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Homogeneous contact metric structures on five-dimensional
generalized symmetric spaces

By GIOVANNI CALVARUSO (Lecce)

Abstract. We obtain the full classification of invariant contact metric structu-

res on five-dimensional Riemannian generalized symmetric spaces. Different classes of

examples of these spaces show different behaviours. In fact, while some of these spaces

do not admit any invariant contact metric structure, we find and describe four new

families of homogeneous structures. Investigating their geometric properties, we find

that these new examples are not Sasakian (not even K-contact), but they all belong to

the wider class of H-contact manifolds. On the other hand, we also obtain a rigidity

result, proving that invariant contact metric structures on five-dimensional Riemannian

generalized symmetric spaces which are naturally reductive, are exactly the ones giving

to them the structure of globally ϕ-symmetric spaces, already classified in [10].

1. Introduction

A contact manifold (M,η) is said to be homogeneous if there exists a con-

nected Lie group G of diffeomorphisms acting transitively on M and leaving η

invariant. If g is a Riemannian metric associated to η and G is a group of isomet-

ries, then (M,η, g) is said to be a homogeneous contact metric manifold. In this

case, the whole contact metric structure (η, ϕ, ξ, g) is invariant.

Three-dimensional homogeneous contact metric manifolds are well unders-

tood. If (M,η, g) is a simply connected three-dimensional homogeneous contact

metric manifold, then M = G is a Lie group and the contact metric structure
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(η, g, ξ, ϕ) is left-invariant. This result and a complete classification were obta-

ined in [13]. It is then a natural problem to study five-dimensional homogeneous

contact metric manifolds.

The five-dimensional case appears much broader and it allows several diffe-

rent interesting behaviours. The simply connected covering of a five-dimensional

contact metric (locally) symmetric space is either S5(1) or E3 × S2(4) [12]. Five-
dimensional ϕ-symmetric spaces were classified in [10], clarifying their relationship

with naturally reductive spaces (we shall provide more details in Section 2). Rigi-

dity results on compact five-dimensional homogeneous contact metric manifolds

were given in [15]. More recently, five-dimensional Lie algebras carrying an inva-

riant Sasakian and K-contact structure were completely classified in [1] and [4],

respectively.

A generalized symmetric space is a connected Riemannian manifold (M, g)

admitting a regular s-structure, that is, a family {sx : x ∈ M} of symmetries

on M , such that

sx ◦ sy = sz ◦ sx, z = sx(y),

for every points x, y,∈ M [9]. As it is well-known, every generalized symmetric

space is a homogeneous Riemannian space [8]. An s-structure {sx : x ∈ M} is

said to be of order k ≥ 2 if (sx)
k = id for all x ∈ M and (sx)

i 6= id for i < k. A

Riemannian manifold (M, g) is said to be k-symmetric if it admits a regular s-

structure of order k. Each generalized symmetric space is k-symmetric for some k

[8]. The order of a generalized symmetric space is the least integer k such that

(M, g) is k-symmetric.

Low-dimensional generalized symmetric spaces were completely classified in

[8] (see also [9]). In particular, five-dimensional Riemannian generalized symmet-

ric spaces are classified into 12 classes of homogeneous manifolds. Comparing this

classification list with the classification of five-dimensional naturally reductive

spaces [11], it is easily seen that the generalized symmetric spaces which are not

naturally reductive are the ones of type 2, 3, 4, 7, 8a, 8b (all of order 4) and 9 (of

order 6).

The results of [10] on ϕ-symmetric and naturally reductive spaces lead to the

following

Question 1. Do there exist invariant contact metric structures on five-

dimensional generalized symmetric spaces which are not naturally reductive?

Question 2. Besides the structures of globally ϕ-symmetric spaces, do there

exist other invariant contact metric structures on five-dimensional generalized

symmetric spaces which are naturally reductive?
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In this paper, we shall provide a complete answer to Questions 1 and 2,

classifying all invariant contact metric structures on five-dimensional generalized

symmetric spaces. With regard to the examples which are not naturally reduc-

tive, while several of them do not carry any invariant contact metric structure,

we find and explicitly describe four new families of homogeneous contact met-

ric structures, on five-dimensional generalized symmetric spaces of type 3, 8a, 8b

and 9. These homogeneous contact metric manifolds are not Sasakian (not even

K-contact), but belong to the wider class of H-contact manifolds, that is, their

Reeb vector field ξ is a critical point for the energy functional restricted to the

space X1(M) of all unit vector fields [14]. Einstein and η-Einstein invariant con-

tact metric structures will also be pointed out. On the other hand, a rigidity

result is obtained for the naturally reductive cases, as it turns out that the only

invariant contact metric structures on the naturally reductive examples, are the

ones corresponding to globally ϕ-symmetric spaces.

The paper is organized in the following way. In Section 2 we report some basic

information on contact metric structures and the classification of five-dimensional

generalized symmetric spaces. In Section 3 we classify invariant contact metric

structures on five-dimensional generalized symmetric spaces which are not na-

turally reductive. The geometry of these examples will be studied Section 4. A

negative answer to Question 2 will be obtained in Section 5.

2. Preliminaries

We briefly report some basic information on contact metric structures, re-

ferring to [2] for further information. An almost contact structure on a (2n+ 1)-

dimensional manifold M is triple (ϕ, η, ξ), where ξ is a nowhere vanishing vector

field, η a 1-form and ϕ a (1, 1)−tensor, such that

η(ξ) = 1, ϕ2 = −I + ξ ⊗ η. (2.1)

As it is well known, conditions (2.1) imply

ϕ(ξ) = 0, η ◦ ϕ = 0. (2.2)

The vector field ξ defines the characteristic foliation F with one-dimensional

leaves, and the kernel of η defines the codimension one sub-bundle D = ker η.

Then, the tangent bundle TM of M admits the canonical splitting

TM = D ⊕ Rξ.
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If the 1-form η satisfies the condition

η ∧ (dη)n 6= 0,

then the subbundle D defines a contact structure on M . In this case, η is called a

contact form and the vector field ξ is called the Reeb vector field. If η is a contact

form, then dη(ξ,X) = 0, for every vector field X on M .

Considering the product manifold M × R, denoted by (X, f d
dt ) an arbitrary

vector field on M × R, one can introduce the almost complex structure

J

(
X, f

∂

∂t

)
=

(
ϕX − fξ, η(X)

∂

∂t

)
. (2.3)

Then, (ϕ, η, ξ) is said to be normal if J is integrable. This is equivalent to requiring

that the Nijenhuis tensor Nϕ associated to the tensor ϕ satisfies the condition

Nϕ = −dη ⊗ ξ.

A Riemannian metric g on an almost contact manifold (M,ϕ, η, ξ) is compa-

tible with the almost contact structure if

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for every vector fields X,Y . In particular, η(X) = g(X, ξ) for any tangent vector

field X. The structure (ϕ, η, ξ, g) is called an almost contact metric structure.

Any almost contact structure on a paracompact manifold admits a compatible

metric.

The fundamental form Φ associated to an almost contact metric structure

(ϕ, η, ξ, g) is given by

Φ(X,Y ) = g(X,ϕY ).

An almost contact metric structure (ϕ, η, ξ, g) is said to be contact metric if

2Φ = dη. In this case, η is a contact form. We shall denote by (M,η, g) (or

(M,ϕ, η, ξ, g)) a contact metric manifold, that is, an odd-dimensional manifold

equipped with a contact metric structure. A Sasakian manifold is a normal con-

tact metric manifold.

A contact metric manifold (M,ϕ, η, ξ, g) is said to be K-contact if the tensor

h = 1
2Lξϕ vanishes (equivalently, if ξ is a Killing vector field). Any Sasakian

manifold is K-contact, but the converse only holds in dimension three.

On any K-contact manifold (M,η, g), the Ricci tensor Ricg of the contact

metric g satisfies Ricg(ξ,X) = 2n η(X), for any vector field X on M , where

dimM = 2n+ 1. Thus, ξ is a Ricci eigenvector. An H-contact manifold is a con-

tact metric manifold whose Reeb vector field ξ is a critical point for the energy
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functional restricted to the space X1(M) of all unit vector fields on (M, g) (cons-

idered as smooth maps from (M, g) into its unit tangent sphere bundle T1M ,

equipped with the Sasaki metric). As proved in [14], (M,ϕ, ξ, η, g) is H-contact

if and only if ξ is an eigenvector of the Ricci operator.

A contact metric manifold (M,η, g) is said to be η-Einstein if the Ricci tensor

Ricg of the Riemannian metric g satisfies

Ricg = λg + ν η ⊗ η,

for some smooth functions λ, ν, that is,

Q = λI + ν η ⊗ ξ, (2.4)

where Q is the Ricci operator, defined by g(QX,Y ) = Ric(X,Y ).

A ϕ-symmetric spacemay be considered as the odd-dimensional analogue of a

Hermitian symmetric space. In fact, it is a Sasakian manifold (M,ϕ, η, ξ, g), such

that the geodesic reflections with respect to the integral curves of ξ (ϕ-geodesic

symmetries) extend to define global automorphisms of the entire structure. The

existence of ϕ-geodesic symmetries yields that the manifold fibers over a Hermit-

ian symmetric space.

Following [16], on a Sasakian manifold (M,ϕ, ξ, η, g) one defines the connec-

tion

∇̄XY = ∇XY + dη(X,Y )ξ − η(X)φY + η(Y )φX, (2.5)

where ∇ denotes the Levi–Civita connection of (M, g). As proved in [5], ∇̄ is the

unique metric connection connection with skew-symmetric torsion preserving the

Sasakian structure. In particular, (M,η, g) is ϕ-symmetric if and only if ∇̄R̄ = 0,

that is, when ∇̄ has symmetric curvature.

A simply connected and complete locally ϕ-symmetric space is naturally

reductive [3]. Conversely, five-dimensional naturally reductive spaces carrying a

structure of ϕ-symmetric space were completely classified in [10]. A classification

result in arbitrary dimension was obtained in [6].

We end this section reporting the classification of five-dimensional generalized

symmetric spaces.

Theorem 2.1 ([8]). All non-symmetric five-dimensional generalized sym-

metric spaces are of order 4 and 6 and of the following 12 types:

Type 1) As a homogeneous space, M is the matrix group


1 0 0 x

0 1 0 y

u v 1 z

0 0 0 1


 .
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Moreover, M coincides with R5(x, y, z, u, v), equipped with the Riemannian

metric

g = dx2 + dy2 + du2 + dv2 + %2(xdu− ydv + dz)2,

with % > 0. The linear subspace m of g admits an orthogonal basis {X1, Y1, X2,

Y2,W}, with 〈Xi, Xi〉 = 〈Yi, Yi〉 = 1, i = 1, 2 and 〈W,W 〉 = %2, such that the Lie

brackets can be described as follows:

[ , ] X1 X2 Y1 Y2 W

X1 0 0 −W 0 0

X2 0 0 0 W 0

Y1 W 0 0 0 0

Y2 0 −W 0 0 0

W 0 0 0 0 0

(2.6)

Type 2) As a homogeneous space, M is the matrix group



eλ1t 0 0 0 x

0 e−λ1t 0 0 y

0 0 eλ2t 0 z

0 0 0 e−λ2t w

0 0 0 0 1




.

Moreover, M coincides with R5(x, y, z, w, t), equipped with the Riemannian

metric

g = e−2λ1tdx2 + e2λ1tdy2 + e−2λ2tdz2 + e2λ2tdw2 + dt2

+ 2α[e−(λ1+λ2)tdxdz + e(λ1+λ2)tdydw] + 2β[e(λ1−λ2)tdydz − e(λ2−λ1)tdxdw],

where either (i) λ1 > λ2 > 0, α2+β2 < 1, (ii) λ1 = λ2 > 0, α = 0 and 0 ≤ β < 1,

or (iii) λ1 < 0, λ2 = 0, α = 0 and 0 < β < 1. The linear subspace m of g admits

a basis {X1, Y1, X2, Y2,W} such that the invariant Riemannian metric and Lie

brackets can be described as follows:

〈 , 〉 X1 X2 Y1 Y2 W

X1 1 α 0 −β 0

X2 α 1 β 0 0

Y1 0 β 1 α 0

Y2 −β 0 α 1 0

W 0 0 0 0 1
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and

[ , ] X1 X2 Y1 Y2 W A1 A2

X1 0 0 0 0 −λ1X1 −X2 −X2

X2 0 0 0 0 −λ2X2 X1 X1

Y1 0 0 0 0 λ1Y1 −Y2 Y2

Y2 0 0 0 0 λ2Y2 Y1 −Y1

W λ1X1 λ2X2 −λ1Y1 −λ2Y2 0 0 0

A1 X2 −X1 Y2 −Y1 0 0 0

A2 X2 −X1 −Y2 Y1 0 0 0

(2.7)

The isotropy subalgebra is given by either h = 0, span(A1) or span(A1, A2), ac-

cording to whether conditions (i), (ii) or (iii) hold, respectively.

Type 3)M is the homogeneous spaceM = SO(3,C)/SO(2), where SO(3,C)
is the special complex orthogonal group and the Riemannian metric of M is indu-

ced by a real invariant positive semi-definite form of GL(3,C). The subalgebra

is h = so(2) = span(A), where, with respect to a basis {X1, X2, Y1, Y2,W} of m,

the Riemannian metric and the Lie brackets are respectively given by

〈 , 〉 X1 X2 Y1 Y2 W

X1 a2 0 0 −γ 0

X2 0 a2 γ 0 0

Y1 0 γ a2 0 0

Y2 −γ 0 0 a2 0

W 0 0 0 0 b2

(2.8)

where a, b > 0, γ are real numbers, a2 > |γ|, and

[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 −W −X1 −X2

X2 0 0 W 0 −X2 X1

Y1 0 −W 0 0 Y1 −Y2

Y2 W 0 0 0 Y2 Y1

W X1 X2 −Y1 −Y2 0 0

A X2 −X1 Y2 −Y1 0 0

(2.9)
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Type 4) M is the complex matrix group



eλt 0 z

0 e−λt w

0 0 1




where z, w ∈ C and t ∈ R. M also coincides with the space C2(z, w) × R(t),
equipped with a Riemannian metric

g = e−(λ+λ̄)tdzdz̄ + e(λ+λ̄)tdwdw̄ + dt2 + 2c[e(λ̄−λ)tdzdw̄ + e(λ−λ̄)tdz̄dw]+

+ γe−2λtdz2 + γ̄e−2λ̄tdz̄2 − γe2λtdw2 − γ̄e2λ̄tdw̄2,

with λ, γ ∈ C, c ∈ R, γγ̄ + c2 < 1/4. Putting ν = (1 + b2)γ, where c = 1−b2

2(1+b2) ,

condition γγ̄ + c2 < 1/4 is equivalent to νν̄ < b2. Put λ = δ + iµ, ν = α + iβ.

Then, the vector subspace m of g admits a basis {X1, X2, Y1, Y2,W}, such that

〈 , 〉 X1 X2 Y1 Y2 W

X1 1 α 0 −β 0

X2 α b2 β 0 0

Y1 0 β 1 α 0

Y2 −β 0 α b2 0

W 0 0 0 0 1

and

[ , ] X1 X2 Y1 Y2 W A1 A2

X1 0 0 0 0 −δX2 − µY2 Y1 −X2

X2 0 0 0 0 δX1 − µY1 −Y2 X1

Y1 0 0 0 0 −µX2 + δY2 −X1 Y2

Y2 0 0 0 0 −µX1 − δY1 X2 −Y1

W δX2 + µY2 −δX1 + µY1 µX2 − δY2 µX1 + δY1 0 0 0

A1 −Y1 Y2 X1 −X2 0 0 0

A2 X2 −X1 −Y2 Y1 0 0 0

The possible cases are either (i) λ + λ̄ 6= 0 and ν 6= 0, (ii) λ + λ̄ = 0, ν = 0

and b2 6= 1, or (iii) λ + λ̄ 6= 0, ν = 0 and b2 = 1. The isotropy subalgebra is

respectively given by h = 0, h = span(A1) and h = span(A1, A2).
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Types 5a,5b) M is the homogeneous space (SO(3) × SO(3))/SO(2) or

(SO(2, 1) × SO(2, 1))/SO(2). The Riemannian metric is the one induced on M

by the real invariant positively semi-definite form

g̃ = a2[(ω1 + ω̃2)
2 + (ω̃1 + ω2)

2] + b2[(ω1 − ω̃2)
2 + (ω̃1 − ω2)

2] + c2(ω3 + ω̃3)
2,

with a ≥ b and c three positive real parameters, on the group GL(3,R)×GL(3,R)
of pairs of regular matrices



a1 a2 a3
b1 b2 b3
c1 c2 c3


×



ã1 ã2 ã3
b̃1 b̃2 b̃3
c̃1 c̃2 c̃3


 ,

where ω1 = a2da3 + b2db3 ± c2dc3, ω2 = a3da1 + b3db1 ± c3dc1, ω3 = a1da2 +

b1db2±c1dc2, and ω̃i are given by corresponding expressions in ãi, b̃i, c̃i. Cases 5a)

and 5b) correspond to the (+) and (−) signs respectively.

For case 5a (case 5b can be described in a similar way), there exists a basis

{X1, X2, Y1, Y2,W} of m, such that

〈 , 〉 X1 X2 Y1 Y2 W

X1
a2 + b2

4
0 0

a2 − b2

4
0

X2 0
a2 + b2

4

a2 − b2

4
0 0

Y1 0
a2 − b2

4

a2 + b2

4
0 0

Y2
a2 − b2

4
0 0

a2 + b2

4
0

W 0 0 0 0 c2

and

[ , ] X1 X2 Y1 Y2 W A

X1 0 0
1

2
(W −A) 0 −Y1 Y1

X2 0 0 0
1

2
(W +A) Y2 Y2

Y1 −1

2
(W −A) 0 0 0 X1 −X1

Y2 0 −1

2
(W +A) 0 0 −X2 −X2

W Y1 −Y2 −X1 X2 0 0

A −Y1 −Y2 X1 X2 0 0

(2.10)
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The isotropy subalgebra is h = span(A).

Types 6a,6b)M is the homogeneous space SU(3)/SU(2) or SU(2,1)/SU(2),

and coincides with the submanifold of C3(z1, z2, z3) given by relation z1z̄1+z2z̄2±
z3z̄3 = ±1. The Riemannian metric is the one induced on M by the Hermitian

metric on C3, given by

g̃ = λ(dz1dz̄1+dz2dz̄2±dz3dz̄3)+µ(z1dz̄1+z2dz̄2±z3dz̄3)(z̄1dz1+ z̄2dz2± z̄3dz3),

where λ > 0, µ 6= 0 are real parameters satisfying µ ± λ > 0. Cases 6a) and 6b)

correspond to the (+) and (−) signs respectively.

For case 6a (case 6b can be described in a similar way), there exists an

orthogonal basis {X1, X2, Y1, Y2,W} of m, with 〈Xi, Xi〉 = 〈Yi, Yi〉 = 3a2, i = 1, 2,

〈W,W 〉 = c2, such that

[ , ] X1 Y1 X2 Y2 W A1 A2 A3

X1 0 −A1 3W + A2 A3 −X2 Y1 −X2 Y2

X2 A1 0 A3 −3W + A2 Y2 −X1 −Y2 −X2

Y1 −3W − A2 −A3 0 A1 X1 −Y2 X1 Y1

Y2 −A3 3W − A2 −A1 0 −Y1 X2 Y1 −X1

W X2 −Y2 −X1 Y1 0 0 0 0

A1 −Y1 X1 Y2 −X2 0 0 0 0

A2 X2 Y2 −X1 −Y1 0 0 0 0

A3 −Y2 X2 −Y1 X1 0 0 0 0

(2.11)

The isotropy subalgebra is h = span(A1, A2, A3).

Type 7) M is R5(x, y, u, v, t), equipped with a Riemannian metric

g = dt2 + e−2λt(tdx− du)2 + e2λt(tdy + dv)2 + a2(e−2λtdx2 + e2λtdy2)

+ 2γ(dydu− dxdv),

where λ, a, γ ∈ R, λ ≥ 0, a > 0 and γ2 < a2. There exists a basis {X1, X2, Y1, Y2,

W} of m, such that

〈 , 〉 X1 X2 Y1 Y2 W

X1 a2 0 0 −γ 0

X2 0 1 γ 0 0

Y1 0 γ a2 0 0

Y2 −γ 0 0 1 0

W 0 0 0 0 1
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and

[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 0 −λX1 −X2 Y1

X2 0 0 0 0 −λX2 −Y2

Y1 0 0 0 0 λY1 + Y2 −X1

Y2 0 0 0 0 λY2 X2

W λX1 +X2 λX2 −λY1 − Y2 −λY2 0 0

A −Y1 Y2 X1 −X2 0 0

The possible cases are either (i) λ 6= 0, or (ii) λ = γ = 0. Respectively, the

isotropy subalgebra is either h = 0, or h = span(A).

Types 8a,8b) As homogeneous space, M is Ie(R3)/SO(2) or Ih(R3)/SO(2),

where Ie (respectively, Ih) denotes the group of all positive affine transformations

of R3 that preserve dx2+dy2+dz2 (respectively, dx2+dy2−dz2). M also coincides

with the submanifold of R6(x, y, z, α, β, γ), such that α2 + β2 ± γ2 = ±1. The

Riemannian metric of M is induced by the regular invariant quadratic form

ḡ = dx2 + dy2 ± dz2 + λ2(dα2 + dβ2 ± dγ2) + [µ± (−1)](αdx+ βdy ± γdz)2,

where λ, µ > 0. The five-dimensional generalized symmetric spaces of type 8a

(respectively, 8b) are obtained when the sign (+) (respectively, (−)) holds in the

previous formulas.

In the case 8a (the case 8b can be described in a similar way), the vector

subspace m admits an orthogonal basis {X1, X2, Y1, Y2,W}, with 〈X1, X1〉 =

〈Y1, Y1〉 = b2, 〈X2, X2〉 = 〈Y2, Y2〉 = 1, 〈W,W 〉 = c2, where b, c > 0, such that the

Lie brackets are given by

[ , ] X1 X2 Y1 Y2 W A

X1 0 W 0 0 −X2 Y1

X2 −W 0 0 0 0 −Y2

Y1 0 0 0 −W Y2 −X1

Y2 0 0 W 0 0 X2

W X2 0 −Y2 0 0 0

A −Y1 Y2 X1 −X2 0 0

(2.12)

and h = span(A).
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Type 9) M is the matrix group



e−(u+v) 0 0 x

0 eu 0 y

0 0 ev z

0 0 0 1




Moreover, M coincides with R5(x, y, z, u, v), equipped with the Riemannian

metric

g =
2

3
a2(du2 + dudv + dv2) + (2b2 + 1)(e2(u+v)dx2 + e−2udy2

+ e−2vdz2) + 2(b2 − 1)(evdxdy + eudxdz − e−(u+v)dydz),

where a > 0 and b > 0 are real numbers.

With respect to a suitable basis {X1, X2, Y1, Y2,W} of m = g, the invariant

Riemannian metric and Lie brackets are determined by

〈 , 〉 X1 X2 Y1 Y2 W

X1
2

3
a2 0

1

3
a2 0 0

X2 0 2b2 + 1 0 b2 − 1 b2 − 1

Y1
1

3
a2 0

2

3
a2 0 0

Y2 0 b2 − 1 0 2b2 + 1 −(b2 − 1)

W 0 b2 − 1 0 −(b2 − 1) 2b2 + 1

(2.13)

and
[ , ] X1 X2 Y1 Y2 W

X1 0 −X2 0 0 W

X2 X2 0 X2 0 0

Y1 0 −X2 0 Y2 0

Y2 0 0 −Y2 0 0

W −W 0 0 0 0

(2.14)

3. Homogeneous contact metric structures:

types which are not naturally reductive

As we already mentioned in the Introduction, generalized symmetric spaces

which are not naturally reductive are the ones of type 2, 3, 4, 7, 8a, 8b and 9. We
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shall first specify which of these examples do not carry any invariant contact

metric structure, obtaining the following result.

Proposition 3.1. Generalized symmetric spaces of type 2, 4 and 7 do not

admit any invariant contact structure. In particular, they are not homogeneous

contact metric manifolds.

Proof. The complete proof follows from a case by case study. For types 2,

4 and 7, it is easily seen that there no exist any 1-form η : m → R, such that

dη ∧ dη 6= 0. In particular, no invariant contact forms may occur.

As an example, we report the calculations for type 2. We start from the basis

{e1, e2, e3, e4, e5} := {X1, Y1, X2, Y2,W} of m and consider the 1-forms {ei} dual

to {ei}. From (2.7), we get

de1 =λ1e
1∧e5, de2 =λ2e

2∧e5, de3 =−λ1e
3∧e5, de4 =−λ2e

4∧e5, de5 = 0

and so, dei ∧ dej = 0 for all indices i, j = 1, . . . , 5. Consequently, as any 1-form

η : m → R is given by η =
∑

i aie
i, for some real constants a1, . . . , a5, we have

dη ∧ dη = 0. Therefore, no invariant contact structures occur. ¤

Proposition 3.1 leaves us to consider types 3, 8a, 8b, 9. All of them do admit

invariant contact metric structures, under some restrictions on the parameters

describing these spaces. The results are the following.

Theorem 3.2. A generalized symmetric space of type 3 admits a homoge-

neous contact metric structure if and only if a4 − γ2 = 1/4. Thus, there exists a

two-parameter family of locally non-isometric invariant contact metric structures

on five-dimensional generalized symmetric spaces of type 3.

Proof. We start from the basis {e1, . . . , e5} := {X1, X2, Y1, Y2,W} of m

used in (2.8) and (2.9) and consider the dual basis {e1, . . . , e5} of 1-forms over m.

From (2.9), we get

de1 = e1 ∧ e5, de2 = e2 ∧ e5, de3 = −e3 ∧ e5,

de4 = −e4 ∧ e5, de5 = e1 ∧ e4 − e2 ∧ e3. (3.1)

Consider now a 1-form η : m → R. Then, η =
∑

i aie
i, for some real constants

a1, . . . , a5. As we are only interested in invariant contact forms, we now consider

the isotropy representation

ρ : h → gl(m), ρ(x)(y) = [x, y]m for all x ∈ h, y ∈ m.
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By (2.9), h is spanned by A, to which corresponds the isotropy representation

X =




0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0




with respect to {ei}. Denoting by E = (ai) the column matrix of cofficients of η

with respect to the dual basis {ei}, we then have that η : m → R is invariant if

and only if X · E = 0, which yields a1 = a2 = a3 = a4 = 0. Hence, η = a5e
5,

for some real constant a5. By (3.1) it easily follows that η ∧ (dη)2 6= 0 (and so, η

is a contact form) whenever a5 6= 0. Consider now the characteristic vector field

ξ =
∑

i ξiei. Then, from η(ξ) = 1 and g(ξ,X) = η(X), we easily deduce ξ = 1
a5
e5

and a25 = b2, that is, up to sign,

η = b e5, ξ =
1

b
e5.

Notice that {e1, . . . , e4} is then a basis of ker η. We can now determine the tensor

ϕ using the condition 2Φ = dη. We find

ϕe1 =
1

2(γ2 − a4)
(γ e1 + a2 e4), ϕe2 =

1

2(γ2 − a4)
(γ e2 − a2 e3),

ϕe3 =
1

2(γ2 − a4)
(a2 e2 − γ e3), ϕe4 = − 1

2(γ2 − a4)
(a2 e1 + γ e4). (3.2)

From the second equation in (2.1), we have ϕ2e1 = −e1 + η(e1)ξ, which yields at

once a4−γ2 = 1/4. It is easy to check that under this restriction, equations (2.1)

and (2.2) are satisfied by η, ϕ and ξ as described above. Taking a4 − γ2 = 1/4

into account, (3.2) now becomes

ϕe1 = −2(γ e1 + a2 e4), ϕe2 = −2(γ e2 − a2 e3),

ϕe3 = −2(a2 e2 − γ e3), ϕe4 = 2(a2 e1 + γ e4), (3.3)

which completes the description of these invariant contact metric structures. Be-

cause of condition a4 − γ2 = 1/4, they form a two-parameter family of non-

isometric structures, which depend on the values of a, b > 0. ¤

Theorem 3.3. A generalized symmetric space of type 8a, 8b admits a homo-

geneous contact metric structure if and only if c = 2b. Thus, locally non-isometric

invariant contact metric structures on five-dimensional generalized symmetric spa-

ces of type 8a and 8b form a one-parameter family.
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Proof. We describe in detail the case corresponding to type 8a (type 8b can

be treated in the same way, up to some needed changes of sign). Let {e1, . . . , e5} :=

{X1, X2, Y1, Y2,W} denote the basis of m we used in (2.12). Consider the dual

basis {e1, . . . , e5} of 1-forms over m. From (2.12), we find

de1 = 0, de2 = e1 ∧ e5, de3 = 0, de4 = −e3 ∧ e5, de5 = −e1 ∧ e2 + e3 ∧ e4. (3.4)

Consider now a 1-form η : m → R. Then, η =
∑

i aie
i, for some real constants

a1, . . . , a5. By (2.12), h is spanned by A, to which corresponds the isotropy

representation

X =




0 0 1 0 0

0 0 0 −1 0

−1 0 0 0 0

0 1 0 0 0

0 0 0 0 0




with respect to {ei}. Denoting by E = (ai) the column of cofficients of η with

respect to the dual basis {ei}, we then have that η : m → R is invariant if and

only if X · E = 0, that is, a1 = a2 = a3 = a4 = 0. Thus, η = a5e
5, for some

real constant a5 and (3.4) yields that η is a contact form if and only if a5 6= 0.

Let ξ =
∑

i ξiei denote the characteristic vector field. Then, equations η(ξ) = 1

and g(ξ,X) = η(X) give ξ = 1
a5
e5 and a25 = c2. Therefore, up to sign, η = c e5,

ξ = 1
c e5.

Next, we describe the tensor ϕ using the condition 2Φ = dη. With respect

to the basis {e1, . . . , e4} of ker η, we get

ϕe1 =
c

2
e2, ϕe2 = − c

2b2
e1, ϕe3 = − c

2
e4, ϕe4 =

c

2b2
e3. (3.5)

From ϕ2e1 = −e1 + η(e1)ξ it now follows 4b2 = c2, that is, c = 2b. Under this

restriction, equations (2.1) and (2.2) are satisfied by η, ϕ and ξ. Summarizing,

we now have

η = 2b e5, ξ =
1

2b
e5

and from (3.5) we get

ϕe1 = b e2, ϕe2 = −1

b
e1, ϕe3 = −b e4 ϕe4 =

1

b
e3. (3.6)

So, we completed the description of invariant contact metric structures on ge-

neralized symmetric spaces of type 8a. These structures form a one-parameter

family, depending on the value of b > 0. ¤
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Theorem 3.4. A generalized symmetric space of type 9 admits a homo-

geneous contact metric structure if and only if b = 1. Thus, there exists a one-

parameter family of locally non-isometric (left-)invariant contact metric structures

on five-dimensional generalized symmetric spaces of type 9.

Proof. We start from the basis {X1, X2, Y1, Y2,W} of m = g used in (2.13)

and (2.14). Then, from (2.13) we deduce that

e1 :=
1

a
√
2
(X1 + Y1), e2 :=

1√
2b2 + 1

X2,

e3 :=

√
3

a
√
2
(X1 − Y1), e4 :=

1

b
√
6
(Y2 −W ),

e5 :=
1

3b
√
2(2b2 + 1)

{−2(b2 − 1)X2 + (2b2 + 1)(Y2 +W )} (3.7)

is an orthonormal basis of m. Using (2.14), we can now calculate the Lie brackets

[ei, ej ] and then dek, for all indices i, j, k. We get

de1 = 0, de2 =

√
2

a
e1 ∧ e2 −

√
b2 − 1

ab
e1 ∧ e5 +

√
b2 − 1

ab
√
2b2 + 1

e3 ∧ e4,

de3 = 0, de4 = − 1

a
√
2
e1 ∧ e4 +

√
2b2 + 1

a
√
2

e3 ∧ e5,

de5 = − 1

a
√
2
e1 ∧ e5 +

3
√
2

a2
√
2b2 + 1

e3 ∧ e4. (3.8)

Consider now a 1-form η : m → R. Then, η =
∑

i aie
i, for some real constants

a1, . . . , a5. Using (3.8), a direct calculation yields

η ∧ (dη)2 =
5a2

2a2b
√
2b2 + 1

(
2
√
2(b2 − 1)a2a5 + 3ba25 − b(2b2 + 1)a24

)
e1 ∧ · · · ∧ e5.

Therefore, η is a left-invariant contact form on M if and only if

a2 6= 0 and 2
√
2(b2 − 1)a2a5 + 3ba25 − b(2b2 + 1)a24 6= 0. (3.9)

We now suppose that there exists a left-invariant contact metric structure on M ,

having such 1-form η as contact form, and we calculate tensor ϕ by condition

2Φ = dη. We find

ϕe1 = − 1

a
√
2
a2 e2 +

1

2a
√
2
a4 e4 +

1

4ab

(
2(b2 − 1)a2 +

√
2ba5

)
e5,
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ϕe2 = − 1

a
√
2
a2 e1,

ϕe3 = − 1

4ab
√
2b2 + 1

(
2(b2 − 1)a2 + 3

√
2ba5

)
e4 −

√
2b2 + 1

2a
√
2

a5 e5,

ϕe4 = − 1

2a
√
2
a4 e1 +

1

4ab
√
2b2 + 1

(
2(b2 − 1)a2 + 3

√
2ba5

)
e3,

ϕe5 = − 1

4ab

(
2(b2 − 1)a2 +

√
2ba5

)
e1 +

√
2b2 + 1

2a
√
2

a4 e3. (3.10)

Let ξ =
∑

i ξiei denote the characteristic vector field of this contact metric struc-

ture. Applying equations (2.1) and (2.2) to the above description of η, ϕ and ξ

and taking restrictions (3.9) into account, a long but straightforward calculation

yields that (η, ϕ, ξ) is a (left-invariant) contact structure if and only if b = 1,

a1 = a3 = a5 = 0, a22 =
4

3
a2, a24 =

8

3
a2,

ξ1c = ξ3 = ξ5 = 0, ξ2 =
1

a2

(
1− a22

a2

)
, ξ4 =

a4
4a2

,

that is, up to sign,

η =
2a√
3
(e2 +

√
2e4), ξ =

1

2
√
3a

(e2 +
√
2e4).

Thus, ker η = Span(E1, E2, E3, E4), where we put

E1 := e1, E2 :=
1

2
√
3a

(
√
2e2 − e4), E3 := e3, E4 := e5.

As b = 1, from (3.10) we now easily get

ϕE1 = −E2, ϕE2 = E1, ϕE3 = −E4, ϕE4 = E3, (3.11)

which completes the description of left-invariant contact metric structures on

generalized symmetric spaces of type 9. As b = 1, these structures form a one-

parameter family, depending on a > 0. Notice that, by (3.11), {ξ, E1, . . . , E4} is

what is called a ϕ-basis [2] of the contact metric manifold. ¤
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4. Contact metric geometry of five-dimensional

generalized symmetric spaces

Let (M = G/H, g) denote any homogeneous (pseudo-)Riemannian manifold.

Consider the corresponding decomposition g = m ⊕ h of Lie algebra of G, and

denote by {ei}, {hr} a basis of m and h respectively.

The invariant metric g on m uniquely defines its invariant linear Levi–Civita

connection, described in terms of the corresponding homomorphism of h-modules

Λ : g → gl(m), where Λ(x)(ym) = [x, y]m for all x ∈ h, y ∈ g (see for example [7]).

Explicitly, one has

Λ(x)(ym) =
1

2
[x, y]m + v(x, y), for all x, y ∈ g, (4.1)

where v : g × g → m is the h-invariant symmetric mapping uniquely determined

by

2g(v(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m), for all x, y, z ∈ g. (4.2)

The curvature tensor is then determined by the mapping R : m × m → gl(m),

such that R(x, y) = [Λ(x),Λ(y)]− Λ([x, y]), for all x, y ∈ m.

Finally, the Ricci tensor % of g, described in terms of its components with

respect to {ui}, is given by

Ric(ui, uj) =

4∑
r=1

Rri(ur, uj), i, j = 1, . . . , 4 (4.3)

and the Ricci operator Q is then easily determined by equation g(QX,Y ) =

Ric(X,Y ). We can apply this procedure to describe the Levi–Civita connection

and curvature of any five-dimensional generalized symmetric space. With regard

to the examples carrying some invariant contact metric structures, we prove the

following results.

Theorem 4.1. Let (M = G/H, η, g) be a homogeneous contact metric ma-

nifold corresponding to a generalized symmetric space of type 3. Then, (M,η, g)

is H-contact, and never K-contact (in particular, never Sasakian).

Moreover, (M,η, g) is η-Einstein if and only if 4a4 = b4 + 1. Thus, there

exists a one-parameter family of locally non-isometric invariant η-Einstein contact

metric structures on five-dimensional generalized symmetric spaces of type 3.
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Proof. We first calculate tensor h = 1
2Lξϕ with respect to the basis {e1, . . . ,

e4} of ker η. Starting from the description of tensor ϕ given in (3.3) and we easily

get

he1 =
2a2

b
e4, he2 = −2a2

b
e3, he3 = −2a2

b
e2, he4 =

2a2

b
e1.

As a > 0, we conclude that h 6= 0 and so, (M,η, g) is not K-contact.

Next, we use equations (2.8) (taking into account a4 − γ2 = 1/4) and (2.9)

and apply formulae (4.1), (4.2) and (4.3) to determine the Ricci tensor of (M,η, g)

with respect to {ei}. A long but straightforward calculation gives

Q=




4γ − 2b2 0 0
4a2(b2−2γ)

b2
0

0 4γ − 2b2
4a2(2γ − b2)

b2
0 0

0
4a2(2γ − b2)

b2
4γ − 2b2 0 0

4a2(b2−2γ)

b2
0 0 4γ − 2b2 0

0 0 0 0
4(b4−4a4)

b2




(4.4)

where γ is a solution of a4 − γ2 = 1/4. From (4.4) it follows at once that e5
(and hence, ξ) is a Ricci eigenvector. Therefore, (M,η, g) is a (homogeneous)

H-contact manifold.

Calculating the Ricci eigenvalues from (4.4), we conclude that they never

coincide. Hence, (M,η, g) is not Einstein. Finally, as η = be5, it easily follows

from (4.4) that equation (2.4) holds if and only if b2 = 2γ, which, compared with

a4 − γ2 = 1/4, yields 4a4 = b4 + 1. Hence, (M,η, g) is η-Einstein if and only if

4a4 = b4 + 1. In this case, (2.4) holds for λ = 0 and ν = 4(b4−4a4)
b2 . ¤

Theorem 4.2. Let (M = G/H, η, g) be a homogeneous contact metric ma-

nifold corresponding to a generalized symmetric space of type 8a. Then, (M,η, g)

is H-contact, and never K-contact (in particular, Sasakian). Moreover, the follo-

wing conditions are equivalent:

(i) (M,η, g) is Ricci-flat;

(ii) (M,η, g) is η-Einstein;

(iii) c(= 2b) = 1.

A similar result holds for homogeneous contact metric manifolds corresponding

to a generalized symmetric space of type 8b.
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Proof. Calculating h with respect to the basis {e1, . . . , e4} of ker η, from

(3.6) we find

he1 =
1

4b2
e1, he2 = − 1

4b2
e2, he3 =

1

4b2
e3, he4 = − 1

4b2
e4.

So, h 6= 0, that is, (M,η, g) is not K-contact.

With regard to the Ricci curvature, starting from the description of genera-

lized symmetric spaces of type 8a given in Section 2, taking into account c = 2b

we find

Q =




(4b2 − 1)2

2b2
0 0 0 0

0
1− 16b4

2b2
0 0 0

0 0
4b2 − 1

8b4
0 0

0 0 0
1− 4b2

2b2
0

0 0 0 0
16b4 − 1

4b4




, (4.5)

with respect to the orthogonal basis {e1, . . . , e5}. Therefore, ξ = 1
2be5 is a Ricci

eigenvector, that is, (M,η, g) is a (homogeneous) H-contact manifold. The last

statement of Theorem 4.2 easily follows from (4.5). ¤

Theorem 4.3. Let (M = G/H, η, g) be a homogeneous contact metric ma-

nifold corresponding to a generalized symmetric space of type 9. Then, (M,η, g)

is H-contact, and never K-contact (in particular, Sasakian).

Moreover, (M,η, g) is never η-Einstein (in particular, Einstein).

Proof. Consider the ϕ-basis {E1, . . . , E4} of ker η. The Lie brackets [ξ, Ei]

can be easily deduced from the definition of {Ei} and (3.8). Starting from (3.11),

we then find

he1 = − 1

4a2
e1, he2 =

1

4a2
e2, he3 = − 1

4a2
e3, he4 =

1

4a2
e4.

So, h 6= 0, that is, (M,η, g) is not K-contact.

We then start from (2.13) (with b = 1) and (2.14) and apply formulae (4.1),

(4.2) and (4.3). After a long but direct calculation, we find that with respect to

{X1, Y1, X2, Y2,W}, the Ricci operator is completely described by

QX1 = − 3

a2
X1, QY1 = − 3

a2
Y1, QX2 = QY2 = QW = 0. (4.6)
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By (3.7), for the orthonormal basis {ei} we correspondingly have

Qe1 = − 3

a2
e1, Qe3 = − 3

a2
e3, Qe2 = Qe4 = Qe5 = 0.

As ξ = 1
2
√
3a
(e2 +

√
2e4), we conclude at once that Qξ = 0. Thus, ξ is a Ricci

eigenvector, that is, (M,η, g) is a (homogeneous) H-contact manifold.

Finally, η = 2a√
3
(e2 +

√
2e4) and (4.6) easily imply that (M,η, g) is never

η-Einstein. ¤

5. A rigidity result for the naturally reductive examples

The aim of this Section is to prove the following rigidity result.

Theorem 5.1. Let (η, g) be any invariant contact metric structure over a

(naturally reductive) five-dimensional generalized symmetric space M = G/H of

type either 1, 5 or 6. Then, (M,η, g) is a globally ϕ-symmetric space.

Proof. We start from the case of a generalized symmetric spaceM of type 1.

Let {X1, Y1, X2, Y2,W} denote the basis used in (2.6). We then consider the

orthonormal basis {e1, . . . , e5} := {X1, Y1, X2, Y2, (1/ρ)W} and the dual basis

{ei} of 1-forms. Consider a 1-form η =
∑

i aie
i, for some real constants a1, . . . , a5.

From (2.6) we get dei = 0 for i = 1, . . . , 4 and so it is easily seen that η is a contact

form if and only if a5 6= 0.

Consider the corresponding invariant contact structure (ϕ, η, ξ), having g as

an associated metric. Since {ei} is orthonormal, η(X) = g(X, ξ) easily yields

ξ =
∑

i aiei. With regard to tensor ϕ, as usual it is determined by condition

2Φ = dη, which in this case gives

ϕe1 = −a5ρ

2
e3, ϕe2 =

a5ρ

2
e4, ϕe3 =

a5ρ

2
e1, ϕe4 = −a5ρ

2
e2, ϕe5 = 0.

Applying the second equation of (2.1) to vector fields e1, . . . , e5, we then get

a1 = a2 = a3 = a4 = 0, ρ2a25 = 4 and a25 = 1. Thus, ρ = 2 and up to sign an

invariant contact metric structure on a generalized symmetric space of type 1 is

necessarily of the form

η = e5, ξ = e5, ϕe1 = −e3, ϕe2 = e4.

In order to show that this contact metric structure is ϕ-symmetric, we calculate

∇̄ and R̄ with respect to {ei}. Applying (2.5), we find that ∇̄ is completely

determined by the following non-vanishing derivatives:

∇̄e5e1 = 2e3, ∇̄e5e2 = −2e4, ∇̄e5e3 = −2e1, ∇̄e5e4 = 2e2 (5.1)
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and the non-vanishing components of R̄ with respect to {ei} are given by

R̄1313 = R̄1414 = −R̄1324 = 4. (5.2)

Starting from (5.1) and (5.2), it is now easy to check that ∇̄R̄ = 0. Hence,

(M,η, g) is ϕ-symmetric. Precisely, it corresponds to case III in the classification

obtained in [10].

Next, we consider the case corresponding to type 5a (type 5b can be treated

in a very similar way). Let {e1, . . . , e5} := {X1, X2, Y1, Y2,W} be the basis used

in (2.10). The isotropy representation following from (2.10) implies at once that

an invariant contact metric structure must be of the form η = a5e
5, for some

real constant a5 6= 0. Following the same argument we already used for type 1,

we then consider the corresponding invariant contact structure (ϕ, η, ξ), having g

as an associated metric. Applying (2.1) and (2.2) to vector fields e1, . . . , e5, we

conclude that an invariant contact metric structure on a generalized symmetric

space of type 5a exists if and only if a5 = c = ±1/2 and (up to sign) is necessarily

given by

η =
1

2
e5, ξ = 2e5,

ϕe1 = −a2 − b2

2a2b2
e2 +

a2 + b2

2a2b2
e3, ϕe2 = −a2 − b2

2a2b2
e1 +

a2 + b2

2a2b2
e4,

ϕe3 = −a2 + b2

2a2b2
e1 +

a2 − b2

2a2b2
e4, ϕe4 = −a2 + b2

2a2b2
e2 +

a2 − b2

2a2b2
e3.

Thus, in this case there is a two-parameter family of invariant contact metric

structures. A long but standard calculation gives ∇̄R̄ = 0. Therefore, these

invariant contact metric structures are ϕ-symmetric. Indeed, they correspond to

case I in the classification obtained in [10].

We end the proof considering type 6a, leaving the similar case 6b to the

reader. Starting from the basis {e1, . . . , e5} := {X1, Y1, X2, Y2,W} used in (2.11),

the isotropy representation easily yelds that an invariant contact metric structure

has to be of the form η = a5e
5, for some real constant a5 6= 0. We then describe

the corresponding invariant contact structure (ϕ, η, ξ), having g as an associated

metric. We apply (2.1) and (2.2) to vector fields e1, . . . , e5 and we find that an

invariant contact metric structure on a generalized symmetric space of type 6a

exists if and only if c = ±2a2 and (up to sign) is necessarily given by

η = 2a2 e5, ξ =
1

2a2
e5, ϕe1 = e3, ϕe2 = −e4, ϕe3 = −e1, ϕe4 = e2.
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Thus, there exists a one-parameter family of invariant contact metric structures.

It is easy to check that ∇̄R̄ = 0 and so, these invariant contact metric structures

are ϕ-symmetric. In fact, they correspond to case IV in the classification given

in [10]. ¤
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