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New classes of solutions
of an alternative Cauchy equation

By GIAN LUIGI FORTI (Milano) and LUIGI PAGANONI (Milano)

Abstract. In this paper we consider the alternative Cauchy equation

g(x + y) 6= g(x)g(y) implies f(x + y) = f(x)f(y)

where f, g are unknown functions from R into a group (S, · ). Assuming a slightly
different hypothesis than in [1] we describe new classes of solutions.

1. Introduction

In previous papers we studied the alternative Cauchy equation

(1) g(x + y) 6= g(x)g(y) implies f(x + y) = f(x)f(y),

where f, g are unknown functions from Rn ([1]) or I := (0, 1) ([2]) into
a group (S, · ) (for general references about the problem see [1]). In both
cases we described the solutions of (1) under a suitable topological hypoth-
esis concerning the function g.

In the present paper we study equation (1) on R assuming a slightly
different hypothesis on g and we describe all solutions when the group S
has no elements of order 2. In the general case we describe some classes
of solutions and present open problems.

2. Notations and preliminary results

In this section we present the notations, some previous results and we
state the problem treated in the present paper.
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Denote by Z and N0 the classes of the integers and the non-negative
integers respectively, and by pi : R × R → R, i = 1, 2, 3, the maps given
by:

p1(x, y) = x, p2(x, y) = y, p3(x, y) = x + y.

Given an open interval E ⊂ R and a function ϕ : E → S, we define

Ωϕ := {(x, y) ∈ (E × E) ∩ p−1
3 (E) : ϕ(x + y) 6= ϕ(x)ϕ(y)}

and

Aϕ := {(x, y) ∈ (E × E) ∩ p−1
3 (E) : ϕ(x + y) = ϕ(x)ϕ(y)}.

A◦ϕ and Ω◦ϕ denote the interior of Aϕ and Ωϕ respectively.
A function ϕ : E → S is said locally affine in x ∈ E if there exists

a ∈ Hom(R, S) such that ϕ(x+u) = ϕ(x)a(u) for all u in an open interval
U 3 0 (Note that the homomorphism a may depend on the point x). A
function ϕ : E → S is said locally affine in an interval V ⊂ E if it is locally
affine in each point of V .

We shall use the following simple properties:

Lemma 1([2]). i) If (x0, y0) ∈ A◦ϕ then ϕ is locally affine in x0, y0,
x0 + y0.

ii) If E ⊂ R is an open interval and ϕ is locally affine in each
point of E, then there exist a ∈ Hom(R, S) and α ∈ S such
that

ϕ(x) = αa(x), x ∈ E.

iii) Let J,K,L be open intervals and

ϕ(x) =





αa(x), x ∈ J,

βb(x), x ∈ K, a, b, c ∈ Hom(R, S).
γc(x), x ∈ L

If there exists (x0, y0) ∈ A◦ϕ with x0 ∈ J , y0 ∈ K, x0+y0 ∈ L,
then

γ = αβ and b(x) = c(x) = β−1a(x)β.

For any function ϕ : R→ S define

Hϕ : = {t ∈ R : ∀x ∈ R, ϕ(t + x) = ϕ(t)ϕ(x) = ϕ(x)ϕ(t)}(2)

= R \
(
p1(Ωϕ) ∪ p2(Ωϕ)

)
.
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Lemma 2 ([1]). The set Hϕ, if not empty, is a subgroup of R.

Note that if Ω◦ϕ 6= ∅ then by (2) either Hϕ = ∅ or Hϕ is a discrete
subgroup of R, i.e. Hϕ = hZ for some h ≥ 0.

Lemma 3 ([1], [2]). Let ϕ : R→ S be any function with Hϕ 6= ∅. For
every t ∈ Hϕ and for every m,n ∈ Z

(x, y) ∈ Ωϕ ⇐⇒ (x + nt, y + mt) ∈ Ωϕ.

In [1] among other results we described the solutions (f, g) of (1) on
Rn, under the assumption

(3) pi(Ωg) = pi(Ω◦g), i = 1, 2.

In our case (i.e. n = 1), if Ω◦ϕ 6= ∅, we have three possibilities for Hg:

Hg = ∅, Hg = {0}, Hg = hZ, h > 0.

Without loss of generality we may always assume, and we do, that in
the last case the solution (f, g) is “normalized”, i.e. h = 1. Then (3) is
equivalent, by Lemma 3, to

(4) pi(Ωg ∩Q) = pi(Ω◦g ∩Q), i = 1, 2,

where Q is the open square I × I.
In [2] we solved the following local form of equation (1):

(5) g̃(x + y) 6= g̃(x)g̃(y) implies f̃(x + y) = f̃(x)f̃(y), (x, y) ∈ T

with f̃ , g̃ : I → S and T := {(x, y) ∈ I2 : x, y, x + y ∈ I}, under the
corresponding assumption (3) for g̃; since Ωg̃ ⊂ T this hypothesis can be
written in the form

(3′) pi(Ωg̃ ∩ T ) = pi(Ω◦g̃ ∩ T ), i = 1, 2.

Take now any solution of (1) satisfying (3) and having Hg = Z (and
so satisfying (4)). If moreover pi(Ωg ∩ T ) = pi(Ω◦g ∩ T ), i = 1, 2, obviously
its restriction (f̃ , g̃) to I belongs to the class of solutions of (5) described
in [2] (see Theorem 1 below).

It is so natural to ask whether there exist solutions of (5) satisfying
(3′) which can be extended to solutions (f, g) of (1) on the whole R, having
Hg = Z but not satisfying (4). The problem can be reformulated as follows:

Describe, if there are, the solutions (f, g) of equation (1) such that:

Hg = Z and so g(1 + x) = g(1)g(x) = g(x)g(1), x ∈ R,(6)

pi(Ωg ∩ T ) = pi(Ω◦g ∩ T ), i = 1, 2,(7)

pi(Ωg ∩Q) 6= pi(Ω◦g ∩Q) for at least one index i = 1, 2.(8)
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We are obviously interested in “non-trivial” solutions, i.e. solutions such
that f is not a homomorphism of R into S.

Remark 1. Instead of condition (7) concerning the triangle T one can
equivalently assume

(7′) pi(Ωg ∩ T ′) = pi(Ω◦g ∩ T ′), i = 1, 2,

where T ′ := {(x, y) ∈ R2 : x, y ∈ I, x+ y ∈ (1, 2)}. Actually, by Lemma 3,
(7′) is equivalent to

(7′′) pi(Ωg ∩ (−T )) = pi(Ω◦g ∩ (−T )), i = 1, 2,

and (f, g) is a solution of (1) under (7′′) if and only if (f̄ , ḡ) given by

f̄(x) = f(−x), ḡ(x) = g(−x)

is a solution of (1) satisfying (7).

In order to solve our problem we use the following result proved in
[2].

Theorem 1. Let (f̃ , g̃) be a solution of (5) satisfying (3′) and define

W = I \ (p1(Ωg̃) ∪ p2(Ωg̃)).

If W = ∅ [W = I] then f̃ [g̃] is the restriction to I of a homomorphism
of R into S.

If ∅ 6= W 6= I then W has a minimum τ(> 0) and either f̃ is the

restriction of a homomorphism or the pair (f̃ , g̃) has one of the following
forms:

(9)

{
f̃(x) = αi+1a(x)

g̃(x) = γic(x)
if x ∈ [iτ, (i + 1)τ) ∩ I, α, γ 6= e, i ∈ N0,

(10)

{
f̃(x) = αia(x)

g̃(x) = γi+1c(x)
if x ∈ (iτ, (i + 1)τ ] ∩ I, α, γ 6= e, i ∈ N0,

(11)





f̃(x) = a(x) if x ∈ I \ E, f̃(x) 6= a(x) if x ∈ E

where ∅ 6= E ⊂ τN0 ∩ I

and g̃ satisfies the conditions

g̃(x + τ) = g̃(x)g̃(τ) = g̃(τ)g̃(x), x ∈ (0, 1− τ)

g̃(τ) = g̃(x)g̃(τ − x), x ∈ (0, τ),
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(12)





f̃(x) = a(x) if x ∈ I \ {ξ}, f̃(ξ) 6= a(ξ)

with ξ ∈ W \ τN0, max{τ, 1− τ} < ξ < 1

and g̃ satisfies the conditions

g̃(x + τ) = g̃(x)g̃(τ) = g̃(τ)g̃(x), x ∈ (0, 1− τ)

g̃(x + ξ) = g̃(x)g̃(ξ) = g̃(ξ)g̃(x), x ∈ (0, 1− ξ)

g̃(ξ) = g̃(x)g̃(ξ − x), x ∈ (0, ξ),

where a, c ∈ Hom(R, S) and in cases (9), (10) a and c commute with α
and γ respectively.

3. The case W = ∅ or W = I

Let (f, g) be a non-trivial solution of equation (1) satisfying (6)–(8).
Obviously if f̃ = f|I and g̃ = g|I then (f̃ , g̃) is a solution of (5) satisfying
(3′) and so it has one of the forms described in Theorem 1. We refer to
the pair (f̃ , g̃) as the solution on T associated to (f, g). In this section
we show that f on R \ Z cannot equal a homomorphism and that for the
associate solution the cases listed in Theorem 1 relative to W = ∅ and
W = I cannot appear.

Lemma 4. Let (f, g) be a non-trivial solution of equation (1) satisfy-
ing (6)–(8). Then there exists t0 ∈ R such that

g(t0)g(−t0) 6= g(0) (= e) i.e. (t0,−t0) /∈ Ag.

Proof. Assume

(13) g(t)g(−t) = g(0) (= e), t ∈ R.

By (13) we have

g(−y − x) = g(x + y)−1, g(−y)g(−x) = g(y)−1g(x)−1,

thus (x, y) ∈ Ωg if and only if (−y,−x) ∈ Ωg or, equivalently, (1−y, 1−x) ∈
Ωg. This means that the set Ωg is symmetric with respect to the diagonal
y = −x + 1.

So we have

pi(Ωg ∩ T ) = 1− p3−i(Ωg ∩ T ′), pi(Ω◦g ∩ T ) = 1− p3−i(Ω◦g ∩ T ′), i = 1, 2

and by (7) pi(Ω◦g ∩T ′) = pi(Ωg ∩T ′), i = 1, 2. Since by (13) and Lemma 3
{(t, 1 − t), t ∈ R} ⊂ Ag, it follows pi(Ωg ∩ Q) = pi(Ω◦g ∩ Q), i = 1, 2,
contrary to the assumption (8).
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Proposition 1. Let (f, g) be a non-trivial solution of equation (1)
satisfying (6)–(8). The function f cannot be of the form

(14) f(x) = a(x), x ∈ R \ Z
for any a ∈ Hom(R, S).

Proof. Assume f of the form (14) and let n0 ∈ Z such that f(n0) 6=
a(n0). Then by (6), {(x, n0−x), x ∈ R} ⊂ Ag and, by Lemma 3, the same
holds for the set {(x,−x), x ∈ R}, contrary to Lemma 4.

Proposition 2. Let (f, g) be a non-trivial solution of equation (1)
satisfying (6)–(8) and let (f̃ , g̃) be its associate solution on T . Then the
set

W = I \
(
p1(Ωg̃) ∪ p2(Ωg̃)

)
= I \

(
p1(Ωg ∩ T ) ∪ p2(Ωg ∩ T )

)

is a proper non-empty subset of I.

Proof. Assume W = I. Then, by Theorem 1, there is a ∈ Hom(R, S)
such that

g̃(x) = c(x), x ∈ I.

By (6)

g(x) = g(1)g(x− 1) = g(1)g̃(x− 1) = g(1)c(−1)c(x), x ∈ (1, 2).

If g(1)c(−1) = e, then Q ⊂ Ag; if g(1)c(−1) 6= e, then Ωg ∩Q = Q \ T . In
both cases we have pi(Ωg ∩Q) = pi(Ω◦g ∩Q), i = 1, 2, contrary to (8).

Let now W = ∅. By Theorem 1 we have

f̃(x) = a(x), x ∈ (0, 1) for some a ∈ Hom(R, S).

For each k ∈ Z \ {0}, let Tk := T + (k, k); by (7) and Lemma 3 we have

pi(Ω◦g ∩ T ) + k = pi(Ω◦g ∩ Tk) = pi(Ωg ∩ Tk) = pi(Ωg ∩ T ) + k

and so
p1(Ω◦g ∩ Tk) ∪ p2(Ω◦g ∩ Tk) = (k, k + 1).

This relation, by Lemma 1 and the property A◦f ⊃ Ω◦g, implies f locally
affine in (k, k + 1), i.e.

f(x) = αkak(x), x ∈ (k, k + 1) for some ak ∈ Hom(R, S) and αk ∈ S.

Let (x, y) ∈ Ω◦g, x ∈ (k, k + 1), y ∈ (0, 1), x + y ∈ (k, k + 1): we have

αkak(x)ak(y) = αkak(x + y) = f(x + y) = f(x)f(y) = αkak(x)a(y),
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and so ak(y) = a(y) in an interval, this implies ak = a for all k ∈ Z \ {0}.
By Proposition 1 we cannot have αk = e for all k ∈ Z\{0}, so there exists
k for which αk 6= e and let k̄ be the smallest, in absolute value, of these
integers k. If we take the triangle

T ′ = {(x, y) ∈ R2; x, y ∈ (0, 1), x + y ∈ (1, 2)},
then it is immediately verified that

T ′ + (k̄ − 1, 0) ⊂ Ag when k̄ > 0 and T ′ + (k̄, 0) ⊂ Ag when k̄ < 0

and so, by Lemma 3, we get T ′ ⊂ Ag. Lemma 1–i) implies that g̃ is locally
affine in (0,1) and so, by Lemma 1–ii), g̃(x) = βc(x), x ∈ (0, 1) for some
c ∈ Hom(R, S) and β ∈ S. We have β 6= e otherwise T ⊂ Ag̃ and this
implies W = (0, 1). So T ⊂ Ωg̃; from this we get

(0, 1) ⊃ pi(Ωg ∩Q) ⊃ pi(Ω◦g ∩Q) ⊃ pi(Ω◦g ∩ T ) = pi(Ω◦g̃) = (0, 1);

thus pi(Ωg ∩Q) = pi(Ω◦g ∩Q), contrary to condition (8).

4. On the representations (11) and (12)

From the results of Section 3, we obtain that, if (f, g) is a non-trivial
solution of (1) satisfying (6)–(8), then f cannot equal a homomorphism on
R\Z and moreover for its associate solution (f̃ , g̃) on T the set W satisfies
∅ 6= W 6= I and has a minimum τ > 0. In the present section first we show
that do not exist non-trivial solutions (f, g) of our problem with f̃ = a
on I, a ∈ Hom(R, S). Furthermore we prove that, if S has no elements of
order 2, then the associate solution of a non-trivial one must have one of
the forms (9) or (10).

Define

In :=(n, n + 1), n ∈ Z (I0 = I)

Jk :={x ∈ I : kτ < x < (k + 1)τ}, k ∈ N0

T 1
i,j :={(x, y) ∈ T : x ∈ Ji, y ∈ Jj , x + y ∈ Ji+j}

T 2
i,j :={(x, y) ∈ T : x ∈ Ji, y ∈ Jj , x + y ∈ Ji+j+1}

ν :=
{

max{k ∈ N0 : (k + 1)τ ≤ 1}, if τ ≤ 1/2
1, if τ > 1/2.

Let (f, g) be a non-trivial solution of (1) satisfying (6)–(8). If f̃ does not
equal a homomorphism on I, then, by the proof of Theorem 1 in [2], we
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have :

(f̃ , g̃) of the form (9) if Ωg̃ ∩ T 1
0,0 = ∅,

(f̃ , g̃) of the form (10) if Ωg̃ ∩ T 2
0,0 = ∅,

(f̃ , g̃) of the form (11) or (12) if Ωg̃ ∩ T 1
0,0 6= ∅ and Ωg̃ ∩ T 2

0,0 6= ∅.
Proposition 3. Let (f, g) be a non-trivial solution of equation (1)

satisfying (6)–(8) and let (f̃ , g̃) be its associate solution on T . Assume

either Ωg̃ ∩ T 1
0,0 = ∅ or Ωg̃ ∩ T 2

0,0 = ∅.
Then f̃ cannot be a homomorphism on I and (f̃ , g̃) has the form (9) or
(10) respectively.

Proof. By the proof of Theorem 1 in [2], the hypothesis on Ωg̃ as-
sures that g̃ has the form given in (9) or (10), independently on the form
of f̃ . Assume f̃ = a ∈ Hom(R, S). By Lemma 1, on all intervals

(n + iτ, n + (i + 1)τ) ∩ In, n ∈ Z, i ∈ N0

the function f is locally affine. Let F := {x ∈ R \ Z : f(x) 6= a(x)}; by
Proposition 1, F 6= ∅. First we assume that F ∩ R+ =: F+ 6= ∅ and we
define x0 = inf F+ (x0 ≥ 1). Note that x0 is a point of the form n0 + i0τ ,
with n0 ∈ Z \ {0}, i0 ≥ 0.

i) x0 is a limit point of F+.
In this case f is locally affine on (x0, x0 + δ) with δ = min(τ, 1− i0τ),
and so

f(x) = αb(x), x ∈ (x0, x0 + δ), f(x) = a(x), x ∈ (0, x0) \ Z
where either b 6= a or α 6= e. Thus

{(x, y) : x ∈ (0, x0), y ∈ (0, x0), x + y ∈ (x0, x0 + δ)} ⊂ Ag.

By Lemma 1 it follows

g(x) = γc(x), c ∈ Hom(R, S), x ∈ (0, x0) ⊃ I,

a contradiction
ii) x0 is not a limit point of F+.

We have x0=n0+i0τ , i0 > 0 and {(x, n0+i0τ−x) : x∈(n0, n0+i0τ)}⊂
Ag. It follows {(x, i0τ − x) : x ∈ (0, i0τ)} ⊂ Ag : a contradiction.

In the case F ∩ R+ = ∅, i.e. F ⊂ R−, we define x0 = sup F .
i) x0 is a limit point of F .

Then {(x, y) : x ∈ (x0 − δ, x0), y ∈ I, x + y > x0, x + y /∈ Z} ⊂ Ag.
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By Lemma 1 it follows that g̃ is locally affine on I, contrary to (9)
and (10).

ii) x0 is not a limit point of F .
We have x0 = n0 + i0τ , i0 > 0 and {(x, x0−x) : x ∈ (0, τ)} ⊂ Ag. By
Lemma 3 it follows {(x, i0τ − x) : x ∈ (0, τ)} ⊂ Ag, again contrary to
(9) and (10).

Lemma 5. Let (f, g) be a non-trivial solution of equation (1) satisfy-

ing (6)–(8) and let (f̃ , g̃) be its associate solution on T . Assume

Ωg̃ ∩ T 1
0,0 6= ∅ and Ωg̃ ∩ T 2

0,0 6= ∅.
Then there exists a ∈ Hom(R, S) such that f has one of the following
forms

f = a on In \ En, n ∈ Z with En ⊂ n + (τN0 ∩ I)(15)

f = a on In \ En, n ∈ Z with En ⊂ {n + ξ}, ξ ∈ W \ τN0(16)

where En 6= ∅ for at least one n ∈ Z.

Proof. By the meaning of W and τ and by Lemmas 1 and 3, f is
locally affine in all intervals

(17)n (n + iτ, n + (i + 1)τ), n ∈ Z, 0 ≤ i ≤ ν − 1.

In all cases, f̃ equals a homomorphism a on the intervals (17)0; moreover

f(x) = αi,nai,n(x), x ∈ (n + iτ, n + (i + 1)τ), n ∈ Z, 0 ≤ i ≤ ν − 1,

with ai,n ∈ Hom(R, S) and αi,n ∈ S. Now, by Lemma 1–iii) ai,n = a;
moreover by Lemma 3 and the properties of W (see [2]), it is
Ωg ∩ (T 1

i,0 + (n, 0)) 6= ∅ and so we obtain αi,n = e. Thus

(18) f(x) = a(x) on the intervals (17)n.

We remark that the proof of Theorem 1 concerning the cases (11) and (12)
shows, by an iterative procedure, that f̃ = a on I except for the points of
a finite set E, where

{
E ⊂ τN0 ∩ I in case (11)
E = {ξ}, ξ ∈ W \ τN0 in case (12).

This procedure depends only on the properties of Ωg̃ and works as follows:

if f̃ = a on (0, An) \ Fn (Fn a finite set), then we have f̃ = a
on (0, An+1) \ Fn+1 where An+1 > An, Fn+1 ⊃ Fn, Fn+1 finite.
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By Lemma 3 and (18) we can apply the same procedure to f on all intervals
(n, n + 1) and we get (15) and (16) in the cases (11) and (12) respectively.

Since by Proposition 1 f is not equal to a on R \ Z, there exists an
interval In where f is not identically equal to a and so it must have one
of the forms (15) or (16) with En 6= ∅.

Lemma 6. Assume (S, · ) has no elements of order 2. Let (f, g) be a
non-trivial solution of equation (1) satisfying (6)–(8). Then there exists
no interval In where f has the form (15) with En 6= ∅.

Proof. Assume on the contrary there exists n̄ such that f has the
form (15) on In̄ with En̄ 6= ∅, i.e.

f(x) = a(x), x ∈ In̄ \ En̄, En̄ ⊂ n̄ + (τN0 ∩ I), En̄ 6= ∅.
It is always possible to find a pair of consecutive intervals Im, Im+1, m ∈ Z,
such that Em 6= ∅ and either Em+1 = ∅ or min(Em −m) ≤ min(Em+1 −
(m + 1)). Let kτ = min(Em −m), and so f(m + kτ) 6= a(m + kτ). We
show that

{(kτ, y) : y ∈ I} ⊂ Ag, {(x, kτ) : x ∈ I} ⊂ Ag.

By Lemma 3 this implies kτ ∈ Hg, contrary to the assumption (6).
– The points (m+kτ, y) with y ∈ (0, 1−kτ) are in Ag by the definition

of τ .
– The points (m + kτ, y) with y ∈ (1 − kτ, 1), y 6= iτ ∈ E are in Ag

since m + kτ + y /∈ Em+1.
By Lemma 3 it follows

{(kτ, y) : y ∈ (0, 1− kτ)} ∪ {(kτ, y) : y ∈ (1− kτ, 1) \ E} ⊂ Ag.

It remains to show that {(kτ, iτ), iτ ∈ E, (i + k)τ > 1} ∪ {(kτ, 1− kτ)} ⊂
Ag.

First we prove that either all points (iτ, rτ), (iτ, 1− iτ), (1 − iτ, iτ),
with (i + r)τ > 1 are in Ag or none of them is in Ag, i.e. all are in Af .

– (iτ, 1− iτ) ∈ Ag if and only if (1− iτ, iτ) ∈ Ag:
g(1) = g(iτ)g(1 − iτ), or equivalently g(1 − iτ) = g(τ)−ig(1) =
g(1)g(τ)−i, if and only if g(1) = g(1− iτ)g(τ)i = g(1− iτ)g(iτ).

– (iτ, 1− iτ) ∈ Ag if and only if (iτ, rτ) ∈ Ag, (i + r)τ > 1:
by the last equation in (11),

g(rτ) = g((r+ i)τ −1)g(1− iτ) i.e. g(1− iτ) = g(rτ)g((r+ i)τ −1)−1;

by the definition of Hg,

g((r+i)τ) = g(1)g((r+i)τ−1), i.e. g((r+i)τ−1)−1=g((r+i)τ)−1g(1).
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It follows g(iτ)g(1−iτ) = g(iτ)g(rτ)g(r+i)τ)−1g(1) and this relation
implies

g(1) = g(iτ)g(1− iτ) if and only if g((r + i)τ) = g(iτ)g(rτ).

Assume 1 = (ν+1)τ and consider the point (kτ, 1−kτ) = (kτ, (ν+1−k)τ).
For all y ∈ (0, τ) we have:

g(kτ)g(1−kτ+y) =
{

g(1 + y) = g(1)g(y)
g(kτ)g[(ν+1− k)τ + y] = g(kτ)g[(ν + 1−k)τ ]g(y).

It follows g(1)g(y) = g(kτ)g(1− kτ)g(y), i.e. (kτ, 1− kτ) ∈ Ag. So

{(kτ, iτ), iτ ∈ E, (i + k)τ > 1} ∪ {(kτ, 1− kτ)} ⊂ Ag.

Let now 1 /∈ τN0. If there is no iτ ∈ E with (k + i)τ > 1, then

L := {(kτ, y) : y ∈ (1− kτ, 1)} ⊂ Ag.

Since there exists at least a point (kτ, rτ) ∈ L, then (kτ, 1 − kτ) ∈ Ag as
well.

Conversely if there exists rτ ∈ E with (k + r)τ > 1, then at least one
of the numbers rτ, kτ is greater than 1/2. To conclude the proof it is then
enough to show that iτ ∈ E, iτ > 1/2 implies (iτ, iτ) ∈ Ag. If not, we
have (iτ, iτ), (iτ, 1− iτ), (1− iτ, iτ) ∈ Af . Put f(iτ) = γa(iτ), γ 6= e. We
have:

γa(1) =γa(1− iτ)a(iτ) = γa(iτ)a(1− iτ) = f(iτ)f(1− iτ) = f(1) =

=f(1− iτ)f(iτ) = a(1− iτ)γa(iτ),

and this implies

(19) γa(1− iτ) = a(1− iτ)γ.

By Lemma 3, (iτ, 2− iτ), (2− iτ, iτ) ∈ Af as well; so

a(1)γa(1) = a(1)f(1) = a(1)a(1− iτ)f(iτ) = f(2− iτ)f(iτ) = f(2) =

= f(iτ)f(2− iτ) = f(iτ)a(1− iτ)a(1) = f(1)a(1) = γa(1)2;

this implies

(20) γa(1) = a(1)γ.

From (19) and (20) we get

(21) γa(iτ) = a(iτ)γ.
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Since (iτ, iτ) ∈ Af ,

a(iτ)2 = a(2iτ) = f(2iτ) = f(iτ)2 = γa(iτ)γa(iτ)
(21)
= γ2a(iτ)2,

i.e. γ2 = e; a contradiction since S has no elements of order 2.

Lemma 7. Assume (S, · ) has no elements of order 2. Let (f, g) be
a non-trivial solution of equation (1) satisfying (6)–(8). Then there exists
no interval In where f has the form (16) with En 6= ∅.

Proof. Assume on the contrary there exists n̄ such that f has the
form (16) on In̄ with En̄ 6= ∅, i.e. En̄ = {n̄ + ξ}, ξ ∈ W \ τN0. We shall
prove that the segments

{(ξ, y), y ∈ I} and {(x, ξ), x ∈ I}
are in Ag; this implies ξ ∈ Hg, contrary to the assumption (6).

By Proposition 3 it must be Ωg̃∩T 1
0,0 6= ∅ and Ωg̃∩T 2

0,0 6= ∅. Therefore,
by Lemma 5,

f(x) = a(x), x ∈ In+1 \ En+1, En+1 ⊂ {n + 1 + ξ}.
It follows immediately that

{
(n̄ + ξ, y) : y ∈ I \ ({1− ξ} ∪ {ξ})} ⊂ Ag and

so, by Lemma 3,
{
(ξ, y) : y ∈ I \({1−ξ}∪{ξ})} ⊂ Ag. Now we prove that

either the three points (ξ, ξ), (1− ξ, ξ) and (ξ, 1− ξ) are all in Ag or none
of them is in Ag. By the last equation in (12), g(ξ) = g(2ξ − 1)g(1− ξ) =
g(1− ξ)g(2ξ − 1), and so

g(ξ)2 = g(2ξ − 1)g(1− ξ)g(ξ) = g(ξ)g(1− ξ)g(2ξ − 1).

By the definition of Hg we have

g(2ξ) = g(2ξ − 1)g(1) = g(1)g(2ξ − 1).

These relations immediately imply

g(1) = g(1− ξ)g(ξ) ⇐⇒ g(2ξ) = g(ξ)2 ⇐⇒ g(1) = g(ξ)g(1− ξ).

If f(ξ) = a(ξ), we have (n̄+ξ, ξ) ∈ Ag and so (ξ, ξ), (ξ, 1−ξ), (1−ξ, ξ) ∈ Ag.
Assume f(ξ) 6= a(ξ) and let f(ξ) = γa(ξ), γ 6= e. Suppose that one of the
points (ξ, ξ), (1− ξ, ξ), (ξ, 1− ξ) is not in Ag, then all three are in Af and
moreover (2− ξ, ξ), (ξ, 2− ξ) ∈ Af . This implies

a(1− ξ)γa(ξ) = f(1− ξ)f(ξ) = f(1) = f(ξ)f(1− ξ) = γa(ξ)a(1− ξ) =

= γa(1− ξ)a(ξ) = γa(1),

so

(22) a(1− ξ)γ = γa(1− ξ),
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and

a(1)γa(1) = a(1)f(1) = a(1)a(1− ξ)γa(ξ) = f(2− ξ)f(ξ) = f(2) =

= f(ξ)f(2− ξ) = γa(ξ)a(1)a(1− ξ) = f(1)a(1) = γa(1)2;

thus we have

(23) γa(1) = a(1)γ.

From (22) and (23) we obtain γa(ξ) = a(ξ)γ. Then

a(2ξ) = f(2ξ) = f(ξ)2 = γa(ξ)γa(ξ) = γ2a(2ξ),

i.e. γ2 = e : a contradiction since S has no elements of order 2.
We have so proved that {(ξ, y) : y ∈ I} ⊂ Ag; in a similar way we

may obtain {(x, ξ) : x ∈ I} ⊂ Ag.

We summarize the results of this section in the following

Proposition 4. Assume S is a group without elements of order 2. Let
(f, g) be a non-trivial solution of equation (1) satisfying (6)–(8). Then its

associate solution on T , (f̃ , g̃), has one of the forms (9) or (10).

5. New solutions

A) S has no elements of order 2.

From the results of the previous sections we know that, when S has no
elements of order 2, the only possible non-trivial solutions of our problem
must have on I one of the forms (9) and (10) of Theorem 1.

Now we prove that actually such solutions exist.

Theorem 2. Let S be a group without elements of order 2. The func-
tional equation (1) under the conditions (6)–(8) has non-trivial solutions
if and only if (ν + 1)τ = 1 and, in this case, the pair (f, g) has one of the
following forms:

{
f(x) = αn(ν+2)+i+1a(x) , x ∈ [n + iτ, n + (i + 1)τ)
g(x) = γnν+ic(x) , x ∈ [n + iτ, n + (i + 1)τ)

(24)




f(x) = αnν+ia(x) , x ∈ (n + iτ, n + (i + 1)τ ] ∩ In

g(x) = γn(ν+2)+i+1c(x) , x ∈ (n + iτ, n + (i + 1)τ ] ∩ In

f(n) = αnν−1a(n) , g(n) = γn(ν+2)c(n)

(25)
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where i = 0, . . . , ν, n ∈ Z, α 6= e, γ 6= e, a, c ∈ Hom(R, S) and a, c
commute with α, γ respectively.

Proof. Let (f, g) be a non-trivial solution of (1). By the results of
the previous sections we have ∅ 6= W 6= I and the pair (f̃ , g̃) has one of
the forms (9) or (10) of Theorem 1. Assume (f̃ , g̃) has the form (9); then
T 1

0,0 ⊂ Ag and T 2
0,0 ⊂ Ωg. By the definition of Hg, we have

g(n + x) = g(1)ng(x), x ∈ I, n ∈ Z, and g(0) = e.

Denote ρ = g(1)c(−1); we immediately have

g(n + x) = ρnγic(n + x), x ∈ [iτ, (i + 1)τ) ∩ [0, 1), i = 0, 1, . . . .

Consider now the function f in the interval I1. It is locally affine in all
subintervals (1 + iτ, 1 + (i + 1)τ) ∩ I1, i = 0, 1, . . . and so

f(x) = βiai(x), x ∈ (1 + iτ, 1 + (i + 1)τ) ∩ I1,

for some ai ∈ Hom(R, S) and βi ∈ S. By Lemma 1–iii) we have ai = a for
all i. Let us denote β0 = ηα. by the properties of Ωg (and so of Af ) and
by Lemma 3 we get βi = ηαi+1.

Now we show that (ν + 1)τ = 1. Assume the contrary and let 1 =
στ + ρ where 0 < ρ < τ and

(26) σ =
{

ν + 1 if τ < 1/2
1 if τ > 1/2

Consider the three sets

U1 = {(x, y) : (σ − 1)τ < x < στ, 0 < y < τ, x + y > 1}
U2 = {(x, y) : στ < x < 1, 0 < y < τ, x + y > 1}
U3 = {(x, y) : στ < x < 1, τ < y < 2τ, x + y < 1 + τ}

and let (xi, yi) ∈ Ui. We have the following possibilities:

a) (x1, y1) ∈ Ag: thus γσ−1 = ρ. Since S has no elements of order 2
and γ 6= e, both points (x2, y2) and (x3, y3) are in Af . This implies
ασ+1 = η = ασ+2 i.e. α = e; a contradiction.

b) (x1, y1) ∈ Af : thus ασ = η. So (x2, y2), (x3, y3) ∈ Ag and this implies
γσ+1 = ρ = γσ i.e. γ = e; contradiction.
We prove that (τ, ντ) /∈ Ag. On the contrary we get γν+1 = ρ and it

follows
{(τ, y) : ντ ≤ y < 1} ∪ {(x, τ) : ν ≤ x < 1} ⊂ Ag.
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Thus τ = 1
ν+1 ∈ Hg: a contradiction. So (τ, ντ) must belong to Af ∩ Ωg

and this implies f(1) = αν+3a(1). From this we have

{(x, 1− x) : x ∈ [0, 1], x /∈ Nτ} ⊂ Ag

and this implies ρ = γν . So g has the form described in (24). Take now
(x, y) with ντ < x < 1, τ < y < 2τ , 1 < x + y < 1 + τ ; since (x, y) /∈ Ag

we must have (x, y) ∈ Af and this implies η = αν+2.
By induction we easily obtain

f(x) = αn(ν+2)+i+1a(x), x ∈ [n + iτ, n + (i + 1)τ), i = 0, 1, . . . , ν; n ∈ Z.

In the case (f̃ , g̃) of the form (10), in the same way we obtain the
solutions given by (25).

A simple check shows that (24) and (25) are solutions of (1).

B) S has elements of order 2.

We examine the role of the assumption that S has no elements of
order 2. This hypothesis appeared in Section 4 and it has been used in
Lemma 7 in order to assure that (ξ, ξ) ∈ Ag, in Lemma 6 to prove that
(iτ, iτ) ∈ Ag for all iτ ∈ E and so to exclude the case 1 /∈ τN. Again it has
been used in Theorem 2 to prove that (ν + 1)τ = 1. In this last case, that
is when ∅ 6= W 6= I and the associate solution has one of the forms (9) or
(10) of Theorem 1, it is possible to describe the solutions of our problem
in the case S has elements of order 2.

Assume (f̃ , g̃) has the form (9) and στ < 1, where σ is given by (26).
Consider the sets U1, U2, U3 defined in the proof of Theorem 2 and let
(xi, yi) ∈ Ui, i = 1, 2, 3. We have two cases:

I) (x1, y1) ∈ Ag: then γσ−1 = ρ. Since γ 6= e, it is (x2, y2) ∈ Af and this
implies ασ+1 = η. Moreover (x2, y2) ∈ Af implies (x3, y3) ∈ Ag, i.e.
γ2 = e. Looking to the diagonal {(x, 1 − x) : x ∈ I} we immediately
realize that ασ+2a(1) = f(1).

II) (x1, y1) ∈ Af : then ασ = η. Since α 6= e, it is (x2, y2) ∈ Ag and this
implies γσ = ρ. Moreover (x2, y2) ∈ Ag implies (x3, y3) ∈ Af , i.e.
α2 = e. Looking to the diagonal {(x, 1 − x) : x ∈ I} we immediately
realize that ασ+3a(1) = f(1) = ασ+1a(1).

In the same way we argue when (f̃ , g̃) has the form (10).

Summarizing we have the following.
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Theorem 3. If S has elements of order 2, the functional equations (1)
under the conditions (6)–(8), besides the solutions described in Theorem 2,
has the following ones, with στ < 1:

{
f(x) =αn(σ+1)+i+1a(x),

g(x) =γn(σ−1)+ic(x),

x ∈ [n + iτ, n + (i + 1)τ) ∩ [n, n + 1)

x ∈ [n + iτ, n + (i + 1)τ) ∩ [n, n + 1)

where γ2 = e, γ 6= e, α 6= e;
{

f(x) =αnσ+i+1a(x),

g(x) =γnσ+ic(x),

x ∈ [n + iτ, n + (i + 1)τ) ∩ [n, n + 1)

x ∈ [n + iτ, n + (i + 1)τ) ∩ [n, n + 1)

where α2 = e, γ 6= e, α 6= e;




f(x) =αnσ+ia(x),

g(x) =γnσ+i+1c(x),

f(n) =αnσ−1a(n),

x ∈ (n + iτ, n + (i + 1)τ ] ∩ (n, n + 1]

x ∈ (n + iτ, n + (i + 1)τ ] ∩ (n, n + 1]

g(n) = γnσc(n)

where γ2 = e, γ 6= e, α 6= e;



f(x) =αn(σ−1)+ia(x),

g(x) =γn(σ+1)+i+1c(x),

f(n) =αn(σ−1)+1a(n),

x ∈ (n + iτ, n + (i + 1)τ ] ∩ (n, n + 1]

x ∈ (n + iτ, n + (i + 1)τ ] ∩ (n, n + 1]

g(n) = γn(σ+1)c(n)

where α2 = e, γ 6= e, α 6= e.
In all cases a, c ∈ Hom(R, S) and commute with α, γ respectively.

6. Open problems and final remarks

About the results of Section 4, the following example shows that the
condition on S is essential. Let S = R/2Z and τ ∈ (1/2, 1) and define
g : R→ R/2Z as a periodic function of period 1 given on [0,1] by

{
g(0) = g(τ) = g(1) = 0

g(x) = 1 elsewhere.

So Hg = Z and Ag ∩Q is the set

{(x, τ − x) : x ∈ (0, τ)} ∪ {(x, 1 + τ − x) : x ∈ (τ, 1)}
∪ {(x, 1− x) : x ∈ I \ {1− τ, τ}}
∪ {(τ, y) : y ∈ I \ {1− τ, τ}}
∪ {(x, τ) : x ∈ I \ {1− τ, τ}}.
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Thus g satisfies conditions (7) and (8). If we take f : R→ R/2Z periodic
of period 1 and given on [0,1] by

{
f(0) = f(τ) = 1

f(x) = 0 elsewhere,

the pair (f, g) is a non-trivial solution of our problem and the restriction
(f̃ , g̃) on I has the form (11) of Theorem 1 with 1 /∈ τN0.

It seems that the existence of such special solutions depends not only
on the fact that S has elements of order 2, but also on what group S is. So
it remains open the problem of describing all solutions in this latter case.

As proved in Lemma 4, all non-trivial solutions of equation (1) sat-
isfying (6)–(8) does not satisfy (13), i.e. g is not odd. Note that starting
from an arbitrary solution (f, g) of (1) on R (without any other condition)
it is always possible to construct another one (f1, g1) in the following way:

f1(x) =
{

f(x), x ≥ 0
[f(−x)]−1, x < 0

g1(x) =
{

g(x), x ≥ 0
[g(−x)]−1, x < 0

.

Observe that since either f(0) = e or g(0) = e, then either f1 or g1 is odd.
So in this way it is possible to obtain new classes of solutions (f, g) where
at least one of the functions f1 and g1 is odd.
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UNIVERSITÀ DI MILANO
VIA C. SALDINI 50
I–20133 MILANO
ITALY

L. PAGANONI
DIPARTIMENTO DI MATEMATICA
UNIVERSITÀ DI MILANO
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