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A class of Finsler metrics projectively related
to a Randers metric

By GUANGZU CHEN (Shanghai) and XINYUE CHENG (Chongging)

Abstract. In this paper, we prove that the (o, 8)-metrics in the form F = (a+3)?/
™! (p # 1,2) are projectively related to a Randers metric ' = & + 8 on a manifold
of dimension n (n > 3) if and only if F' is Berwald metric and F is Douglas metric and
the corresponding Riemannian metrics a and & are projectively related.

1. Introduction

In Finsler geometry, it is an important topic to study projectively related
Finsler metrics on a manifold. Two Finsler metrics are said to be projectively
related if they have the same geodesics as point sets. It is well-known that two
Finsler metrics F' and F are projectively related if and only if their geodesic
coefficients have the following relation

G' =G+ P(z,y)y’, (1)

where P(z,y) is a scalar function on TM \ {0} with P(x, A\y) = AP(z,y), VA > 0.

In Finsler geometry, there is a special class of Finsler metrics which can be
expressed in the form F' = a¢(s), s = /a, where « is a Riemannian metric and
B is an 1-form with ||8|lo < bp and ¢(s) is a C'™ positive function on (—bg, o).
In particular, when ¢ = 1 + s, the Finsler metric F' = a + 8 is Randers metric
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with ||8|le < 1. Randers metric was introduced by the physicist G. RANDERS in
1941 from the standpoint of general relativity. The name was given by R. S. IN-
GARDEN, who used it to study the theory of the electron microscopein ([6]).
Randers metrics form the simplest class of («, 3)-metrics, but they have some
special properties which other (o, 8)-metrics don’t possess([1], [3]). In [14], the
projectively related Randers metrics are studied. It shows that two Randers
metrics are projectively related if and only if they have the same Douglas tensors
and the corresponding Riemannian metrics are projectively related ([14]). Later
on, N. Cut and Y. SHEN prove that (a, 3)-metrics in the form F = (a + 3)?/«a
are projectively related to a Randers metric F' = & + 3 if and only if both F and
F are Douglas metrics and the corresponding Riemannian metrics o and & are
projectively related ([5]).

The (o, 8)-metrics in the form F = (a+ )P /aP~! form a rich class of Finsler
metrics. Obviously, when p = 0, F' = « is just a Riemannian metric. Hence, we
always assume that p # 0 in this paper. When p = 1, F' becomes Randers metric
F =a+ . When p =2, F is just the metric studied in [5]. If we substitute
B with —(8 and take p = —1, the resulting metric is just Matsumoto metric
F = o?/(a — B). Matsumoto metric was introduced by M. MATSUMOTO as a
realization of P. Finsler’s idea “a slope measure of a mountain with respect to
a time measure” ([10]). The purpose of this paper is to study («, 8)-metrics in
the form F = (a + )P /aP~! which are projectively related to a Randers metric
F = a+ . Firstly, we can prove the following

Theorem 1.1. Let F = (a + B)?/aP~(p # 1) be an («, 8)-metric and
F = &+ 3 be a Randers metric on a manifold M of dimension n (n > 3), where
a and @& are two Riemannian metrics, § and B are two nonzero 1-forms. Then
they have the same Douglas tensors if and only if F' and F are Douglas metrics.

Further, we have the following

Theorem 1.2. Let F = (a + B)?/a?~Y(p # 1,2) be an (a, B)-metric and
F = &+ B be a Randers metric on a manifold M of dimension n (n > 3),
where a and @& are two Riemannian metrics and 3 and 3 are two nonzero 1-forms.
Then F is projectively related to F if and only if F is a Berwald metric and
F is a Douglas metric and the corresponding Riemannian metrics o and & are
projectively related.
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2. Preliminaries

For a given Finsler F' = F(z,y), the geodesics of F' are characterized locally
by a system of 2nd ODEs as follows ([4]),

d?zt ) dx
il Yo ptad B
7o +2G (33, dt) 0,

where i
i il 2 m_ 2
G _49 {[F ]mmyly [F ]xl}

G' are called the geodesic coefficients of F.
A Finsler metric F is called a Berwald metric if its geodesic coefficients

T j
G' = 5Ti(@)y’y"
are quadratic in y € T, M for any € M. It is easy to see that Riemannian
metrics are special Berwald metrics.
Let o oC
_ A 1 m
D= o (61 Ty, (2)
0yi Oy* oy n+1 oy™

where G are the geodesic coefficients of F. The tensor D := D/}, 5% © dz’ ©
dz"* @ dx' is called the Douglas tensor of F. Douglas tensor is non-Riemannian.
A Finsler metric is called Douglas metric if the Douglas tensor vanishes.
By (1), one can check easily that the Douglas tensor is a projectively invari-
ant. A fundamental fact is that all Berwald metrics must be Douglas metrics.
By the definition, an («, 8)-metric is a Finsler metric expressed in the follo-

wing form

_ _5
F=asls). s=".

where o = y/a;;y'y’ is a Riemann metric and f = bi(z)y' is a 1-form with
|Bz]la < bo. It is proved that F = a¢(f/a) is a positive definite Finsler metric if
and only if the function ¢ = ¢(s) is a C positive function on an open interval
(—bo, by) satisfying ([4])

B(s) — s¢'(s) + (b — s%)¢"(s) > 0, |s| <b< by.

Let G' and G?, denote the geodesic coefficients of F' and «, respectively, given
by
il ol

= L ), = ()
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where (g;;) == (3[F?],i,s) and (a’) := (a;;)~*. Denote

L L i i j
rij = 5 (i +bjpi),  sij o= 5 (biy — b)), s j=a lSlj, s; = b’ sji,
2 2

where “|” denotes the horizontal covariant derivative with respect to a. Put
50 := 8;y°, Too 1= Tijyiyj. We have the following

Lemma 2.1. ([13]) The geodesic coefficients of G* are related to G, by

G' =Gl +aQs'y + {—2Qasg + roo H{UY + Oa~ 'y}, (3)
where &
A
o 00— 500" + I8
2¢[(¢ _ Sd?l) + (b2 _ 52)¢//] )
\II _ ¢)//

2[(¢ = s¢/) + (0% — s2)¢")]
In the following, we will compute the Douglas tensor of («, §)-metrics. Let
Gl =G 4 aQs'y + U{—2Qasg + roo}b'.
Then (3) becomes
G =G+ 0{—2Qasq + rooya 1yt

Clearly, G* and G' are projective equivalent sprays according to (1). Then they
have the same Douglas tensor.
Denote
Ti = aQsiO + \I/{—QQCVSO + Too}bi. (4)

Then Gi = G + T%. We have

DY, =D, =—— — i i =
i IR 9yd Oyk oy n+ 1oy’ n+10ym

o? ( 1 orm i)

Ny o (@ 1 0GT 1aTmi)

S— - 5
Oy Oyk oyl n+10ym y (5)
Note that
8T/’7L
o Q's0 + Va t(b? — 5%)[roo — 2Qasg]

+2¥[ro — Q'(b* — )50 — Qss0]. (6)
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Thus, if two (a, 3)-metrics F and F have the same Douglas tensors, i.e.,
Djikl = Djikl, then by (5), we have
3 . . 1 Tm Tm .
A S S i
Oy Oyk oy n+1\oym  Oym
Then there are scalar functions H'j; := H';; () on M such that
1 (aTm orm
n+1\odym™  Jy™m

)yi = Hi()o? (7)

where H'yy := H' ), y7y".

3. The proof of Theorem 1.1

In this section, we consider the («, 8)-metrics in the following form:

F = o+ 5P =ad(s), s:==,

ar—! et
where ¢(s) = (1 + s)P. Let by = by(p) > 0 be the largest number such that

(1+s)P >0, (1+s)1—(p—1)s]+plp—1)b*—5*) >0, [s|<b<by. (8)

Then F = (a+ )P /aP~! is a Finsler metric if and only if 3 satisfies b := || Bz la <

bo. It is easy to see that by = bp(p) < 1 for p # 0. Particularly, we have known
that bp = 1 as p = 1,2 and by = % as p = —1. In general, for fixed p, we
always can determine by such that (8) holds. For example, when p > 1 and
b:=|Bzlla <min{l,1/(p — 1)}, (8) holds.

By Lemma 2.1, the geodesic coefficients of F' are given by (3) with

B P

@= s(1—p)+1’

o1 (1= 20— 1))
C282(1—p2)+s(2—p)+1+b2p(p—1)°
1 p(p—1)

== . 9
252(1—p2)+s(2—p)+1+b3p(p—1) )
For a Randers metric F' = & + /3, the geodesic coefficients of F' are given by

(3) with

_ _ 1 _
@=1 21+ s)’ (10)
To avoid clutter, we always assume
1
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PrROOF OF THEOREM 1.1. The sufficiency is obvious. We just need to prove
the necessity. If F' and F have the same Douglas tensor, then (7) holds. By (4)
and (6) and by Maple program, plugging (9) and (10) into (7) yields

Al + Bia® + C'a* + D'a® + E'a? + Fla + H?

I+ Jat + Ka? + La? + Ma + N = as'o + Hloo, (11)
where
F' = =My BProo(p +4)(p — 1)%p,
H' =2)y' 800 (p + 1)(p — 1)°p,
M =28 (p+1)(p - 5)(p - 1)%,
N =28(p+1)*(p—-1)° (12)

and A?, C?, E', J, L denote the polynomials of odd degree in y and B?, D¢, I,
K denote the polynomials of even degree in y, which contain the terms sy, sg
and rqg.

Further, (11) is equivalent to

AaS 4+ Bia® + Cla* + D'a® + E'a® + Fla+ H'
= (Ia® + Ja* + Ko 4+ La® + Ma + N)(H'y, + as’y). (13)
Replacing y® in (13) by —y° yields
— Ala® + Bia® — C'a* + D'a® — E'a® + Fla — H'
=(Ia° — Ja* + Ka® — La® + Ma — N)(H'yy — as'y).  (14)
(13)—(14) yields
a(B'a* + Dia? + F') = aH'y(Ia* + Ka? + M) + a5’y (Ja* + La® + N). (15)
(13)—(14) yields
Aiab 1+ Cia* + Eia? + HY
= H'yo(Ja* + La® + N) + aas'y(Ia* + Ka? + M). (16)

Now we are ready to prove that Eij =0.

Case 1: p = 2. This case is discussed in ([5]), so we omit it.
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Case 2: p= —1. In this case, plugging p = —1 into (13) yields

Aia‘r’ + B’b/l + C‘ias + Diaz + Eia + F?
= (Ia* + Ja® + Ko? + La)(as'y + H'y), (17)

where

F' = —6Xy" B°roo (18)
and A', B*, C%, D', E*, I, J, K, L denote the polynomials in 3. From (17) and
(18), there exists a scalar function k := k(z) such that roo = ka? because o? is

a irriducible polynomial of (y) and a? and 32 are relatively prime polynomials

of (y*). Then ro = k3. Plugging them into (15) and (16) yields
Aa® +Ca® + Ela = as'y(Ja? + L) + Hiyy(Io® + Ka), (19)
Bia* + D'a® = as'y(Ia® + Ka) + Higy(Ja® + L), (20)
where ~ _
I=(1+20%)2% J=48(1+20*)(2+0b?),
K =38%(7+8b%), L=188" (21)

and A?, B, C', D', E' denote the polynomials in y.

(1) If & # p(z)a, note that 5°,L = 18335, by (19), 8%(5%,)? can be divided
by a?. Then there exists a scalar function 7* = 7%(x) for each i such that (5°)% =
7'a? which is equivalent to

58" = T'aji.
When n > 2, if 7% # 0, then
1> rank(§ij§ik) = rank(7'a;j;) > 2,

which is impossible. Hence 7t = 0. Thus we get 3 ;=0

(2) If @ = p(x)a, we have

1 . L
(E)2 aiijSZO = )2 yiS’LO =0.

gt g dgt —
YisS g = QijY’ s o =

On the other hand, (20) implies that (Hi()OI:)2 can be divided by a?. Thus
for each i, there exists a scalar function 6° := #'(z) such that H'y, = 0'a?.
Contracting (19) and (20) with y; yields

Aot + Ca? =0(Ja? + L), Ba? + D =6(Ia* + K), (22)
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where
A = 3\ED?,
B = (k + 2kb? + 2Xkb® — 2)k) 8 + (2A\b? — 2X)s0,
C = —B[(—4kb> — 5k + 13)\k + 8Akb*) B — (2 — 46° + 10X + 8Ab?)sg),
D = —65%(3) — 1) (k5 + s0)

and
0 .= aiﬂjyi.

From (22) we know that #L and (D —6K) can be divided by a?, which imply
that 6 = 0 and kS8 + so = 0(n > 3). Then we can get that k¥ = 0 and sg = 0.
Hence, 7;; = 0 and s; = 0. Plugging them into (17) yields

—a?s'y = (a +28)(nas’y + Hig). (23)
From (23), we obtain the following
—a?s'y = pa?sty + 2BH',, 0= H'yy + 2uBs',. (24)
From (24) one gets a?s’y + pa?st, = 4u32s,, which implies that 5%, = 0.
Case 3: p # 2,—1. From (15) and by (12), it is obvious that (@ﬁEiO)Z can be
divided by o?. If & # u(z)a, then 8%(5%)? can be divided by «?, which implies

that 5% = 0.
If & = p(z)o, then (15) and (16) are reduced to

B'a* + D'a* + F' = H'yo(Ia* + Ka® + M)

+ u(x)5' o (Ja* + La® + N), (25)
Ala® + C'a* + E'a® + H' = H'yy(Ja* + La® + N)
+ pu(x)a?s o (Ia* + Ka? + M). (26)

The above two equations imply that X := F' — H'\ )M — pu(z)5',N and Y :=
H'— H'),N can be divided by a?. Hence 2(p+1)(p—1)BX" + (p+4)Y* can also
be divided by o?. By (12) we have

2p+1)(p—1BX" + (p+4)Y"
= —6H'0,°(p—2)(p+ 1)*(p— 1) — 4p(x)5' . (p+ 1)°(p — 1)*.  (27)

Contracting (27) with y; := a;;47, we conclude that H%, := H'),y; can be di-
vided by o2, that is, there exists a 1-form n := n(z);y* such that H%, = na?.
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Contracting (13) with y; yields

Ad® + Ba' + Ca® + Da? + Ea + F
=n(la® + Ja* + Ko + La® + Ma + N), (28)

where
E=—Bpp—1>*\p+4) —3reo, F=pa"p+1)(p—1>%2\—1re (29)

and A, C denote the polynomials of odd degree in y and B, D denote polynomials
of even degree in y. Replacing y® in (28) by —y* yields

—Ad® + Ba* — Co® 4+ Da? — Ea+ F
= —n(Ia® - Ja* + Ka® — La® + Ma — N). (30)
(28)—(30) yields
Aot + Ca? + E =n(Ia* + Ka? + M). (31)
(28) + (30) yields

Ba* 4+ Da? + F = n(Ja* + La? + N). (32)

The above two equations imply that X := F —nM and Y := F — N can be
divided by o2, so (p+1)(p — 1)(2A — 1)BX + [A(p +4) — 3]Y can also be divided
by o?. By (12) and (29) one gets

p+1Dp-1)C2A-1)BX +[Ap+4) -3]Y
=-mB°(p+1)°’(p—1)*(p—2)(3BA—1). (33)

Then 7 = 0 because of n > 3. From (32) and by (29), we have roy = Ta?, where
7 := 7(x) is a scalar function on M. Then ro = 74. Plugging them into (28)
yields
caat 4+ c30® 4 co0® + cra+ ¢y = 0, (34)
where
co == p=1)p+D{7lp— (A~ 1)5 +2[(3X = 1)p — Also },
e = B2 [r(Ap* + 9Ap — 10X — 3p + 3) B + (10Ap — 4p — 2p*
— 6A — 2\p”)s0] (35)
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and ¢, c3, ¢4 denote polynomials in y. From (34), we obtain
caat + co0® + ¢ =0, (36)
s + ¢ = 0. (37)
Combining (35), (36) and (37) yields
T(p—1)(AX = 1)B+2[(BA = 1)p — A]so =0,
T(p—1)[Mp+10) = 3] 8+ 2[A(5p — p* = 3) = p(2 —p)]so =0.  (38)
Differentiating (38) with respect to y* and contracting it by b’ yields
T(4X —1) =0, (39)
T[A(p+10) — 3] = 0. (40)

We claim 7 = 0. If 7 # 0, then (39) implies A = i. Plugging it into (40)

yields 7 (p—2) = 0, which is impossible. Hence 7 = 0. From (38), we have sq = 0.
Then (13) becomes

a’ps’y = [a+ (1 —p)Bl(uas'y + H'y)-
From above equation, we have
a’ps’y = pa’s'y + (1 —p)BH g, (41)
0= (1—-p)ups'y+ H'y. (42)

Then (41)—(1 — p)Bx(42) yields (ps’, — psiy)a® = (p — 1)uBst, which implies
that 85, can be divided by a?. Then 5%, = 0.

It is well known that Randers metric F' = @ + /3 is a Douglas metric if and
only if 3 is closed, i.e. 5;; = 0. Then we have proved that F is a Douglas metric.
By the assumption, F' is also a Douglas metric. O

4. The Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma

Lemma 4.1 ([9]). Suppose that QQ/s # constant for an («, §)-metric F =
ap(B/a) on a manifold M of dimension n (n > 2). If F' is a Douglas metric and
b:=||Bzlla # 0, then S is closed.
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PROOF OF THEOREM 1.2. Firstly we prove the sufficiency. It is known that
any regular (a, 8)-metric F' is Berwald metric if and only if 8 is parallel with
respect to a, i.e., by; = 0 ([1], [7], [11]). Hence, if F' is Berwald metric, its
geodesic coefficients G* = G, by (3). Because F is Douglas metric, its geodesic
coefficients G = G + %Qyi. Note that the corresponding Riemannian metrics
a and @ are projectively related, we have G, = G% + P(z,y)y’, where P(z,y)
is a scalar function on TM \ {0}. Hence we have G' = G* + P(x,y)y’, where
P(z,y) := P(z,y) — %‘3 Thus F is projectively related to F.

Next, we are going to prove the necessity. When p = —1, F = o?/(a + f3).
We can prove that F' is a Douglas metric if and only if § is parallel with respect
to a (see [9], [12]). Because F is projectively related to F', F' and F have the same
Douglas tensors. By Theorem 1.1, we know that both of F and F' are Douglas
metrics. Then b;; = 0 and 3 is closed. Further, we know that G* = G?, and
G' = GL + [Foo/(2F)]y". By the assumption again, there is a scalar function
P := P(z,y) on TM \ {0} such that G* = G* + Py’. Then we obtain G, =
G+ (P + Z’%)yi. Thus « is projectively related to a.

When p # —1, it is easy to prove that ¢(s) = (1 + s)? satisfies Q/s #
constant. By Theorem 1.1 and Lemma 4.1, we obtain s;; = 5;; = 0. Then (11)
becomes

Alat + ALa® 4+ Aba® + Ala + Aj

= H' 43
Lia* + 303 + La? + Lia + I 007 (43)

where
Al =20y"B°p(p +1)(p — 1)*roo,

AL =Xy B%p(p — 2)(p — 1)r00,
Io=2B%p+1)*(p— 1)

L =48(p+1)(p—1)(p—2) (44)

and A%, A%, A%, Iy, I3, I denote polynomials in y. Then (15) and (16) become

Al + Aba® + AL = H o (110" + La® + 1), (45)
Aba® + A} = H'yo(Is0? + I). (46)
Thus there exist a scalar function 7 := 7(x) and a I-form 7 := ;3 such that

roo = 7a? and HY, = fja?. Contracting (43) with y; yields

Bsa® + Bya* 4+ Bsa® 4+ Boo? = fj(Lia* + [0 + Lo + Lia + 1), (47)
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where
By =78 (4A=1)p(p—1°(p+1), Bs=78BA-1)p(p—2)(p—1) (48)
and By, Bs denote polynomials in y. Then we have

Bsa®* 4+ Bsa? = ij(I30* + 1), (49)

Bya* + Bya? = (110" + La? + Iy). (50)

From (49), we can see that 77/; can be divided by a2, which implies that 7 = 0.
Thus, by (49) again, Bs can be divided by o?. By (48), we have 7 = 0. Then
r;j=0. Thus F is Berwald metric. In this case, we still have G%, = C_v'g—l—(P—i—%%)yi,
that is, a is projectively related to a. O

From Theorem 1.2, we immediately obtain the following corollary

Corollary 4.2. Let F = (a+ 8)?/a?~! (p # 1,2) be an («, 8)-metric on a
manifold M of dimension n (n > 3), where « is a Riemannian metric and 3 is a
nonzero 1-form. Then F is projectively flat if and only if

(1) B is parallel with respect to «;

(2) « is locally projectively flat, i.e., « is of constant sectional curvature.

PRrROOF. If F is projectively flat, we can write G* = P(z,y)y’, where P(z,y)
is a scalar function on TM \ {0} with P(x,\y) = AP(x,y), VA > 0. On the
other hand, we can always chose a Riemann metric @ and an 1-form 3 such that
@ is projectively flat and 3 is closed. Further we can construct a projectively
flat Randers metric F = a +  and its geodesic coefficients can be expressed as
G' = P(x,y)y’, where P(x,y) is a scalar function on TM \ {0}. Thus G* =
G' + (P — P)y, i.e., I is projectively related to F. Thus, by Theorem 1.2, we
know that F' is a Berwald metric and « is projectively related to &. It is obvious
that « is projectively flat.

Conversely, because 3 is parallel with respect to «, we have G* = G, by
Lemma 2.1. Since « is locally projectively flat, F' is projectively flat. O

Corollary 4.2 is just the Theorem 1 in [2].
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