a Sylow tower. Therefore G

possesses a Sylow tower. ¤
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Lemma 6. Let G ∈ H and p, q are different prime divisors of |G|. Then any

Hall {p, q}-subgroup of G is either nilpotent or Schmidt group.

Proof. By Lemma 5, G is solvable, so G has a Hall {p, q}-subgroup K.

Assume that K is non-nilpotent. Then K contains a Schmidt subgroup S. Since

G ∈ H, it implies that S must be a Hall subgroup of G. Therefore S = K. ¤

Lemma 7. Let n ≥ 2 be a positive integer and p be a prime number. Denote

by π the set of prime numbers q such that q divides pn − 1, but q does not divide

pn1 − 1 for all 1 ≤ n1 < n. Then GL(n, p) has a cyclic Hall π-subgroup.

Proof. The group G = GL(n, p) has order

pn(n−1)/2(pn − 1)(pn−1 − 1) . . . (p2 − 1)(p− 1).

By Theorem II.7.3 [4], G contains a cyclic subgroup T of order pn − 1. Denote

by Tπ a Hall π-subgroup of T . Since q does not divide pn1 − 1 for all q ∈ π and

all 1 ≤ n1 < n, it follows that Tπ is a Hall π-subgroup of G. ¤

3. Main results

Theorem. Let G be a finite non-nilpotent group in which every Schmidt

subgroup is a Hall subgroup of G. Then the following statements hold:

1) if P is a non-normal Sylow p-subgroup of G, then P is cyclic and every

maximal subgroup of P is contained in Z(G);

2) if P is a normal Sylow p-subgroup of G and G is not p-decomposable, then

P is either minimal normal in G or non-abelian, Z(P ) = P ′ = Φ(P ), and

P/Φ(P ) is minimal normal in G/Φ(P );

3) if P1 is a normal p-subgroup of G, P1 is not a Sylow p-subgroup of G, and G

is not p-decomposable, then P1 is contained in Z(G);

4) if Z(G) = 1, then G has a normal abelian Hall subgroup A in which every

Sylow subgroup is minimal normal in G, G/A is cyclic and |G/A| is squaref-
ree.

Proof. 1. Let G ∈ H and p ∈ π(G). Assume that G has a non-normal

Sylow p-subgroup P . By Lemma 5, G is solvable, hence G contains a Hall {p, q}-
subgroup for any q ∈ π(G) \ {p} by Theorem 5.3.13 [10]. Since P is non-normal

in G, it follows that G contains a not p-closed Hall {p, q}-subgroup K for some

q ∈ π(G) \ {p}. By Lemma 4, K has a q-closed Schmidt subgroup S. Under the
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condition of G ∈ H, S is the same as K. By the properties of Schmidt groups (see

Lemma 1(1)), every Sylow p-subgroup of K is cyclic. Since K is a Hall subgroup

of G, we see that a Sylow p-subgroup of K is a Sylow subgroup of G. Thus P is

cyclic.

Let P1 be a maximal subgroup of P . If P1 = 1, then P1 ⊆ Z(G). Assume

that P1 6= 1. It is clear that G has a Hall {p, q}-subgroup PQ for any prime

q ∈ π(G) \ {p}, where Q is some Sylow q-subgroup of G. If PQ is nilpotent, then

Q ⊆ CG(P1). If PQ is non-nilpotent, then PQ is a Schmidt group by Lemma 6.

If PQ is p-closed, then P has a prime order by Lemma 1(3), a contradiction.

Hence PQ is q-closed and P1 ⊆ Z(PQ) by Lemma 1(1), i.e. Q ⊆ CG(P1). Thus

CG(P1) contains a Sylow q-subgroup for every q ∈ π(G)\{p}. Since P ⊆ CG(P1),

we have CG(P1) = G and P1 ⊆ Z(G).

2. Let Sylow p-subgroup P be a normal subgroup of G. Suppose that P is not

a minimal normal subgroup of G. In particular, |P | > p. By Schur–Zassenhaus

theorem, G has a Hall p′-subgroup H. By the hypothesis of the theorem, G is

not p-decomposable. Hence H has a Sylow subgroup Q such that [P ]Q is non-

nilpotent. By Lemma 6, [P ]Q is a Schmidt subgroup. By our assumption, P is

not minimal normal in G, it follows that P is not minimal normal in [P ]Q. By the

properties of Schmidt groups (see Lemma 1(3)), P is non-abelian and Z(P ) =

P ′ = Φ(P ). Since [P/Φ(P )](QΦ(P )/Φ(P )) is a Schmidt group, P/Φ(P ) is its

minimal normal subgroup. We see that P/Φ(P ) is a minimal normal subgroup of

G/Φ(P ). The statement 2 is proved.

3. We denote by Gp a Sylow p-subgroup of G. Assume that Z(G) does not

contain P1. Then |P1| ≥ p, |Gp| ≥ p2, and Gp is normal in G by claim 1 of the

theorem. Let Gq be a Sylow q-subgroup of G, q ∈ π(G) \ {p}. By Lemma 6, the

product GpGq either nilpotent or a Schmidt group. Suppose GpGq is nilpotent

for all q ∈ π(G) \ {p}. In this case, G = Gp × Gp′ , a contradiction. Thus our

assumption is false and there exists a prime r ∈ π(G) \ {p} such that GpGr

is non-nilpotent. It follows that GpGr is a p-closed Schmidt group and P1 is

its normal p-subgroup. By the properties of Schmidt groups (see Lemma 1(5)),

P1 ⊆ Z(GpGr). Thus, P1 ⊆ Z(Gp) and Gr ⊆ CG(P1) for all r ∈ π(G) \ {p} such

that GpGr is not nilpotent. If GpGr is nilpotent, then Gq ⊆ CG(P1). Therefore

P1 ⊆ Z(G).

4. We denote by A, N and E the classes of all abelian, all nilpotent, and all

finite groups respectively. We define N◦A = {G ∈ E | GA ∈ N} and call N◦A the

product of classes N and A, where GA denotes A-residual of G, i.e. the smallest

normal subgroup of G quotient by which belogs to A. For the other definition and

terminology, the reader is referred to Doerk, Hawkes (1992), Huppert (1967)
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and Shemetkov (1978). It is clear that GA = G′ is the derived subgroup of G.

Hence N◦A consists of all groups G whose the derived groups are nilpotent. The

class N ◦ A is a saturated formation. Now, by induction on |G|, we prove that

H ⊆ N ◦A. Suppose the assertion is false. Let G be a counterexample of minimal

order and G ∈ H\N◦A. By Lemma 5, G is solvable and, by Lemma 3, G/N ∈ H

for every normal subgroup N 6= 1 of G. By induction, G/N ∈ N ◦ A. Since

N ◦A is a saturated formation, it follows that G is primitive (see ([8], p. 143). By

Theorem 4.42 [8], F = F (G) = CG(F ) ' Epn is a minimal normal subgroup of G

and, by the above claim 3 of the theorem, F is a Sylow subgroup of G.

If n = 1, then G/F is isomorphic to a subgroup of the automorphism group

of F , where |F | = p. Thus G ∈ N ◦ A. Next, we assume that n ≥ 2. Since

[F ]Gq is a Hall non-nilpotent subgroup of G, we have, by Lemma 6, that [F ]Gq

is a Schmidt subgroup for every q ∈ π = π(G/F ). By Lemma 1(2), q divides

pn − 1, but q does not divide pn1 − 1 for all 1 ≤ n1 < n. The quotient group

G/F is isomorphic to a subgroup K of GL(n, p), K has a cyclic Hall π-subgroup

T by Lemma 7. By Theorem 5.3.2 [10], G/F is contained in some subgroup T x,

x ∈ GL(n, p). Thus G/F is cyclic and G ∈ N ◦ A.
Let G ∈ H and Z(G) = 1. Then G is not p-decomposable for any p ∈ π(G).

The assertion (3) implies that every minimal normal subgroup of G is a Sylow

subgroup of G. So F (G) = A is an abelian Hall subgroup of G in which every

Sylow subgroup is minimal normal in G. Let B be a complement to A in G. The

assertion 1 implies that |B| is squarefree. Since G ∈ N ◦ A, it follows that B is

abelian. Therefore B is cyclic. ¤

Corollary. Let G be a finite non-nilpotent group in which every Schmidt

subgroup is a Hall subgroup of G. Then G contains a normal nilpotent Hall

subgroup H such that G/H is cyclic. In particular, G/Φ(G) is metabelian.

Proof. If Z(G) = 1, then the claim of the corollary is the same as assertion 4

of the theorem. Let Z(G) 6= 1. Denote by N a subgroup of prime order p,

N ⊆ Z(G). By induction, we have G = [A/N ](B/N), where A/N is a nilpotent

Hall subgroup of G/N and B/N is cyclic. Since N ⊆ Z(G), we see that A and

B are nilpotent, (see [8], Lemma 3.15). If A is a Hall subgroup of G, then, by

Schur–Zassenhaus theorem, B = N ×B1 and G = [A]B1, where A is a nilpotent

Hall subgroup of G and B1 is a cyclic subgroup. In this case, the corollary is

proved. Now we assume that A is not a Hall subgroup of G. Then A = N ×A1,

where A1 is a normal nilpotent Hall subgroup of G and G = [A1]B. Denote by

B1 the product of all Sylow subgroups Pi of B such that Pi are normal in G for

all i. Respectively, denote by B2 the product of all Sylow subgroups Qj of B such
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that Qj are non-normal in G for all j. It is clear that G = [A × B1]B2, where

A×B1 is a normal Hall subgroup of G and all Sylow subgroups of B2 are cyclic

by the assertion 1 of the theorem. Since B2 is nilpotent, it follows that B2 is

cyclic. Therefore in any case, G contains a nilpotent Hall subgroup H such that

G/H is cyclic. Since Φ(H) ⊆ Φ(G), H/Φ(H) is abelian, we see that G/Φ(G) is

metabelian. ¤

Remark 2. For any natural number n ≥ 3 there exists a nilpotent group A

such that the derived length of A is equal to n. Let p and q are distinct primes

and p, q /∈ π(A). By Theorem 1.3 [7], there exists an S〈p,q〉-subgroup B. All

Schmidt subgroups of G = A×B are Hall subgroups of G and the derived length

of G is equal to n. Now, if G is a non-nilpotent group and G ∈ H, then its derived

length is not bounded above.
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