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Slant submanifolds of quaternionic space forms

By GABRIEL EDUARD VÎLCU (Ploieşti)

Abstract. In this paper we establish some inequalities concerning the k-Ricci cur-

vature of a slant submanifold in a quaternionic space form. We also obtain obstructions

to the existence of quaternionic slant immersions in quaternionic space forms with unfull

first normal bundle.

1. Introduction

According to B.-Y. Chen [4], one of the most important problems in subma-

nifold theory is “to find simple relationships between the main extrinsic invariants

and the main intrinsic invariants of a submanifold”. In [5], B.-Y. Chen estab-

lished a sharp inequality between the k-Ricci curvature, one of the main intrinsic

invariants, and the squared mean curvature, the main extrinsic invariant, for a

submanifold in a real space form with arbitrary codimension. Also, in the same

spirit, B.-Y. Chen obtained an optimal inequality between the k-Ricci curvature

and the shape operator for submanifolds in real space forms. These inequali-

ties were further extended to many classes of submanifolds in different ambient

spaces: complex space forms [25], [26], cosymplectic space forms [23], [24], [38],

Sasakian space forms [9], [15], [29], [32], locally conformal Kähler space forms

[3], [12], generalized complex space forms [11], [17], [27], locally conformal almost

cosymplectic manifolds [16], [37], (κ, µ)-contact space forms [33], Kenmotsu space

forms [1], [22], S-space forms [10], [18].

Mathematics Subject Classification: 53C15, 53C25, 53C40.
Key words and phrases: Chen’s invariant, scalar curvature, squared mean curvature, k-Ricci

curvature, quaternionic space form, slant submanifold.
This work was partially supported by CNCSIS – UEFISCSU, project PNII – IDEI code 8/2008,

contract no. 525/2009.



398 Gabriel Eduard Vı̂lcu

In quaternionic setting, such inequalities were obtained for quaternionic and

totally-real submanifolds [20], [21], [36]. But there are two classes of submanifolds

which generalize both quaternionic and totally real submanifolds of quaternionic

Kähler manifolds, with no inclusion between them: quaternionic CR-submanifolds

(see [2]) and slant submanifolds (see [30]). Some recent results concerning qua-

ternionic CR-submanifolds can be found in [13], [34] and an inequality involving

Ricci curvature and squared mean curvature for quaternionic CR-submanifolds

in quaternionic space forms was proved in [28]. On the other hand, some optimal

inequalities involving scalar curvature, Ricci curvature and squared mean curvat-

ure for slant submanifolds in quaternionic space forms were obtained recently in

[31], [35]. The main purpose of this paper is to obtain two kinds of inequalities

for slant submanifolds in quaternionic space forms: between the k-Ricci curvature

and the squared mean curvature and between the k-Ricci curvature and the shape

operator. Moreover, we investigate the existence of quaternionic slant immersions

in quaternionic space forms with unfull first normal bundle.

2. Preliminaries

Let M be a differentiable manifold and assume that there is a rank 3-

subbundle σ of End(TM) such that a local basis {J1, J2, J3} exists on sections

of σ satisfying for all α ∈ {1, 2, 3}:
J2
α = −Id, JαJα+1 = −Jα+1Jα = Jα+2, (1)

where the indices are taken from {1, 2, 3} modulo 3. Then the bundle σ is called

an almost quaternionic structure on M and {J1, J2, J3} is called a canonical local

basis of σ. Moreover, (M,σ) is said to be an almost quaternionic manifold. It is

easy to see that any almost quaternionic manifold is of dimension 4m.

A Riemannian metric g onM is said to be adapted to the almost quaternionic

structure σ if it satisfies:

g(JαX,JαY ) = g(X,Y ), ∀α ∈ {1, 2, 3} (2)

for all vector fields X,Y on M and any canonical local basis {J1, J2, J3} of σ.

Moreover, (M,σ, g) is said to be an almost quaternionic Hermitian manifold.

If the bundle σ is parallel with respect to the Levi–Civita connection ∇ of g,

then (M,σ, g) is said to be a quaternionic Kähler manifold. Equivalently, locally

defined 1-forms ω1, ω2, ω3 exist such that we have for all α ∈ {1, 2, 3}:
∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2, (3)
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for any vector field X on M , where the indices are taken from {1, 2, 3} modulo 3

(see [14]).

Let (M,σ, g) be a quaternionic Kähler manifold and let X be a non-null vec-

tor on M . Then the 4-plane spanned by {X, J1X,J2X, J3X}, denoted by Q(X),

is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic

plane. The sectional curvature of a quaternionic plane is called a quaternionic

sectional curvature. A quaternionic Kähler manifold is a quaternionic space form

if its quaternionic sectional curvatures are equal to a constant, say c. It is well-

known that a quaternionic Kähler manifold (M,σ, g) is a quaternionic space form,

denoted M(c), if and only if its curvature tensor is given by (see [14]):

R(X,Y )Z =
c

4

{
g(Z, Y )X − g(X,Z)Y +

3∑
α=1

[g(Z, JαY )JαX−

− g(Z, JαX)JαY + 2g(X, JαY )JαZ]

}
(4)

for all vector fields X, Y , Z on M and any local basis {J1, J2, J3} of σ.

For a submanifold M of a quaternion Kähler manifold (M,σ, g), we denote

by g the metric tensor induced on M . If ∇ is the covariant differentiation induced

on M , the Gauss and Weingarten formulas are given by:

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM) (5)

and

∇XN = −ANX +∇⊥
XN, ∀X ∈ Γ(TM), ∀N ∈ Γ(TM⊥) (6)

where h is the second fundamental form ofM , ∇⊥ is the connection on the normal

bundle and AN is the shape operator of M with respect to N . The shape operator

AN is related to h by:

g(ANX,Y ) = g(h(X,Y ), N), (7)

for all X,Y ∈ Γ(TM) and N ∈ Γ(TM⊥).
If we denote by R and R the curvature tensor fields of ∇ and ∇ we have the

Gauss equation:

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )) (8)

for all X,Y, Z,W ∈ Γ(TM).

For the second fundamental form h, we define the covariant derivative ∇h

of h with respect to the connection on TM ⊕ T⊥M by

(∇Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ), (9)
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where D is the linear connection induced on the normal bundle of M in M . Then

the equation of Codazzi is given by

(R(X,Y )Z)⊥ = (∇Xh)(Y, Z)− (∇Y h)(X,Z). (10)

If {e1, . . . , en} is an orthonormal basis of TpM and {en+1, . . . , e4m} is an

orthonormal basis of T⊥
p M , where p ∈ M , we denote by H the mean curvature

vector, that is

H(p) =
1

n

n∑

i=1

h(ei, ei).

Also, we set

hr
ij = g(h(ei, ej), er), i, j ∈ {1, . . . , n}, r ∈ {n+ 1, . . . , 4m}

and

‖h‖2(p) =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

A submanifold M of a quaternionic Kähler manifold M is called a quater-

nionic submanifold (resp. totally real submanifold) if each tangent space of M is

carried into itself (resp. into the normal space) by each section in σ. Recently,

Şahin [30] introduced the slant submanifolds of quaternionic Kähler manifolds,

as a natural generalization of both quaternionic and totally real submanifolds. A

submanifold M of a quaternionic Kähler manifold M is said to be a slant subma-

nifold if for each non-null vector X tangent to M at p, the angle θ(X) between

Jα(X) and TpM , α ∈ {1, 2, 3}, is constant, i.e. it does not depend on choice of

p ∈ M and X ∈ TpM . We can easily see that quaternionic submanifolds are slant

submanifolds with θ = 0 and totally-real submanifolds are slant submanifolds

with θ = π
2 . A slant submanifold of a quaternionic Käler manifold is said to be

proper (or θ-slant proper) if it is neither quaternionic nor totally real.

If M is a slant submanifold of a quaternionic Kähler manifold M , then for

any X ∈ Γ(TM) we have the decomposition

JαX = PαX + FαX, (11)

where PαX denotes the tangential component of JαX and FαX denotes the

normal component of JαX.

Similarly for any U ∈ Γ(TM⊥) we have

JαU = BαU + CαU, (12)

where BαU is the tangential component of JαU and CαU is the normal component

of JαU .

We recall now the following results which we shall need in the sequel.
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Theorem 2.1 ([30]). Let M be a submanifold of a quaternionic Kähler

manifold M . Then M is slant if and only if there exists a constant λ ∈ [−1, 0]

such that:

PβPαX = λX, ∀X ∈ Γ(TM), α, β ∈ {1, 2, 3}. (13)

Furthermore, in such case, if θ is the slant angle of M , then it satisfies λ =

− cos2 θ.

Corollary 2.2 ([30]). LetM be a slant submanifold of a quaternionic Kähler

manifold M , with slant angle θ. Then we have

P 2
αX = − cos2 θX, (14)

BαFαX = − sin2 θX, (15)

for any X ∈ Γ(TM) and α ∈ {1, 2, 3}.
From the above Theorem we deduce that if M is a θ-slant submanifold of a

quaternionic Kähler manifold M , then we have for any X,Y ∈ Γ(TM):

g(PαX,PβY ) = cos2 θg(X,Y ), α, β ∈ {1, 2, 3} (16)

and

g(FαX,FβY ) = sin2 θg(X,Y ), α, β ∈ {1, 2, 3}. (17)

Moreover, we can remark that every proper slant submanifold of a quaterni-

onic Kähler manifold is of even dimension n = 2s, because we can choose a cano-

nical orthonormal local frame {e1, sec θPαe1, . . . , es, sec θPαes} of TpM , p ∈ M ,

called an adapted slant frame, where α is settled in {1, 2, 3}.
For an n-dimensional Riemanian manifold (M, g) we denote by K(π) the

sectional curvature of M associated with a plane section π ⊂ TpM, p ∈ M .

If {e1, . . . , en} is an orthonormal basis of the tangent space TpM , the scalar

curvature τ at p is defined by

τ(p) =
∑

1≤i<j≤n

Kij , (18)

where Kij denotes the sectional curvatures of the 2-plane section spanned by ei
and ej .

For a k-plane section L of TpM , p ∈ M , and X a unit vector in L, we choose

an orthonormal basis {e1, . . . , ek} of L such that e1 = X. The Ricci curvature

of L at X, denoted RicL(X), is defined by

RicL(X) =

k∑

j=2

K1j . (19)
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We note that such a curvature is called a k-Ricci curvature. The scalar curvature

of a k-plane section L is given by

τ(L) =
∑

1≤i<j≤k

Kij , (20)

For an integer k, 2 ≤ k ≤ n, B.-Y. Chen introduced a Riemannian invariant

Θk defined by

Θk(p) =
1

k − 1
inf{RicL(X)|L,X}, p ∈ M, (21)

where L runs over all k-plane sections in TpM and X runs over all unit vectors

in L (see e.g. [8]).

3. k-Ricci curvature and the squared mean curvature

Theorem 3.1. Let Mn be a θ-slant proper submanifold of a quaternionic

space form M
4m

(c). Then, for any p ∈ M and any integer k, 2 ≤ k ≤ n, one has:

‖H‖2(p) ≥ Θk(p)− c

4

(
1 +

9

n− 1
cos2 θ

)
. (22)

Proof. We choose an adapted slant basis of TpM at p ∈ M :

{e1, e2 = sec θPαe1, . . . , e2s−1, e2s = sec θPαe2s−1},

where 2s = n, and {en+1, . . . , e4m} an orthonormal basis of T⊥
p M , such that the

normal vector en+1 is in the direction of the mean curvature vector H(p) and

{e1, . . . , en} diagonalize the shape operator An+1.

Taking now X = Z = ei, Y = W = ej in the equation of Gauss (8), by

summing and using (4), we obtain:

n2‖H‖2(p) = 2τ(p) + ‖h‖2(p)− n(n− 1)c

4
− 3c

4

3∑

β=1

n∑

i,j=1

g2(Pβei, ej). (23)

On the other hand, because {e1, . . . , e2s} is an adapted slant basis of TpM ,

using (13) and (16) we can see that we have:

g2(Pβei, ei+1) = g2(Pβei+1, ei) = cos2 θ, for i = 1, 3, . . . , 2s− 1 (24)
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and

g(Pβei, ej) = 0, for (i, j) 6∈ {(2l − 1, 2l), (2l, 2l − 1)|l ∈ {1, 2, . . . , s}}. (25)

From (23), (24) and (25) we derive:

n2‖H‖2(p) = 2τ(p) + ‖h‖2(p)− c

4

[
n(n− 1) + 9n cos2 θ

]
. (26)

On the other hand, due to the choosing of the basis of TpM and T⊥
p M , the

shape operators have the following forms:

An+1 =




a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an




, (27)

Ar = (hr
ij)i,j=1,n, traceAr =

n∑

i=1

hr
ii = 0, ∀r ∈ {n+ 2, . . . , 4m}. (28)

Now, using (27) and (28) in (26) we obtain:

n2‖H‖2(p) = 2τ(p) +

n∑

i=1

a2i +

4m∑
r=n+2

n∑

i,j=1

(hr
ij)

2 − c

4

[
n(n− 1) + 9n cos2 θ

]
. (29)

On the other hand, because we have the inequality

(n− 1)

n∑

i=1

a2i ≥ 2
∑

i<j

aiaj ,

from

n2‖H‖2(p) =
(

n∑

i=1

ai

)2

=

n∑

i=1

a2i + 2
∑

1≤i<j≤n

aiaj

we derive
n∑

i=1

a2i ≥ n‖H‖2(p). (30)

Using now (30) in (29) we obtain:

n(n− 1)‖H‖2(p) ≥ 2τ(p)− c

4

[
n(n− 1) + 9n cos2 θ

]
. (31)
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But, from (18) and (20), it follows that for any k-plane section Li1...ik spanned

by {ei1 , . . . , eik}, one has:

τ(Li1...ik) =
1

2

∑

i∈{i1,...,ik}
RicLi1...ik

(ei) (32)

and

τ(p) =
(k − 2)!(n− k)!

(n− 2)!

∑

1≤i1<···<ik≤n

τ(Li1...ik). (33)

From (32) and (33) we obtain:

τ(p) ≥ n(n− 1)

2
·Θk(p) (34)

and finally, from (31) and (34) one derives (22). ¤

Applying Theorem 3.1 we may obtain, as a particular case, the corresponding

inequality for totally-real submanifolds in quaternionic space forms, established

in [21].

Corollary 3.2. LetMn be a totally-real submanifold of a quaternionic space

form M
4m

(c). Then, for any p ∈ M and any integer k, 2 ≤ k ≤ n, one has:

‖H‖2(p) ≥ Θk(p)− c

4
. (35)

4. k-Ricci curvature and shape operator

Theorem 4.1. Let x : M → M
4m

(c) be an isometric immersion of an n-

dimensional θ-slant proper submanifold M into a 4m-dimensional quaternionic

space form M(c). Then, for any p ∈ M and any integer k, 2 ≤ k ≤ n, one has:

i. If Θk(p) 6= c
4

(
1+ 9

n−1 cos
2 θ

)
, then the shape operator at the mean curvature

satisfies

AH >
n− 1

n

[
Θk(p)− c

4

(
1 +

9

n− 1
cos2 θ

)]
In, (36)

at p, where In denotes the identity map of TpM .

ii. If Θk(p) =
c
4

(
1 + 9

n−1 cos
2 θ

)
, then AH ≥ 0 at p.
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iii. A unit vector X ∈ TpM satisfies

AHX =
n− 1

n

[
Θk(p)− c

4

(
1 +

9

n− 1
cos2 θ

)]
X (37)

if and only if Θk(p) =
c
4

(
1 + 9

n−1 cos
2 θ

)
and X belongs to the relative null

space of M at p:

Np = {Z ∈ TpM |h(Z, Y ) = 0, ∀Y ∈ TpM}.

iv. The identity

AH =
n− 1

n

[
Θk(p)− c

4

(
1 +

9

n− 1
cos2 θ

)]
In, (38)

holds at p if and only if p is a totally geodesic point.

Proof. i. We choose an adapted slant basis of TpM at p ∈ M :

{e1, e2 = sec θPαe1, . . . , e2s−1, e2s = sec θPαe2s−1},

where 2s = n, and {en+1, . . . , e4m} an orthonormal basis of T⊥
p M , such that

the normal vector en+1 is in the direction of the mean curvature vector H(p)

and {e1, . . . , en} diagonalize the shape operator An+1. Consequently, the shape

operators have the forms (27) and (28).

One can distinguishes two cases:

Case I: H(p) = 0. In this situation it follows from (22) that Θk(p) 6= c
4

(
1 +

9
n−1 cos

2 θ
)
and the conclusion follows.

Case II: H(p) 6= 0. Taking X = Z = ei and Y = W = ej in the Gauss

equation and using (4), we obtain:

aiaj = Kij − c

4

[
1 + 3

3∑

β=1

g2(Pβei, ej)

]
−

4m∑
r=n+2

[
hr
iih

r
jj − (hr

ij)
2
]
. (39)

From (39) we derive:

a1(ai2 + · · ·+ aik) = RicL1i2...ik
(e1)− (k − 1)c

4
− 3c

4

3∑

β=1

k∑

j=2

g2(Pβe1, eij )

−
4m∑

r=n+2

k∑

j=2

[
hr
11h

r
ijij − (hr

1ij )
2
]

(40)
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which implies

a1(a2 + · · ·+ an) =
(k − 2)!(n− k)!

(n− 2)!

∑

2≤i2<···<ik≤n

RicL1i2...ik
(e1)− (n− 1)c

4

− 3c

4

3∑

β=1

n∑

j=2

g2(Pβe1, ej) +

4m∑
r=n+2

n∑

j=1

(hr
1j)

2. (41)

and taking into account (21), we obtain:

a1(a2 + · · ·+ an) ≥ (n− 1)θk(p)− (n− 1)c

4
− 3c

4

3∑

β=1

n∑

j=2

g2(Pβe1, ej). (42)

Using (24) and (25) in (42) we obtain:

a1(a2 + · · ·+ an) ≥ (n− 1)Θk(p)− (n− 1)c

4
− 9c

4
cos2 θ (43)

and we find:

a1(a1 + a2 + · · ·+ an) = a21 + a1(a2 + · · ·+ an)

≥ (n− 1)
[
Θk(p)− c

4

(
1 + 9 cos2 θ

)]
. (44)

Similar inequalities hold when the index 1 is replaced by j ∈ {2, . . . , n}.
Hence, we have

aj(a1 + a2 + · · ·+ an) ≥ (n− 1)
[
Θk(p)− c

4

(
1 + 9 cos2 θ

)]
, (45)

for all j ∈ {1, . . . , n}, and because n‖H‖ = a1 + · · ·+ an we find

AH ≥ n− 1

n

[
Θk(p)− c

4

(
1 +

9

n− 1
cos2 θ

)]
In. (46)

We remark that the equality does not hold because we are in the case H(p) 6= 0.

ii. The statement is clear from i.

iii. If X ∈ TpM is a unit vector such that (37) holds, then we have equalities

both in (42) and (44). Consequently, we obtain a1 = 0 and hr
1j = 0, for all

j ∈ {1, . . . , n} and r ∈ {n+ 2, . . . , 4m}, which implies Θk(p) =
c
4

(
1 + 9

n−1 cos
2 θ

)

and X ∈ Np. The converse part is clear.

iv. The equality (41) holds for any X ∈ TpM if and only if Np = TpM , i.e.

p is a totally geodesic point. This completes the proof of the theorem. ¤
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Corollary 4.2. Let x : M → M
4m

(c) be an isometric immersion of an n-

dimensional totally-real submanifold M into a 4m-dimensional quaternionic space

form M(c). Then, for any p ∈ M and any integer k, 2 ≤ k ≤ n, one has:

i. If Θk(p) 6= c
4 , then the shape operator at the mean curvature satisfies

AH >
n− 1

n

[
Θk(p)− c

4

]
In, (47)

at p, where In denotes the identity map of TpM .

ii. If Θk(p) =
c
4 , then AH ≥ 0 at p.

iii. A unit vector X ∈ TpM satisfies

AHX =
n− 1

n

[
Θk(p)− c

4

]
X (48)

if and only if Θk(p) =
c
4 and X ∈ Np.

iv. The identity

AH =
n− 1

n

[
Θk(p)− c

4

]
In, (49)

holds at p if and only if p is a totally geodesic point.

5. Quaternionic slant submanifolds with unfull first normal bundle

Let M be a submanifold isometrically immersed in a Riemannian manifold

(M, g). If p is a point of M , then the first normal space at p is defined to be

Imhp, the image space of the second fundamental form h at p. Moreover, Imh is

called the first normal bundle of M in M . The submanifold is said to have full

first normal bundle if Imhp = TpM
⊥, for any p ∈ M (see [6], [7]).

The existence of Kählerian slant submanifolds of smallest possible codimen-

sion in complex space forms, having unfull first normal bundle, has been investiga-

ted in [19]. Next we’ll study this problem in the context of slant submanifolds in

quaternionic space forms. The quaternionic version of Kählerian slant submani-

folds has been introduced in [30], under the name of quaternionic slant submani-

folds. Therefore a proper slant submanifold M of a quaternionic Kähler manifold

(M,σ, g) is said to be quaternionic slant submanifold if it satisfies the condition

∇XPα = ωα+2(X)Pα+1 − ωα+1(X)Pα+2, (50)

for any vector field X on M , where the indices are taken from {1, 2, 3} modulo 3.

We have the following characterization of quaternionic slant submanifolds.
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Theorem 5.1 ([30]). Let M be a proper slant submanifold of a quaternionic

Kähler manifold M . Then M is quaternionic slant submanifold if and only if

AFαY Z = AFαZY (51)

for all Y, Z ∈ Γ(TM) and α ∈ {1, 2, 3}.
Lemma 5.2. Let M be a slant submanifold of a quaternionic Kähler mani-

fold M . Then we have

P 2
α = −Id−BαFα, (52)

CαFα + FαPα = 0, (53)

C2
α = −Id− FαBα, (54)

PαBα +BαCα = 0 (55)
for α ∈ {1, 2, 3}.

Proof. For any X ∈ Γ(TM), taking into account (1) and (11), we derive

−X = J2
αX = P 2

αX + FαPαX +BαFαX + CαFαX.

Equating the tangent and normal parts of both the sides we obtain (52) and (53).

On the other hand, taking into account (1) and (12) we conclude that for

any U ∈ Γ(TM⊥) we have

−U = J2
αU = PαBαU + FαBαU +BαCαU + C2

αU.

Equating now the tangent and normal parts of both the sides we obtain (54)

and (55). ¤

Lemma 5.3. LetM be a θ-slant proper submanifold of a quaternionic Kähler

manifold M . Then for any vectors U, V ∈ TpM
⊥, p ∈ M , we have

g(CαU,CαV ) = cos2 θg(U, V ), α = 1, 2, 3. (56)

Proof. Because M is a θ-slant proper submanifold of M , it follows that

there exist Xα, Yα ∈ TpM such that U = FαXα, V = FαYα. Then, by using (16),

(17) and (53), we derive

g(CαU,CαV ) = g(CαFαXα, CαFαYα) = g(FαPαXα, FαPαYα)

= sin2 θg(PαXα, PαYα) = sin2 θ cos2 θg(Xα, Yα)

= cos2 θg(FαXα, FαYα) = cos2 θg(U, V ). ¤



Slant submanifolds of quaternionic space forms 409

From Theorem 5.1 and Lemma 5.3, using the same techniques as in [19], we

can state now the following result.

Lemma 5.4. Let M be a quaternionic slant submanifold of a quaternionic

Kähler manifold M . Then

Bα(Imhp)
⊥ = Np, α = 1, 2, 3,

where (Imhp)
⊥ denotes the orthogonal complementary subspace of Imhp in

TpM
⊥ and Np is the relative null space of M at p.

Proof. For Z ∈ Bα(Imhp)
⊥ it follows that there exists U ∈ (Imhp)

⊥ such

that Z = BαU . Then, by using (7), (51), (54) and (56), we obtain for all vector

X,Y ∈ TpM and α = 1, 2, 3:

g(h(X,Z), FαY ) = g(AFαY Z,X) = g(AFαZY,X) = g(h(X,Y ), FαZ)

= g(h(X,Y ), FαBαU) = sin2 θg(h(X,Y ), U) = 0.

Therefore it follows that h(X,Z) = 0, for any X ∈ TpM and thus we obtain

Z ∈ Np.

If we take now Z ∈ Np, it is clear that for any X,Y ∈ TpM and α = 1, 2, 3

we have

g(h(X,Y ), FαZ) = g(h(Z,X), FαY ) = 0.

Thus it follows FαZ ∈ (Imhp)
⊥ and therefore we derive

BαFαZ ∈ Bα(Imhp)
⊥. (57)

From (15) and (57) we conclude that Z ∈ Bα(Imhp)
⊥ and the proof is now

complete. ¤

Theorem 5.5. Let x : M → M(c) be an isometric immersion of a quaterni-

onic slant submanifold M of minimal codimension into a quaternionic space form

M(c). If the first normal bundle is not full, then c = 0.

Proof. First of all we remark that if the dimension of M(c) is 4m, then

the minimal codimension of a proper slant submanifold M of M(c) is 2m; in this

case we can choose an adapted slant basis of TpM at p ∈ M :

{e1, e2 = sec θPαe1, . . . , e2m−1, e2m = sec θPαe2m−1},

and an orthonormal basis of T⊥
p M :

{e2m+1 = cosecθFαe1, e2m+2 = cosecθFαe2, . . . , e4m = cosecθFαe2m},
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where α is settled in {1, 2, 3}.
Moreover, if the first normal bundle is not full, then it follows that there exists

a unit normal vector U ∈ TpM
⊥ at a point p ∈ M such that g(h(X,Y ), U) = 0, for

any vector X,Y ∈ TpM and without loss of generality we can suppose e4m = U .

Applying Lemma 5.4 it follows Bαe4m ∈ Np, α = 1, 2, 3, and from (15) we

conclude e2m ∈ Np. Thus we have

h(ei, e2m) = 0, i = 1, . . . , 2m− 1. (58)

By using now (9) and (58) in (10) we obtain for i = 1, . . . , 2m− 1:

(R(ei, e2m)e2m)⊥ = h(ei,∇e2me2m)

and taking into account (58) and the definition of the Christoffel symbols Γk
ij :

∇eiej =

2m∑

k=1

Γk
ijek

we obtain

(R(ei, e2m)e2m)⊥ =
∑

1≤k,l<2m

Γk
2m2mh2m+l

ik e2m+l. (59)

On the other hand, from (4) we obtain

R(ei, e2m)e2m =
c

4

[
ei + 3

3∑

β=1

g(ei, Jβe2m)Jβe2m

]

and therefore

(R(ei, e2m)e2m)⊥ =
3c

4

3∑

β=1

g(ei, Pβe2m)Fβe2m. (60)

But, since M is a slant submanifold, we can easily remark that

P1X = P2X = P3X, X ∈ TpM. (61)

On the other hand, using (17) we obtain for all β ∈ {1, 2, 3} and k ∈
{1, . . . , 2m}:

g(Fβe2m, e2m+k) = cosec θg(Fβe2m, Fαek) = cosec θsin2θg(e2m, ek) = sin θδ2mk,
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where δij denotes the Kronecker delta. Thus we derive

F1e2m = F2e2m = F3e2m = sin θe4m. (62)

From (60), (61) and (62) we derive

(R(ei, e2m)e2m)⊥ =
9c

4
g(ei, Pαe2m) sin θe4m

and considering the decomposition of Pαe2m with respect to the adapted slant

basis of TpM :

Pαe2m =

2m−1∑

j=1

λjej

we obtain

(R(ei, e2m)e2m)⊥ =
9c

4
λi sin θe4m. (63)

Comparing now (59) and (63) we derive

9cλi sin θ = 0, i = 1, . . . , 2m− 1,

and since M is a proper slant submanifold of M and
∑2m−1

i=1 λ2
i 6= 0, we conclude

that c = 0. ¤

Corollary 5.6. There do not exist quaternionic slant immersions of minimal

codimension in Pm(H) with unfull first normal bundle.
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