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Slant submanifolds of quaternionic space forms

By GABRIEL EDUARD VILCU (Ploiesti)

Abstract. In this paper we establish some inequalities concerning the k-Ricci cur-
vature of a slant submanifold in a quaternionic space form. We also obtain obstructions
to the existence of quaternionic slant immersions in quaternionic space forms with unfull
first normal bundle.

1. Introduction

According to B.-Y. CHEN [4], one of the most important problems in subma-
nifold theory is “to find simple relationships between the main extrinsic invariants
and the main intrinsic invariants of a submanifold”. In [5], B.-Y. CHEN estab-
lished a sharp inequality between the k-Ricci curvature, one of the main intrinsic
invariants, and the squared mean curvature, the main extrinsic invariant, for a
submanifold in a real space form with arbitrary codimension. Also, in the same
spirit, B.-Y. Chen obtained an optimal inequality between the k-Ricci curvature
and the shape operator for submanifolds in real space forms. These inequali-
ties were further extended to many classes of submanifolds in different ambient
spaces: complex space forms [25], [26], cosymplectic space forms [23], [24], [38],
Sasakian space forms [9], [15], [29], [32], locally conformal Kéahler space forms
[3], [12], generalized complex space forms [11], [17], [27], locally conformal almost
cosymplectic manifolds [16], [37], (k, u)-contact space forms [33], Kenmotsu space
forms [1], [22], S-space forms [10], [18].
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In quaternionic setting, such inequalities were obtained for quaternionic and
totally-real submanifolds [20], [21], [36]. But there are two classes of submanifolds
which generalize both quaternionic and totally real submanifolds of quaternionic
Kahler manifolds, with no inclusion between them: quaternionic CR-submanifolds
(see [2]) and slant submanifolds (see [30]). Some recent results concerning qua-
ternionic CR-submanifolds can be found in [13], [34] and an inequality involving
Ricci curvature and squared mean curvature for quaternionic CR-submanifolds
in quaternionic space forms was proved in [28]. On the other hand, some optimal
inequalities involving scalar curvature, Ricci curvature and squared mean curvat-
ure for slant submanifolds in quaternionic space forms were obtained recently in
[31], [35]. The main purpose of this paper is to obtain two kinds of inequalities
for slant submanifolds in quaternionic space forms: between the k-Ricci curvature
and the squared mean curvature and between the k-Ricci curvature and the shape
operator. Moreover, we investigate the existence of quaternionic slant immersions
in quaternionic space forms with unfull first normal bundle.

2. Preliminaries

Let M be a differentiable manifold and assume that there is a rank 3-
subbundle o of End(T'M) such that a local basis {.Ji, Ja, J3} exists on sections
of o satisfying for all « € {1,2,3}:

Ji = —Id, JoJay1 = —Jat1Ja = Jat2, (1)

where the indices are taken from {1, 2,3} modulo 3. Then the bundle o is called
an almost quaternionic structure on M and {Ji, Ja, J3} is called a canonical local
basis of . Moreover, (M, o) is said to be an almost quaternionic manifold. It is
easy to see that any almost quaternionic manifold is of dimension 4m.

A Riemannian metric g on M is said to be adapted to the almost quaternionic
structure o if it satisfies:

9(Jo X, J.Y)=39(X,Y), Vae{l,23} (2)

for all vector fields X,Y on M and any canonical local basis {.J1,Jo, J3} of o.
Moreover, (M, o,g) is said to be an almost quaternionic Hermitian manifold.

If the bundle ¢ is parallel with respect to the Levi-Civita connection V of g,
then (M, 0,9) is said to be a quaternionic Kithler manifold. Equivalently, locally
defined 1-forms wq, we,ws exist such that we have for all a € {1,2,3}:

ﬁXJOz = wa+2(X)<]a+1 - wa+1(X)Ja+2a (3)
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for any vector field X on M, where the indices are taken from {1,2,3} modulo 3
(see [14]).

Let (M, 0,g) be a quaternionic Kihler manifold and let X be a non-null vec-
tor on M. Then the 4-plane spanned by {X,.J; X, Jo X, J3X}, denoted by Q(X),
is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic
sectional curvature. A quaternionic Kahler manifold is a quaternionic space form
if its quaternionic sectional curvatures are equal to a constant, say c. It is well-
known that a quaternionic Kéhler manifold (M, o,g) is a quaternionic space form,
denoted M (c), if and only if its curvature tensor is given by (see [14]):

3
R(X,Y)Z = 4{ (Z,Y)X —9(X, 2)Y Z G(Z, JoY ) Jou X —

_g(Zv JaX)JaY+2§(Xa JaY)JaZ]} (4)

for all vector fields X, Y, Z on M and any local basis {J1, Jo, J3} of .

For a submanifold M of a quaternion Kihler manifold (M, o,3), we denote
by g the metric tensor induced on M. If V is the covariant differentiation induced
on M, the Gauss and Weingarten formulas are given by:

VxY =VxY +h(X,)Y), VX,Y €D(TM) (5)
and
VxN=—-AxNX + V%N, VX cI(TM), VN € T(TM™) (6)

where h is the second fundamental form of M, V-1 is the connection on the normal
bundle and Ay is the shape operator of M with respect to V. The shape operator
Ay is related to h by:

g(ANXaY):g(h(XvY)vN)7 (7>

for all X,Y € I(TM) and N € T(TM*).
If we denote by R and R the curvature tensor fields of V and V we have the
Gauss equation:

R(X,Y,Z,W) = R(X,Y, Z,W) +g(h(X, W), (Y, Z)) = g(h(X, Z), h(Y, WV)) (8)

forall X,Y,Z W e I'(TM).
For the second fundamental form h, we define the covariant derivative Vh
of h with respect to the connection on TM & T+M by

(Vxh)(Y,Z) = Dx(h(Y, Z)) = M(VxY,Z) — h(Y,Vx Z), 9)
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where D is the linear connection induced on the normal bundle of M in M. Then
the equation of Codazzi is given by

(R(X,Y)Z)*: = (Vxh)(Y,Z) — (Vyh)(X, Z). (10)

If {e1,...,en} is an orthonormal basis of T,M and {ept1,...,€4m} is an
orthonormal basis of T;-M , where p € M, we denote by H the mean curvature
vector, that is

1 n
H(p) = n Z; h(ei, €i).
Also, we set

hi; = g(hei ej),er), 4,5 €{l,...,n}, re{n+1,...,4m}

and
n

B2 (p) = Y glhlei, e5), hles, €5)).
i,j=1

A submanifold M of a quaternionic Kihler manifold M is called a quater-
nionic submanifold (resp. totally real submanifold) if each tangent space of M is
carried into itself (resp. into the normal space) by each section in o. Recently,
SAHIN [30] introduced the slant submanifolds of quaternionic Kéhler manifolds,
as a natural generalization of both quaternionic and totally real submanifolds. A
submanifold M of a quaternionic Kéhler manifold M is said to be a slant subma-
nifold if for each non-null vector X tangent to M at p, the angle 6(X) between
Jo(X) and T,M, o € {1,2,3}, is constant, i.e. it does not depend on choice of
p € M and X € T,M. We can easily see that quaternionic submanifolds are slant
submanifolds with & = 0 and totally-real submanifolds are slant submanifolds
with ¢ = 7. A slant submanifold of a quaternionic Kéler manifold is said to be
proper (or #-slant proper) if it is neither quaternionic nor totally real.

If M is a slant submanifold of a quaternionic Kéhler manifold M, then for
any X € I'(T'M) we have the decomposition

JoX = P.X + F, X, (11)

where P, X denotes the tangential component of J,X and F,X denotes the
normal component of J, X.
Similarly for any U € I'(TM~) we have

JoU = BaU + C, U, (12)

where B, U is the tangential component of J,U and C,U is the normal component
of J,U.
We recall now the following results which we shall need in the sequel.
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Theorem 2.1 ([30]). Let M be a submanifold of a quaternionic Kéhler
manifold M. Then M is slant if and only if there exists a constant A € [—1,0]
such that:

PP, X = XX, VX eI'(TM), o,8€{1,2,3}. (13)

Furthermore, in such case, if 6 is the slant angle of M, then it satisfies A\ =
2
—cos” 6.

Corollary 2.2 ([30]). Let M be a slant submanifold of a quaternionic Ké&hler
manifold M, with slant angle §. Then we have

P2X = —cos’ X, (14)
B, F.,X = —sin? 60X, (15)
for any X € T'(TM) and o € {1,2,3}.

From the above Theorem we deduce that if M is a 6-slant submanifold of a
quaternionic Kihler manifold M, then we have for any X,Y € T'(TM):

9(PaX, PgY) = cos’0g(X,Y), a,8 € {1,2,3} (16)
and
G(FuX, FgY) =sin®0g(X,Y), o, € {1,2,3}. (17)

Moreover, we can remark that every proper slant submanifold of a quaterni-
onic Kéhler manifold is of even dimension n = 2s, because we can choose a cano-
nical orthonormal local frame {e;,sec@Pueq,...,es,secOPyes} of T,M, p € M,
called an adapted slant frame, where « is settled in {1, 2, 3}.

For an n-dimensional Riemanian manifold (M, g) we denote by K(m) the
sectional curvature of M associated with a plane section 7 C T,M, p € M.
If {e1,...,en} is an orthonormal basis of the tangent space T,M, the scalar
curvature 7 at p is defined by

7(p) = Z Kij, (18)
1<i<j<n
where K;; denotes the sectional curvatures of the 2-plane section spanned by e;
and e;.
For a k-plane section L of T, M, p € M, and X a unit vector in L, we choose
an orthonormal basis {ej,...,ex} of L such that e; = X. The Ricci curvature
of L at X, denoted Ricr,(X), is defined by

k
Ric, (X) = > K. (19)
j=2
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We note that such a curvature is called a k-Ricci curvature. The scalar curvature
of a k-plane section L is given by

T(L) = Z Kij7 (20)

1<i<j<k

For an integer k, 2 < k <n, B.-Y. Chen introduced a Riemannian invariant
Oy, defined by

Ok(p) =

ki - inf{Ricy (X)|L, X}, pe M, (21)

where L runs over all k-plane sections in T, M and X runs over all unit vectors
in L (see e.g. [8]).

3. k-Ricci curvature and the squared mean curvature

Theorem 3.1. Let M"™ be a 0-slant proper submanifold of a quaternionic
space form M4m(c). Then, for any p € M and any integer k, 2 < k < n, one has:

1) = 0p) ~ § (14 2 co o). 22)

Proor. We choose an adapted slant basis of T, M at p € M:
{e1,e2 =secHPyeq, ... e95_1,€2s = secOPqea5_1},

where 25 = n, and {en41,...,€4m} an orthonormal basis of T;-M, such that the
normal vector e,41 is in the direction of the mean curvature vector H(p) and
{e1,...,en} diagonalize the shape operator A, 1.

Taking now X = Z =¢;, Y = W = e, in the equation of Gauss (8), by
summing and using (4), we obtain:

3 n
w2 H2(p) = 20(p) + 1)~ "N S 2 peney). (29
B=1 i,j=1

On the other hand, because {e1,...,eas} is an adapted slant basis of T, M,
using (13) and (16) we can see that we have:

g*(Pgei eir1) = g*(Peir1,e;) = cos® 0, fori=1,3,...,2s—1  (24)
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and
g(Pgei ej) =0, for (i,5) € {(20 —1,20), (2,2l - 1)l € {1,2,...,s}}. (25)
From (23), (24) and (25) we derive:
n?|[H|[*(p) = 27(p) + [I1]*(p) - g [n(n—1) +9ncos” 6] . (26)

On the other hand, due to the choosing of the basis of T, M and T;-M, the
shape operators have the following forms:

aq 0 0 0
0 as 0 0

Appr=10 0 a3 ... 0 [ (27)
0 0 0 Op

Ar = (hij); j—17» traceA, = Z hi; =0, Vre {n+2,...,4m}. (28)

i=1
Now, using (27) and (28) in (26) we obtain:
n?||H|[*(p +Za+ Z Z — — [n(n—1) + 9ncos® 4] . (29)
r=n+21i,5=1

On the other hand, because we have the inequality

i=1 i<j
from
n 2 n
n2uH2<p>=(zai> Y Y e
i=1 i=1 1<i<j<n
we derive

Y ai =0l H|*@p). (30)
i=1
Using now (30) in (29) we obtain:

n(n — )| H|(p) > 27(p) — 2 [n(n —1) + 9ncos® 6] . (31)
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But, from (18) and (20), it follows that for any k-plane section L;, . ;, spanned
by {ei,,--.,¢€i,}, one has:

1 .
T(Lil-uik) = 5 Z R’ICLil..,ik (62) (32)
ie{il,...,’ik}
" (k~ 2)1(n — b
k—2)!(n—k)!
— SRR Li, i)
)= Y ) (33)
1<i1 << <n
From (32) and (33) we obtain:
n(n—1
()2 " 6, ) (34)
and finally, from (31) and (34) one derives (22). O

Applying Theorem 3.1 we may obtain, as a particular case, the corresponding
inequality for totally-real submanifolds in quaternionic space forms, established
in [21].

Corollary 3.2. Let M™ be a totally-real submanifold of a quaternionic space
form M4m(c). Then, for any p € M and any integer k, 2 < k < n, one has:

IH[*(p) > Ok(p) — (35)

€
T

4. k-Ricci curvature and shape operator

Theorem 4.1. Let o : M — M " (¢) be an isometric immersion of an n-
dimensional 0-slant proper submanifold M into a 4m-dimensional quaternionic
space form M (c). Then, for any p € M and any integer k, 2 < k < n, one has:

i. If O(p) # 2(1 + % cos? 9), then the shape operator at the mean curvature
satisfies

1
AH>”n [@k(p)—c(l‘i‘

1 cos? 9)] I, (36)

n—1

at p, where I,, denotes the identity map of T, M.
ii. If O, (p) = £(1+ =25 cos?0), then Ay >0 at p.
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ili. A unit vector X € T,M satisfies

{@k(p) -2 (1 + n? —cos” 9)] X (37)

if and only if O (p) = § (1 + % cos? 9) and X belongs to the relative null
space of M at p:
N, ={Z € T,M|h(Z,Y) =0, VY € T,M}.

iv. The identity

Ap =" |:@k(p)—c (1+

1 cos? 9)] I, (38)

n—1
holds at p if and only if p is a totally geodesic point.

PROOF. i. We choose an adapted slant basis of T,M at p € M:
{e1,e2 =secOPyeq, ... e25_1,€2s = secOPea5_1},

where 2s = n, and {ep41,...,€4m} an orthonormal basis of TPLM, such that
the normal vector e,11 is in the direction of the mean curvature vector H(p)
and {ey,...,e,} diagonalize the shape operator A, ;. Consequently, the shape
operators have the forms (27) and (28).

One can distinguishes two cases:

Case I: H(p) = 0. In this situation it follows from (22) that ©y(p) # < (1 +
cos? 9) and the conclusion follows.

Case II: H(p) # 0. Taking X = Z = ¢; and Y = W = ¢; in the Gauss
equation and using (4), we obtain:

9
n—1

3 4m
c T T T
aiaj = Kij — 1 [1 + 3292(}%61’7%)} - Z [hi; i (hij)z] ‘ (39)
B=1 r=n-+2

From (39) we derive:

) (k—1)c 3¢ LA 9
ar(ai, + -+ a;) = Ricp,, , (1) = ——= ==Y " ¢*(Pger,e;,)
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which implies

(n—1)c

k—2)(n—k)!
(k —2)!( ) 3 ;

2<ix< < <n
3 n 4m n
SIS Y P+ > Yo (a)

and taking into account (21), we obtain:

al(a2 + -+ an) = RiCLliz...ik (61) -

3
m(az+ ot an) 2 (- 00() ~ XSS 2 per ). (@)

4 1o
Using (24) and (25) in (42) we obtain:
-1
al(a2+--~+an)2(n—l)@k(p)—y—%coﬁe (43)

and we find:

ai(a; +ag +---+ay) =at +ai(az +---+ay)
> (n—1) [@k(p) - g (1 + 9 cos? 9)] L (44)

Similar inequalities hold when the index 1 is replaced by j € {2,...,n}.
Hence, we have
c

aj(ar +as+ - +ay) > (n—1) [@k(p) ~ 1 (1 + 9 cos? 0)} , (45)

for all j € {1,...,n}, and because n||H|| = a1 + -+ + a, we find

Ag > nTil {@k(p) - 2 <1 + ni 1 cos? 0)] I,. (46)
We remark that the equality does not hold because we are in the case H(p) # 0.

ii. The statement is clear from i.

ili. If X € T,,M is a unit vector such that (37) holds, then we have equalities
both in (42) and (44). Consequently, we obtain a; = 0 and hf; = 0, for all
je{l,....,n}and r € {n+2,...,4m}, which implies O (p) = (1 + 25 cos?6)
and X € N,. The converse part is clear.

iv. The equality (41) holds for any X € T,M if and only if N, = TpM, i.e.
p is a totally geodesic point. This completes the proof of the theorem. ([
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Corollary 4.2. Let z : M — M4m(c) be an isometric immersion of an n-
dimensional totally-real submanifold M into a 4m-dimensional quaternionic space
form M(c). Then, for any p € M and any integer k, 2 < k < n, one has:

i. If Ok(p) # 1, then the shape operator at the mean curvature satisfies

" o) - §] 1 (47)

AH>

at p, where I,, denotes the identity map of T, M.
ii. If ©x(p) = ¢, then Ay >0 at p.
iii. A unit vector X € T, M satisfies

n—1 c
AnX == lonlp) - 5| X (48)
if and only if Or(p) = § and X € N,,.
iv. The identity
n—1 c
Ap = [@k(p) - ﬂ I, (49)

holds at p if and only if p is a totally geodesic point.

5. Quaternionic slant submanifolds with unfull first normal bundle

Let M be a submanifold isometrically immersed in a Riemannian manifold
(M,g). If p is a point of M, then the first normal space at p is defined to be
Im h,, the image space of the second fundamental form h at p. Moreover, Im h is
called the first normal bundle of M in M. The submanifold is said to have full
first normal bundle if Im h, = T, M=, for any p € M (see [6], [7]).

The existence of Kéhlerian slant submanifolds of smallest possible codimen-
sion in complex space forms, having unfull first normal bundle, has been investiga-
ted in [19]. Next we’ll study this problem in the context of slant submanifolds in
quaternionic space forms. The quaternionic version of Kéhlerian slant submani-
folds has been introduced in [30], under the name of quaternionic slant submani-
folds. Therefore a proper slant submanifold M of a quaternionic Kahler manifold
(M, 0,9) is said to be quaternionic slant submanifold if it satisfies the condition

ﬁXPa - wa+2(X)Pa+1 - wa+1(X)Pa+27 (50)

for any vector field X on M, where the indices are taken from {1,2,3} modulo 3.
We have the following characterization of quaternionic slant submanifolds.
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Theorem 5.1 ([30]). Let M be a proper slant submanifold of a quaternionic
Kahler manifold M. Then M is quaternionic slant submanifold if and only if

ArayZ = ApazY (51)

for all Y, Z € T(TM) and « € {1,2,3}.

Lemma 5.2. Let M be a slant submanifold of a quaternionic Kahler mani-
fold M. Then we have

P2 = —Id— B,F,, (52)
CoFy+ FyP, =0, (53)
C? = —Id — F,B,, (54)
PoB, + B,Co =0 (55)

for o € {1,2,3}.

PROOF. For any X € I'(T'M), taking into account (1) and (11), we derive
—X = J?>X = P2X 4 Fo,Po X + BoFo X + CoF X,

Equating the tangent and normal parts of both the sides we obtain (52) and (53).
On the other hand, taking into account (1) and (12) we conclude that for
any U € T(TM~) we have

~U = J?U = P,B,U + F,B,U + B,C,U + C*U.

Equating now the tangent and normal parts of both the sides we obtain (54)
and (55). O
Lemma 5.3. Let M be a 0-slant proper submanifold of a quaternionic Kahler

manifold M. Then for any vectors U,V & TpMJ-, p € M, we have
G(CLU,CoV) = cos’0g(U, V), a=1,2,3. (56)

PROOF. Because M is a #-slant proper submanifold of M, it follows that
there exist X,,Y, € T,M such that U = F,X,, V = F,Y,. Then, by using (16),
(17) and (53), we derive

g(CaUa Cav) = g(cozFaXou OaFaYa) = ?(FaPaXou FaPaYa)
= sin? 0G(PouXo, PuYs) = sin? 0 cos? 09(Xa,Ya)
= 082 0G(FpXo, FuYs) = cos® 0g(U, V). O
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From Theorem 5.1 and Lemma 5.3, using the same techniques as in [19], we
can state now the following result.

Lemma 5.4. Let M be a quaternionic slant submanifold of a quaternionic
Kéhler manifold M. Then

B,(Imhy)* =N,, a=1,2,3,
where (Im hp)J- denotes the orthogonal complementary subspace of Imh, in
T,M~* and N, is the relative null space of M at p.

PROOF. For Z € B,(Imh,,)* it follows that there exists U € (Im h,)* such
that Z = B,U. Then, by using (7), (51), (54) and (56), we obtain for all vector
X, Y € T,M and o = 1,2, 3:

(X, 2), F.Y) = g(Ar.y 2, X) = g(Ap,2zY, X) = g(M(X,Y), Fa Z)
= g(h(X,Y), FaBoU) = sin® 6g(h(X,Y),U) = 0.

Therefore it follows that h(X, Z) =0, for any X € T, M and thus we obtain
Z eN,.

If we take now Z € N, it is clear that for any X,Y € T,M and a = 1,2,3

we have
?(h(X,Y),FaZ) = g(h(Z,X),FaY) =0.

Thus it follows F,,Z € (Imh,)* and therefore we derive
BoFoZ € Bo(Imhy,)*. (57)

From (15) and (57) we conclude that Z € B, (Im h,)* and the proof is now
complete. 0

Theorem 5.5. Let 2 : M — M (c) be an isometric immersion of a quaterni-
onic slant submanifold M of minimal codimension into a quaternionic space form
M((c). If the first normal bundle is not full, then ¢ = 0.

PROOF. First of all we remark that if the dimension of M/(c) is 4m, then
the minimal codimension of a proper slant submanifold M of M(c) is 2m; in this
case we can choose an adapted slant basis of T, M at p € M:

{e1,e2 =secOPyeq,...,eam_1,€2m = secOPyeom_1},
and an orthonormal basis of TpLM :

{eam+1 = cosecHF e, €210 = cosechF e, . .., eqm = cosecOF ean },
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where « is settled in {1,2,3}.

Moreover, if the first normal bundle is not full, then it follows that there exists
a unit normal vector U € T, M+ at a point p € M such that g(h(X,Y),U) = 0, for
any vector X,Y € T, M and without loss of generality we can suppose e4,, = U.
Applying Lemma 5.4 it follows Byesn, € N, a = 1,2,3, and from (15) we
conclude es,, € N,. Thus we have

hiei,eam) =0, i=1,...,2m—1. (58)

By using now (9) and (58) in (10) we obtain for i =1,...,2m — 1:

(R(@i, eQm)62m,)J_ = h(eia v82m€2m)

and taking into account (58) and the definition of the Christoffel symbols Ffj:

2m
_ k
Ve, €5 = E I'7ex
k=1

we obtain

(Rleseam)eam)™ = Y Thonhir ™ eamur. (59)

1<k,1<2m

On the other hand, from (4) we obtain

3

— c
R(€i7 e2m)82m = 1 |:ei +3 Z g(ei, JBGZm)JB(iZm
B=1
and therefore
3
— 3c
(R(@i) 62771)@27n)L - Z Z g(eh PB€27rL)F[3€2’m- (60)
p=1

But, since M is a slant submanifold, we can easily remark that
PX=PX=PhX Xecl,M. (61)

On the other hand, using (17) we obtain for all 8 € {1,2,3} and k €
{1,...,2m}:

G(Fgeam, €am+k) = cosec 0G(Fgean,, Foey) = cosec 05in20g(eam, ex) = sin 032,k
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where §;; denotes the Kronecker delta. Thus we derive
F162m = F262m = F362m = sin 064m. (62)

From (60), (61) and (62) we derive

_ 9c .
(R(ei, eam)ezm)t = 4 9(€i; Pacam) sin Ocan
and considering the decomposition of P,es,, with respect to the adapted slant
basis of T}, M:
2m—1

Paegm = E )\jej
j=1

we obtain
9

(R(e;, €2m)62m)L =7 ;i sin Oeqy, . (63)

Comparing now (59) and (63) we derive

9c\;sinf =0, i=1,...,2m—1,
and since M is a proper slant submanifold of M and fofl A2 #£ 0, we conclude
that ¢ = 0. O

Corollary 5.6. There do not exist quaternionic slant immersions of minimal
codimension in P™(H) with unfull first normal bundle.
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