Slant submanifolds of quaternionic space forms

By GABRIEL EDUARD VÎLCU (Ploieşti)

Abstract

In this paper we establish some inequalities concerning the k-Ricci curvature of a slant submanifold in a quaternionic space form. We also obtain obstructions to the existence of quaternionic slant immersions in quaternionic space forms with unfull first normal bundle.

1. Introduction

According to B.-Y. CHEN [4], one of the most important problems in submanifold theory is "to find simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold". In [5], B.-Y. CHEN established a sharp inequality between the k-Ricci curvature, one of the main intrinsic invariants, and the squared mean curvature, the main extrinsic invariant, for a submanifold in a real space form with arbitrary codimension. Also, in the same spirit, B.-Y. Chen obtained an optimal inequality between the k-Ricci curvature and the shape operator for submanifolds in real space forms. These inequalities were further extended to many classes of submanifolds in different ambient spaces: complex space forms [25], [26], cosymplectic space forms [23], [24], [38], Sasakian space forms [9], [15], [29], [32], locally conformal Kähler space forms [3], [12], generalized complex space forms [11], [17], [27], locally conformal almost cosymplectic manifolds [16], [37], (κ, μ)-contact space forms [33], Kenmotsu space forms [1], [22], S-space forms [10], [18].

[^0]In quaternionic setting, such inequalities were obtained for quaternionic and totally-real submanifolds [20], [21], [36]. But there are two classes of submanifolds which generalize both quaternionic and totally real submanifolds of quaternionic Kähler manifolds, with no inclusion between them: quaternionic CR-submanifolds (see [2]) and slant submanifolds (see [30]). Some recent results concerning quaternionic CR-submanifolds can be found in [13], [34] and an inequality involving Ricci curvature and squared mean curvature for quaternionic CR-submanifolds in quaternionic space forms was proved in [28]. On the other hand, some optimal inequalities involving scalar curvature, Ricci curvature and squared mean curvature for slant submanifolds in quaternionic space forms were obtained recently in [31], [35]. The main purpose of this paper is to obtain two kinds of inequalities for slant submanifolds in quaternionic space forms: between the k-Ricci curvature and the squared mean curvature and between the k-Ricci curvature and the shape operator. Moreover, we investigate the existence of quaternionic slant immersions in quaternionic space forms with unfull first normal bundle.

2. Preliminaries

Let \bar{M} be a differentiable manifold and assume that there is a rank 3 subbundle σ of $\operatorname{End}(T \bar{M})$ such that a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ exists on sections of σ satisfying for all $\alpha \in\{1,2,3\}$:

$$
\begin{equation*}
J_{\alpha}^{2}=-I d, J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}, \tag{1}
\end{equation*}
$$

where the indices are taken from $\{1,2,3\}$ modulo 3 . Then the bundle σ is called an almost quaternionic structure on M and $\left\{J_{1}, J_{2}, J_{3}\right\}$ is called a canonical local basis of σ. Moreover, (\bar{M}, σ) is said to be an almost quaternionic manifold. It is easy to see that any almost quaternionic manifold is of dimension 4 m .

A Riemannian metric \bar{g} on \bar{M} is said to be adapted to the almost quaternionic structure σ if it satisfies:

$$
\begin{equation*}
\bar{g}\left(J_{\alpha} X, J_{\alpha} Y\right)=\bar{g}(X, Y), \quad \forall \alpha \in\{1,2,3\} \tag{2}
\end{equation*}
$$

for all vector fields X, Y on \bar{M} and any canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of σ. Moreover, $(\bar{M}, \sigma, \bar{g})$ is said to be an almost quaternionic Hermitian manifold.

If the bundle σ is parallel with respect to the Levi-Civita connection $\bar{\nabla}$ of \bar{g}, then $(\bar{M}, \sigma, \bar{g})$ is said to be a quaternionic Kähler manifold. Equivalently, locally defined 1 -forms $\omega_{1}, \omega_{2}, \omega_{3}$ exist such that we have for all $\alpha \in\{1,2,3\}$:

$$
\begin{equation*}
\bar{\nabla}_{X} J_{\alpha}=\omega_{\alpha+2}(X) J_{\alpha+1}-\omega_{\alpha+1}(X) J_{\alpha+2} \tag{3}
\end{equation*}
$$

for any vector field X on \bar{M}, where the indices are taken from $\{1,2,3\}$ modulo 3 (see [14]).

Let $(\bar{M}, \sigma, \bar{g})$ be a quaternionic Kähler manifold and let X be a non-null vector on \bar{M}. Then the 4 -plane spanned by $\left\{X, J_{1} X, J_{2} X, J_{3} X\right\}$, denoted by $Q(X)$, is called a quaternionic 4-plane. Any 2-plane in $Q(X)$ is called a quaternionic plane. The sectional curvature of a quaternionic plane is called a quaternionic sectional curvature. A quaternionic Kähler manifold is a quaternionic space form if its quaternionic sectional curvatures are equal to a constant, say c. It is wellknown that a quaternionic Kähler manifold $(\bar{M}, \sigma, \bar{g})$ is a quaternionic space form, denoted $\bar{M}(c)$, if and only if its curvature tensor is given by (see [14]):

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c}{4}\left\{\bar{g}(Z, Y) X-\bar{g}(X, Z) Y+\sum_{\alpha=1}^{3}\left[\bar{g}\left(Z, J_{\alpha} Y\right) J_{\alpha} X-\right.\right. \\
& \left.\left.-\bar{g}\left(Z, J_{\alpha} X\right) J_{\alpha} Y+2 \bar{g}\left(X, J_{\alpha} Y\right) J_{\alpha} Z\right]\right\} \tag{4}
\end{align*}
$$

for all vector fields X, Y, Z on \bar{M} and any local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of σ.
For a submanifold M of a quaternion Kähler manifold $(\bar{M}, \sigma, \bar{g})$, we denote by g the metric tensor induced on M. If ∇ is the covariant differentiation induced on M, the Gauss and Weingarten formulas are given by:

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, \quad \forall X \in \Gamma(T M), \quad \forall N \in \Gamma\left(T M^{\perp}\right) \tag{6}
\end{equation*}
$$

where h is the second fundamental form of M, ∇^{\perp} is the connection on the normal bundle and A_{N} is the shape operator of M with respect to N. The shape operator A_{N} is related to h by:

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=\bar{g}(h(X, Y), N) \tag{7}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$ and $N \in \Gamma\left(T M^{\perp}\right)$.
If we denote by \bar{R} and R the curvature tensor fields of $\bar{\nabla}$ and ∇ we have the Gauss equation:
$\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)+\bar{g}(h(X, W), h(Y, Z))-\bar{g}(h(X, Z), h(Y, W))$
for all $X, Y, Z, W \in \Gamma(T M)$.
For the second fundamental form h, we define the covariant derivative $\bar{\nabla} h$ of h with respect to the connection on $T M \oplus T^{\perp} M$ by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{9}
\end{equation*}
$$

where D is the linear connection induced on the normal bundle of M in \bar{M}. Then the equation of Codazzi is given by

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{10}
\end{equation*}
$$

If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of $T_{p} M$ and $\left\{e_{n+1}, \ldots, e_{4 m}\right\}$ is an orthonormal basis of $T_{p}^{\perp} M$, where $p \in M$, we denote by H the mean curvature vector, that is

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

Also, we set

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 4 m\}
$$

and

$$
\|h\|^{2}(p)=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) .
$$

A submanifold M of a quaternionic Kähler manifold \bar{M} is called a quaternionic submanifold (resp. totally real submanifold) if each tangent space of M is carried into itself (resp. into the normal space) by each section in σ. Recently, ŞAHIN [30] introduced the slant submanifolds of quaternionic Kähler manifolds, as a natural generalization of both quaternionic and totally real submanifolds. A submanifold M of a quaternionic Kähler manifold \bar{M} is said to be a slant submanifold if for each non-null vector X tangent to M at p, the angle $\theta(X)$ between $J_{\alpha}(X)$ and $T_{p} M, \alpha \in\{1,2,3\}$, is constant, i.e. it does not depend on choice of $p \in M$ and $X \in T_{p} M$. We can easily see that quaternionic submanifolds are slant submanifolds with $\theta=0$ and totally-real submanifolds are slant submanifolds with $\theta=\frac{\pi}{2}$. A slant submanifold of a quaternionic Käler manifold is said to be proper (or θ-slant proper) if it is neither quaternionic nor totally real.

If M is a slant submanifold of a quaternionic Kähler manifold \bar{M}, then for any $X \in \Gamma(T M)$ we have the decomposition

$$
\begin{equation*}
J_{\alpha} X=P_{\alpha} X+F_{\alpha} X \tag{11}
\end{equation*}
$$

where $P_{\alpha} X$ denotes the tangential component of $J_{\alpha} X$ and $F_{\alpha} X$ denotes the normal component of $J_{\alpha} X$.

Similarly for any $U \in \Gamma\left(T M^{\perp}\right)$ we have

$$
\begin{equation*}
J_{\alpha} U=B_{\alpha} U+C_{\alpha} U \tag{12}
\end{equation*}
$$

where $B_{\alpha} U$ is the tangential component of $J_{\alpha} U$ and $C_{\alpha} U$ is the normal component of $J_{\alpha} U$.

We recall now the following results which we shall need in the sequel.

Theorem 2.1 ([30]). Let M be a submanifold of a quaternionic Kähler manifold \bar{M}. Then M is slant if and only if there exists a constant $\lambda \in[-1,0]$ such that:

$$
\begin{equation*}
P_{\beta} P_{\alpha} X=\lambda X, \quad \forall X \in \Gamma(T M), \alpha, \beta \in\{1,2,3\} . \tag{13}
\end{equation*}
$$

Furthermore, in such case, if θ is the slant angle of M, then it satisfies $\lambda=$ $-\cos ^{2} \theta$.

Corollary 2.2 ([30]). Let M be a slant submanifold of a quaternionic Kähler manifold \bar{M}, with slant angle θ. Then we have

$$
\begin{align*}
& P_{\alpha}^{2} X=-\cos ^{2} \theta X, \tag{14}\\
& B_{\alpha} F_{\alpha} X=-\sin ^{2} \theta X, \tag{15}
\end{align*}
$$

for any $X \in \Gamma(T M)$ and $\alpha \in\{1,2,3\}$.
From the above Theorem we deduce that if M is a θ-slant submanifold of a quaternionic Kähler manifold \bar{M}, then we have for any $X, Y \in \Gamma(T M)$:

$$
\begin{equation*}
g\left(P_{\alpha} X, P_{\beta} Y\right)=\cos ^{2} \theta g(X, Y), \alpha, \beta \in\{1,2,3\} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}\left(F_{\alpha} X, F_{\beta} Y\right)=\sin ^{2} \theta g(X, Y), \alpha, \beta \in\{1,2,3\} . \tag{17}
\end{equation*}
$$

Moreover, we can remark that every proper slant submanifold of a quaternionic Kähler manifold is of even dimension $n=2 s$, because we can choose a canonical orthonormal local frame $\left\{e_{1}, \sec \theta P_{\alpha} e_{1}, \ldots, e_{s}, \sec \theta P_{\alpha} e_{s}\right\}$ of $T_{p} M, p \in M$, called an adapted slant frame, where α is settled in $\{1,2,3\}$.

For an n-dimensional Riemanian manifold (M, g) we denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the tangent space $T_{p} M$, the scalar curvature τ at p is defined by

$$
\begin{equation*}
\tau(p)=\sum_{1 \leq i<j \leq n} K_{i j} \tag{18}
\end{equation*}
$$

where $K_{i j}$ denotes the sectional curvatures of the 2-plane section spanned by e_{i} and e_{j}.

For a k-plane section L of $T_{p} M, p \in M$, and X a unit vector in L, we choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L such that $e_{1}=X$. The Ricci curvature of L at X, denoted $\operatorname{Ric}_{L}(X)$, is defined by

$$
\begin{equation*}
\operatorname{Ric}_{L}(X)=\sum_{j=2}^{k} K_{1 j} \tag{19}
\end{equation*}
$$

We note that such a curvature is called a k-Ricci curvature. The scalar curvature of a k-plane section L is given by

$$
\begin{equation*}
\tau(L)=\sum_{1 \leq i<j \leq k} K_{i j} \tag{20}
\end{equation*}
$$

For an integer $k, 2 \leq k \leq n$, B.-Y. Chen introduced a Riemannian invariant Θ_{k} defined by

$$
\begin{equation*}
\Theta_{k}(p)=\frac{1}{k-1} \inf \left\{\operatorname{Ric}_{L}(X) \mid L, X\right\}, \quad p \in M \tag{21}
\end{equation*}
$$

where L runs over all k-plane sections in $T_{p} M$ and X runs over all unit vectors in L (see e.g. [8]).

3. k-Ricci curvature and the squared mean curvature

Theorem 3.1. Let M^{n} be a θ-slant proper submanifold of a quaternionic space form $\bar{M}^{4 m}(c)$. Then, for any $p \in M$ and any integer $k, 2 \leq k \leq n$, one has:

$$
\begin{equation*}
\|H\|^{2}(p) \geq \Theta_{k}(p)-\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right) \tag{22}
\end{equation*}
$$

Proof. We choose an adapted slant basis of $T_{p} M$ at $p \in M$:

$$
\left\{e_{1}, e_{2}=\sec \theta P_{\alpha} e_{1}, \ldots, e_{2 s-1}, e_{2 s}=\sec \theta P_{\alpha} e_{2 s-1}\right\}
$$

where $2 s=n$, and $\left\{e_{n+1}, \ldots, e_{4 m}\right\}$ an orthonormal basis of $T_{p}^{\perp} M$, such that the normal vector e_{n+1} is in the direction of the mean curvature vector $H(p)$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ diagonalize the shape operator A_{n+1}.

Taking now $X=Z=e_{i}, Y=W=e_{j}$ in the equation of Gauss (8), by summing and using (4), we obtain:

$$
\begin{equation*}
n^{2}\|H\|^{2}(p)=2 \tau(p)+\|h\|^{2}(p)-\frac{n(n-1) c}{4}-\frac{3 c}{4} \sum_{\beta=1}^{3} \sum_{i, j=1}^{n} g^{2}\left(P_{\beta} e_{i}, e_{j}\right) \tag{23}
\end{equation*}
$$

On the other hand, because $\left\{e_{1}, \ldots, e_{2 s}\right\}$ is an adapted slant basis of $T_{p} M$, using (13) and (16) we can see that we have:

$$
\begin{equation*}
g^{2}\left(P_{\beta} e_{i}, e_{i+1}\right)=g^{2}\left(P_{\beta} e_{i+1}, e_{i}\right)=\cos ^{2} \theta, \quad \text { for } i=1,3, \ldots, 2 s-1 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(P_{\beta} e_{i}, e_{j}\right)=0, \quad \text { for }(i, j) \notin\{(2 l-1,2 l),(2 l, 2 l-1) \mid l \in\{1,2, \ldots, s\}\} \tag{25}
\end{equation*}
$$

From (23), (24) and (25) we derive:

$$
\begin{equation*}
n^{2}\|H\|^{2}(p)=2 \tau(p)+\|h\|^{2}(p)-\frac{c}{4}\left[n(n-1)+9 n \cos ^{2} \theta\right] \tag{26}
\end{equation*}
$$

On the other hand, due to the choosing of the basis of $T_{p} M$ and $T_{p}^{\perp} M$, the shape operators have the following forms:

$$
\begin{gather*}
A_{n+1}=\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
0 & 0 & a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right), \tag{27}\\
A_{r}=\left(h_{i j}^{r}\right)_{i, j=\overline{1, n}}, \operatorname{trace} A_{r}=\sum_{i=1}^{n} h_{i i}^{r}=0, \forall r \in\{n+2, \ldots, 4 m\} . \tag{28}
\end{gather*}
$$

Now, using (27) and (28) in (26) we obtain:

$$
\begin{equation*}
n^{2}\|H\|^{2}(p)=2 \tau(p)+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\frac{c}{4}\left[n(n-1)+9 n \cos ^{2} \theta\right] . \tag{29}
\end{equation*}
$$

On the other hand, because we have the inequality

$$
(n-1) \sum_{i=1}^{n} a_{i}^{2} \geq 2 \sum_{i<j} a_{i} a_{j}
$$

from

$$
n^{2}\|H\|^{2}(p)=\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}^{2}+2 \sum_{1 \leq i<j \leq n} a_{i} a_{j}
$$

we derive

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \geq n\|H\|^{2}(p) \tag{30}
\end{equation*}
$$

Using now (30) in (29) we obtain:

$$
\begin{equation*}
n(n-1)\|H\|^{2}(p) \geq 2 \tau(p)-\frac{c}{4}\left[n(n-1)+9 n \cos ^{2} \theta\right] . \tag{31}
\end{equation*}
$$

But, from (18) and (20), it follows that for any k-plane section $L_{i_{1} \ldots i_{k}}$ spanned by $\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\}$, one has:

$$
\begin{equation*}
\tau\left(L_{i_{1} \ldots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \ldots, i_{k}\right\}} \operatorname{Ric}_{L_{i_{1} \ldots i_{k}}}\left(e_{i}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(p)=\frac{(k-2)!(n-k)!}{(n-2)!} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \tau\left(L_{i_{1} \ldots i_{k}}\right) . \tag{33}
\end{equation*}
$$

From (32) and (33) we obtain:

$$
\begin{equation*}
\tau(p) \geq \frac{n(n-1)}{2} \cdot \Theta_{k}(p) \tag{34}
\end{equation*}
$$

and finally, from (31) and (34) one derives (22).
Applying Theorem 3.1 we may obtain, as a particular case, the corresponding inequality for totally-real submanifolds in quaternionic space forms, established in [21].

Corollary 3.2. Let M^{n} be a totally-real submanifold of a quaternionic space form $\bar{M}^{4 m}(c)$. Then, for any $p \in M$ and any integer $k, 2 \leq k \leq n$, one has:

$$
\begin{equation*}
\|H\|^{2}(p) \geq \Theta_{k}(p)-\frac{c}{4} \tag{35}
\end{equation*}
$$

4. k-Ricci curvature and shape operator

Theorem 4.1. Let $x: M \rightarrow \bar{M}^{4 m}(c)$ be an isometric immersion of an n dimensional θ-slant proper submanifold M into a $4 m$-dimensional quaternionic space form $\bar{M}(c)$. Then, for any $p \in M$ and any integer $k, 2 \leq k \leq n$, one has:
i. If $\Theta_{k}(p) \neq \frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)$, then the shape operator at the mean curvature satisfies

$$
\begin{equation*}
A_{H}>\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)\right] I_{n} \tag{36}
\end{equation*}
$$

at p, where I_{n} denotes the identity map of $T_{p} M$.
ii. If $\Theta_{k}(p)=\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)$, then $A_{H} \geq 0$ at p.
iii. A unit vector $X \in T_{p} M$ satisfies

$$
\begin{equation*}
A_{H} X=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)\right] X \tag{37}
\end{equation*}
$$

if and only if $\Theta_{k}(p)=\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)$ and X belongs to the relative null space of M at p :

$$
\mathcal{N}_{p}=\left\{Z \in T_{p} M \mid h(Z, Y)=0, \forall Y \in T_{p} M\right\}
$$

iv. The identity

$$
\begin{equation*}
A_{H}=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)\right] I_{n} \tag{38}
\end{equation*}
$$

holds at p if and only if p is a totally geodesic point.
Proof. i. We choose an adapted slant basis of $T_{p} M$ at $p \in M$:

$$
\left\{e_{1}, e_{2}=\sec \theta P_{\alpha} e_{1}, \ldots, e_{2 s-1}, e_{2 s}=\sec \theta P_{\alpha} e_{2 s-1}\right\}
$$

where $2 s=n$, and $\left\{e_{n+1}, \ldots, e_{4 m}\right\}$ an orthonormal basis of $T_{p}^{\perp} M$, such that the normal vector e_{n+1} is in the direction of the mean curvature vector $H(p)$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ diagonalize the shape operator A_{n+1}. Consequently, the shape operators have the forms (27) and (28).

One can distinguishes two cases:
Case I: $H(p)=0$. In this situation it follows from (22) that $\Theta_{k}(p) \neq \frac{c}{4}(1+$ $\frac{9}{n-1} \cos ^{2} \theta$) and the conclusion follows.

Case II: $H(p) \neq 0$. Taking $X=Z=e_{i}$ and $Y=W=e_{j}$ in the Gauss equation and using (4), we obtain:

$$
\begin{equation*}
a_{i} a_{j}=K_{i j}-\frac{c}{4}\left[1+3 \sum_{\beta=1}^{3} g^{2}\left(P_{\beta} e_{i}, e_{j}\right)\right]-\sum_{r=n+2}^{4 m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] . \tag{39}
\end{equation*}
$$

From (39) we derive:

$$
\begin{align*}
a_{1}\left(a_{i_{2}}+\cdots+a_{i_{k}}\right)= & \operatorname{Ric}_{L_{1 i_{2} \ldots i_{k}}}\left(e_{1}\right)-\frac{(k-1) c}{4}-\frac{3 c}{4} \sum_{\beta=1}^{3} \sum_{j=2}^{k} g^{2}\left(P_{\beta} e_{1}, e_{i_{j}}\right) \\
& -\sum_{r=n+2}^{4 m} \sum_{j=2}^{k}\left[h_{11}^{r} h_{i_{j} i_{j}}^{r}-\left(h_{1 i_{j}}^{r}\right)^{2}\right] \tag{40}
\end{align*}
$$

which implies

$$
\begin{align*}
a_{1}\left(a_{2}+\cdots+a_{n}\right)= & \frac{(k-2)!(n-k)!}{(n-2)!} \sum_{2 \leq i_{2}<\cdots<i_{k} \leq n} \operatorname{Ric}_{L_{1 i_{2} \ldots i_{k}}}\left(e_{1}\right)-\frac{(n-1) c}{4} \\
& -\frac{3 c}{4} \sum_{\beta=1}^{3} \sum_{j=2}^{n} g^{2}\left(P_{\beta} e_{1}, e_{j}\right)+\sum_{r=n+2}^{4 m} \sum_{j=1}^{n}\left(h_{1 j}^{r}\right)^{2} \tag{41}
\end{align*}
$$

and taking into account (21), we obtain:

$$
\begin{equation*}
a_{1}\left(a_{2}+\cdots+a_{n}\right) \geq(n-1) \theta_{k}(p)-\frac{(n-1) c}{4}-\frac{3 c}{4} \sum_{\beta=1}^{3} \sum_{j=2}^{n} g^{2}\left(P_{\beta} e_{1}, e_{j}\right) \tag{42}
\end{equation*}
$$

Using (24) and (25) in (42) we obtain:

$$
\begin{equation*}
a_{1}\left(a_{2}+\cdots+a_{n}\right) \geq(n-1) \Theta_{k}(p)-\frac{(n-1) c}{4}-\frac{9 c}{4} \cos ^{2} \theta \tag{43}
\end{equation*}
$$

and we find:

$$
\begin{align*}
a_{1}\left(a_{1}+a_{2}+\cdots+a_{n}\right)=a_{1}^{2}+a_{1}\left(a_{2}\right. & \left.+\cdots+a_{n}\right) \\
& \geq(n-1)\left[\Theta_{k}(p)-\frac{c}{4}\left(1+9 \cos ^{2} \theta\right)\right] . \tag{44}
\end{align*}
$$

Similar inequalities hold when the index 1 is replaced by $j \in\{2, \ldots, n\}$. Hence, we have

$$
\begin{equation*}
a_{j}\left(a_{1}+a_{2}+\cdots+a_{n}\right) \geq(n-1)\left[\Theta_{k}(p)-\frac{c}{4}\left(1+9 \cos ^{2} \theta\right)\right] \tag{45}
\end{equation*}
$$

for all $j \in\{1, \ldots, n\}$, and because $n\|H\|=a_{1}+\cdots+a_{n}$ we find

$$
\begin{equation*}
A_{H} \geq \frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)\right] I_{n} \tag{46}
\end{equation*}
$$

We remark that the equality does not hold because we are in the case $H(p) \neq 0$.
ii. The statement is clear from i.
iii. If $X \in T_{p} M$ is a unit vector such that (37) holds, then we have equalities both in (42) and (44). Consequently, we obtain $a_{1}=0$ and $h_{1 j}^{r}=0$, for all $j \in\{1, \ldots, n\}$ and $r \in\{n+2, \ldots, 4 m\}$, which implies $\Theta_{k}(p)=\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right)$ and $X \in \mathcal{N}_{p}$. The converse part is clear.
iv. The equality (41) holds for any $X \in T_{p} M$ if and only if $\mathcal{N}_{p}=T p M$, i.e. p is a totally geodesic point. This completes the proof of the theorem.

Corollary 4.2. Let $x: M \rightarrow \bar{M}^{4 m}(c)$ be an isometric immersion of an n dimensional totally-real submanifold M into a $4 m$-dimensional quaternionic space form $\bar{M}(c)$. Then, for any $p \in M$ and any integer $k, 2 \leq k \leq n$, one has:
i. If $\Theta_{k}(p) \neq \frac{c}{4}$, then the shape operator at the mean curvature satisfies

$$
\begin{equation*}
A_{H}>\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\right] I_{n}, \tag{47}
\end{equation*}
$$

at p, where I_{n} denotes the identity map of $T_{p} M$.
ii. If $\Theta_{k}(p)=\frac{c}{4}$, then $A_{H} \geq 0$ at p.
iii. A unit vector $X \in T_{p} M$ satisfies

$$
\begin{equation*}
A_{H} X=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\right] X \tag{48}
\end{equation*}
$$

if and only if $\Theta_{k}(p)=\frac{c}{4}$ and $X \in \mathcal{N}_{p}$.
iv. The identity

$$
\begin{equation*}
A_{H}=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c}{4}\right] I_{n}, \tag{49}
\end{equation*}
$$

holds at p if and only if p is a totally geodesic point.

5. Quaternionic slant submanifolds with unfull first normal bundle

Let M be a submanifold isometrically immersed in a Riemannian manifold (\bar{M}, \bar{g}). If p is a point of M, then the first normal space at p is defined to be $\operatorname{Im} h_{p}$, the image space of the second fundamental form h at p. Moreover, $\operatorname{Im} h$ is called the first normal bundle of M in \bar{M}. The submanifold is said to have full first normal bundle if $\operatorname{Im} h_{p}=T_{p} M^{\perp}$, for any $p \in M$ (see [6], [7]).

The existence of Kählerian slant submanifolds of smallest possible codimension in complex space forms, having unfull first normal bundle, has been investigated in [19]. Next we'll study this problem in the context of slant submanifolds in quaternionic space forms. The quaternionic version of Kählerian slant submanifolds has been introduced in [30], under the name of quaternionic slant submanifolds. Therefore a proper slant submanifold M of a quaternionic Kähler manifold $(\bar{M}, \sigma, \bar{g})$ is said to be quaternionic slant submanifold if it satisfies the condition

$$
\begin{equation*}
\bar{\nabla}_{X} P_{\alpha}=\omega_{\alpha+2}(X) P_{\alpha+1}-\omega_{\alpha+1}(X) P_{\alpha+2} \tag{50}
\end{equation*}
$$

for any vector field X on \bar{M}, where the indices are taken from $\{1,2,3\}$ modulo 3 .
We have the following characterization of quaternionic slant submanifolds.

Theorem 5.1 ([30]). Let M be a proper slant submanifold of a quaternionic Kähler manifold \bar{M}. Then M is quaternionic slant submanifold if and only if

$$
\begin{equation*}
A_{F \alpha Y} Z=A_{F \alpha Z} Y \tag{51}
\end{equation*}
$$

for all $Y, Z \in \Gamma(T M)$ and $\alpha \in\{1,2,3\}$.
Lemma 5.2. Let M be a slant submanifold of a quaternionic Kähler manifold \bar{M}. Then we have

$$
\begin{align*}
& P_{\alpha}^{2}=-I d-B_{\alpha} F_{\alpha} \tag{52}\\
& C_{\alpha} F_{\alpha}+F_{\alpha} P_{\alpha}=0 \tag{53}\\
& C_{\alpha}^{2}=-I d-F_{\alpha} B_{\alpha} \tag{54}\\
& P_{\alpha} B_{\alpha}+B_{\alpha} C_{\alpha}=0 \tag{55}
\end{align*}
$$

for $\alpha \in\{1,2,3\}$.
Proof. For any $X \in \Gamma(T M)$, taking into account (1) and (11), we derive

$$
-X=J_{\alpha}^{2} X=P_{\alpha}^{2} X+F_{\alpha} P_{\alpha} X+B_{\alpha} F_{\alpha} X+C_{\alpha} F_{\alpha} X
$$

Equating the tangent and normal parts of both the sides we obtain (52) and (53).
On the other hand, taking into account (1) and (12) we conclude that for any $U \in \Gamma\left(T M^{\perp}\right)$ we have

$$
-U=J_{\alpha}^{2} U=P_{\alpha} B_{\alpha} U+F_{\alpha} B_{\alpha} U+B_{\alpha} C_{\alpha} U+C_{\alpha}^{2} U
$$

Equating now the tangent and normal parts of both the sides we obtain (54) and (55).

Lemma 5.3. Let M be a θ-slant proper submanifold of a quaternionic Kähler manifold \bar{M}. Then for any vectors $U, V \in T_{p} M^{\perp}, p \in M$, we have

$$
\begin{equation*}
\bar{g}\left(C_{\alpha} U, C_{\alpha} V\right)=\cos ^{2} \theta \bar{g}(U, V), \quad \alpha=1,2,3 \tag{56}
\end{equation*}
$$

Proof. Because M is a θ-slant proper submanifold of \bar{M}, it follows that there exist $X_{\alpha}, Y_{\alpha} \in T_{p} M$ such that $U=F_{\alpha} X_{\alpha}, V=F_{\alpha} Y_{\alpha}$. Then, by using (16), (17) and (53), we derive

$$
\begin{aligned}
\bar{g}\left(C_{\alpha} U, C_{\alpha} V\right) & =\bar{g}\left(C_{\alpha} F_{\alpha} X_{\alpha}, C_{\alpha} F_{\alpha} Y_{\alpha}\right)=\bar{g}\left(F_{\alpha} P_{\alpha} X_{\alpha}, F_{\alpha} P_{\alpha} Y_{\alpha}\right) \\
& =\sin ^{2} \theta \bar{g}\left(P_{\alpha} X_{\alpha}, P_{\alpha} Y_{\alpha}\right)=\sin ^{2} \theta \cos ^{2} \theta \bar{g}\left(X_{\alpha}, Y_{\alpha}\right) \\
& =\cos ^{2} \theta \bar{g}\left(F_{\alpha} X_{\alpha}, F_{\alpha} Y_{\alpha}\right)=\cos ^{2} \theta \bar{g}(U, V) .
\end{aligned}
$$

From Theorem 5.1 and Lemma 5.3, using the same techniques as in [19], we can state now the following result.

Lemma 5.4. Let M be a quaternionic slant submanifold of a quaternionic Kähler manifold \bar{M}. Then

$$
B_{\alpha}\left(\operatorname{Im} h_{p}\right)^{\perp}=\mathcal{N}_{p}, \quad \alpha=1,2,3
$$

where $\left(\operatorname{Im} h_{p}\right)^{\perp}$ denotes the orthogonal complementary subspace of $\operatorname{Im} h_{p}$ in $T_{p} M^{\perp}$ and \mathcal{N}_{p} is the relative null space of M at p.

Proof. For $Z \in B_{\alpha}\left(\operatorname{Im} h_{p}\right)^{\perp}$ it follows that there exists $U \in\left(\operatorname{Im} h_{p}\right)^{\perp}$ such that $Z=B_{\alpha} U$. Then, by using (7), (51), (54) and (56), we obtain for all vector $X, Y \in T_{p} M$ and $\alpha=1,2,3:$

$$
\begin{aligned}
\bar{g}\left(h(X, Z), F_{\alpha} Y\right) & =g\left(A_{F_{\alpha} Y} Z, X\right)=g\left(A_{F_{\alpha} Z} Y, X\right)=\bar{g}\left(h(X, Y), F_{\alpha} Z\right) \\
& =\bar{g}\left(h(X, Y), F_{\alpha} B_{\alpha} U\right)=\sin ^{2} \theta \bar{g}(h(X, Y), U)=0
\end{aligned}
$$

Therefore it follows that $h(X, Z)=0$, for any $X \in T_{p} M$ and thus we obtain $Z \in \mathcal{N}_{p}$.

If we take now $Z \in \mathcal{N}_{p}$, it is clear that for any $X, Y \in T_{p} M$ and $\alpha=1,2,3$ we have

$$
\bar{g}\left(h(X, Y), F_{\alpha} Z\right)=\bar{g}\left(h(Z, X), F_{\alpha} Y\right)=0 .
$$

Thus it follows $F_{\alpha} Z \in\left(\operatorname{Im} h_{p}\right)^{\perp}$ and therefore we derive

$$
\begin{equation*}
B_{\alpha} F_{\alpha} Z \in B_{\alpha}\left(\operatorname{Im} h_{p}\right)^{\perp} . \tag{57}
\end{equation*}
$$

From (15) and (57) we conclude that $Z \in B_{\alpha}\left(\operatorname{Im} h_{p}\right)^{\perp}$ and the proof is now complete.

Theorem 5.5. Let $x: M \rightarrow \bar{M}(c)$ be an isometric immersion of a quaternionic slant submanifold M of minimal codimension into a quaternionic space form $\bar{M}(c)$. If the first normal bundle is not full, then $c=0$.

Proof. First of all we remark that if the dimension of $\bar{M}(c)$ is $4 m$, then the minimal codimension of a proper slant submanifold M of $\bar{M}(c)$ is $2 m$; in this case we can choose an adapted slant basis of $T_{p} M$ at $p \in M$:

$$
\left\{e_{1}, e_{2}=\sec \theta P_{\alpha} e_{1}, \ldots, e_{2 m-1}, e_{2 m}=\sec \theta P_{\alpha} e_{2 m-1}\right\}
$$

and an orthonormal basis of $T_{p}^{\perp} M$:

$$
\left\{e_{2 m+1}=\operatorname{cosec} \theta F_{\alpha} e_{1}, e_{2 m+2}=\operatorname{cosec} \theta F_{\alpha} e_{2}, \ldots, e_{4 m}=\operatorname{cosec} \theta F_{\alpha} e_{2 m}\right\}
$$

where α is settled in $\{1,2,3\}$.
Moreover, if the first normal bundle is not full, then it follows that there exists a unit normal vector $U \in T_{p} M^{\perp}$ at a point $p \in M$ such that $\bar{g}(h(X, Y), U)=0$, for any vector $X, Y \in T_{p} M$ and without loss of generality we can suppose $e_{4 m}=U$. Applying Lemma 5.4 it follows $B_{\alpha} e_{4 m} \in \mathcal{N}_{p}, \alpha=1,2,3$, and from (15) we conclude $e_{2 m} \in \mathcal{N}_{p}$. Thus we have

$$
\begin{equation*}
h\left(e_{i}, e_{2 m}\right)=0, \quad i=1, \ldots, 2 m-1 . \tag{58}
\end{equation*}
$$

By using now (9) and (58) in (10) we obtain for $i=1, \ldots, 2 m-1$:

$$
\left(\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}\right)^{\perp}=h\left(e_{i}, \nabla_{e_{2 m}} e_{2 m}\right)
$$

and taking into account (58) and the definition of the Christoffel symbols $\Gamma_{i j}^{k}$:

$$
\nabla_{e_{i}} e_{j}=\sum_{k=1}^{2 m} \Gamma_{i j}^{k} e_{k}
$$

we obtain

$$
\begin{equation*}
\left(\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}\right)^{\perp}=\sum_{1 \leq k, l<2 m} \Gamma_{2 m 2 m}^{k} h_{i k}^{2 m+l} e_{2 m+l} \tag{59}
\end{equation*}
$$

On the other hand, from (4) we obtain

$$
\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}=\frac{c}{4}\left[e_{i}+3 \sum_{\beta=1}^{3} \bar{g}\left(e_{i}, J_{\beta} e_{2 m}\right) J_{\beta} e_{2 m}\right]
$$

and therefore

$$
\begin{equation*}
\left(\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}\right)^{\perp}=\frac{3 c}{4} \sum_{\beta=1}^{3} g\left(e_{i}, P_{\beta} e_{2 m}\right) F_{\beta} e_{2 m} \tag{60}
\end{equation*}
$$

But, since M is a slant submanifold, we can easily remark that

$$
\begin{equation*}
P_{1} X=P_{2} X=P_{3} X, X \in T_{p} M \tag{61}
\end{equation*}
$$

On the other hand, using (17) we obtain for all $\beta \in\{1,2,3\}$ and $k \in$ $\{1, \ldots, 2 m\}$:
$\bar{g}\left(F_{\beta} e_{2 m}, e_{2 m+k}\right)=\operatorname{cosec} \theta \bar{g}\left(F_{\beta} e_{2 m}, F_{\alpha} e_{k}\right)=\operatorname{cosec} \theta \sin ^{2} \theta g\left(e_{2 m}, e_{k}\right)=\sin \theta \delta_{2 m k}$,
where $\delta_{i j}$ denotes the Kronecker delta. Thus we derive

$$
\begin{equation*}
F_{1} e_{2 m}=F_{2} e_{2 m}=F_{3} e_{2 m}=\sin \theta e_{4 m} \tag{62}
\end{equation*}
$$

From (60), (61) and (62) we derive

$$
\left(\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}\right)^{\perp}=\frac{9 c}{4} g\left(e_{i}, P_{\alpha} e_{2 m}\right) \sin \theta e_{4 m}
$$

and considering the decomposition of $P_{\alpha} e_{2 m}$ with respect to the adapted slant basis of $T_{p} M$:

$$
P_{\alpha} e_{2 m}=\sum_{j=1}^{2 m-1} \lambda_{j} e_{j}
$$

we obtain

$$
\begin{equation*}
\left(\bar{R}\left(e_{i}, e_{2 m}\right) e_{2 m}\right)^{\perp}=\frac{9 c}{4} \lambda_{i} \sin \theta e_{4 m} \tag{63}
\end{equation*}
$$

Comparing now (59) and (63) we derive

$$
9 c \lambda_{i} \sin \theta=0, \quad i=1, \ldots, 2 m-1
$$

and since M is a proper slant submanifold of \bar{M} and $\sum_{i=1}^{2 m-1} \lambda_{i}^{2} \neq 0$, we conclude that $c=0$.

Corollary 5.6. There do not exist quaternionic slant immersions of minimal codimension in $P^{m}(\mathbb{H})$ with unfull first normal bundle.

Acknowledgements. I would like to thank the referees for carefully reading the paper and making valuable comments and suggestions.

References

[1] K. Arslan, R. Ezentas, I. Mihai, C. Murathan and C. Özgür, Ricci curvature of submanifolds in Kenmotsu space forms, Int. J. Math. Math. Sci. 29, no. 12 (2002), 719-726.
[2] M. Barros, B.-Y. Chen and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4 (1981), 399-417.
[3] A. Carriazo, Y. H. Kim and D. W. Yoon, Some inequalities on totally real submanifolds in locally conformal Kähler space forms, J. Korean Math. Soc. 41, no. 5 (2004), 795-808.
[4] B.-Y. Chen, Mean curvature and shape operator of isometric immersions in real-spaceforms, Glasgow Math. J. 38, no. 1 (1996), 87-97.
[5] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
[6] B.-Y. Chen, Ideal Lagrangian immersions in complex space forms, Math. Proc. Cambridge Philos. Soc. 128, no. 3 (2000), 511-533.
[7] B.-Y. Chen, First normal bundle of ideal Lagrangian immersions in complex space forms, Math. Proc. Camb. Philos. Soc. 138, no. 3 (2005), 461-464.
[8] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing Co. Pte. Ltd., 2011.
[9] D. Cioroboiv, Some inequalities for Ricci curvature of certain submanifolds in Sasakian space forms, Acta Math. Acad. Paedagog. Nyházi. 19 (2003), 233-243.
[10] L. M. Fernández and M. B. Hans-Uber, New relationships involving the mean curvature of slant submanifolds in S-space-forms, J. Korean Math. Soc. 44, no. 3 (2007), 647-659.
[11] S. Hong and M. M. Tripathi, On Ricci curvature of submanifolds, Int. J. Pure Appl. Math. Sci. 2, no. 2 (2005), 227-245.
[12] S. Hong, K. Matsumoto and M. M. Tripathi, Certain basic inequalities for submanifolds of locally conformal Kähler space forms, SUT J. Math. 41, no. 1 (2005), 75-94.
[13] S. Ianuş, A. M. Ionescu and G. E. Vîlcu, Foliations on quaternion CR-submanifolds, Houston J. Math. 34, no. 3 (2008), 739-751.
[14] S. Ishihara, Quaternion Kählerian manifolds, J. Differ. Geom. 9 (1974), 483-500.
[15] Y.-H. Kim, C. W. Lee and D. W. Yoon, Shape operator of slant submanifolds in Sasakian space forms, Bull. Korean Math. Soc. 40, no. 1 (2003), 63-76.
[16] J.-S. Kim, M. M. Tripathi and J. Choi, Ricci curvature of submanifolds in locally conformal almost cosymplectic manifolds, Indian J. Pure Appl. Math. 35, no. 3 (2004), 259-271.
[17] D.-S. Kim, Y.-H. Kim and C. W. Lee, Shape operator A_{H} for slant submanifolds in generalized complex space forms, Bull. Korean Math. Soc. 42, no. 1 (2005), 189-201.
[18] J.-S. Kim, M. K. Dwivedi and M. M. Tripathi, Ricci curvature of integral submanifolds of an S-space form, Bull. Korean Math. Soc. 44, no. 3 (2008), 395-406.
[19] G. Li and C. Wu, Slant immersions of complex space forms and Chen's inequality, Acta Math. Sci., Ser. B, Engl. Ed. 25, no. 2 (2005), 223-232.
[20] X. Liu, On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch. Math. (Brno) 38, no. 4 (2002), 297-305.
[21] X. LiU and W. Dai, Ricci curvature of submanifolds in a quaternion projective space, Commun. Korean Math. Soc. 17, no. 4 (2002), 625-633.
[22] X. Liu, A. Wang and A. Song, Shape operator of slant submanifolds in Kenmotsu space forms, Bull. Iran. Math. Soc. 30, no. 2 (2004), 81-96.
[23] X. Liu and W. Su, Shape operator of slant submanifolds in cosymplectic space forms, Stud. Sci. Math. Hung. 42, no. 4 (2005), 387-400.
[24] X. Liu and J. Zhou, On Ricci curvature of certain submanifolds in a cosymplectic space form, Sarajevo J. Math. 2, no. 1 (2006), 95-106.
[25] K. Matsumoto, I. Mihai and A. Oiagă, Shape operator for slant submanifolds in complex space forms, Bull. Yamagata Univ., Nat. Sci. 14, no. 4 (2000), 169-177.
[26] K. Matsumoto, I. Mihai and A. Oiagă, Ricci curvature of submanifolds in complex space forms, Rev. Roum. Math. Pures Appl. 46, no. 6 (2001), 775-782.
[27] A. Mihai, Shape operator A_{H} for slant submanifolds in generalized complex space forms, Turk. J. Math. 27, no. 4 (2003), 509-523.
[28] I. Mihai, F. Al-Solamy and M. H. Shahid, On Ricci curvature of a quaternion CR-submanifold in a quaternion space form, Rad. Mat. 12, no. 1 (2003), 91-98.
[29] I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc. 72, no. 2 (2002), 247-256.
[30] B. Şahin, Slant submanifolds of quaternion Kaehler manifolds, Commun. Korean Math. Soc. 22, no. 1 (2007), 123-135.
[31] M. H. Shahid and F. Al-Solamy, Ricci tensor of slant submanifolds in a quaternion projective space, C. R., Math., Acad. Sci. Paris 349, no. 9 (2011), 571-573.
[32] M. M. Tripathi, J.-S. Kim and S.-B. Kim, Mean curvature and shape operator of slant immersions in a Sasakian space form, Balkan J. Geom. Appl. 7, no. 1 (2002), 101-111.
[33] M. M. Tripathi and J. S. Kim, C-totally real submanifolds in (κ, μ)-contact space forms, Bull. Aust. Math. Soc. 67, no. 1 (2003), 51-65.
[34] G. E. Vîlcu, Riemannian foliations on quaternion CR-submanifolds of an almost quaternion Kähler product manifold, Proc. Indian Acad. Sci., Math. Sci. 119, no. 5 (2009), 611-618.
[35] G. E. VÎlcu, B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms, Turk. J. Math. 34, no. 1 (2010), 115-128.
[36] D. W. Yoon, A basic inequality of submanifolds in quaternionic space forms, Balkan J. Geom. Appl. 9, no. 2 (2004), 92-102.
[37] D. W. Yoon, Inequality for Ricci curvature of certain submanifolds in locally conformal almost cosymplectic manifolds, Int. J. Math. Math. Sci. 10 (2005), 1621-1632.
[38] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turk. J. Math. 30 (2006), 43-56.

GABRIEL EDUARD VÎLCU
PETROLEUM-GAS UNIVERSITY OF PLOIEŞTI
DEPARTMENT OF MATHEMATICS
BULEVARDUL BUCUREŞTI 39
100680 PLOIEŞTI
ROMANIA
CURRENT ADDRESS:
UNIVERSITY OF BUCHAREST
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
RESEARCH CENTER IN GEOMETRY, TOPOLOGY AND ALGEBRA
STR. ACADEMIEI 14
70109 BUCUREŞTI
ROMANIA
E-mail: gvilcu@upg-ploiesti.ro, gvilcu@gta.math.unibuc.ro
(Received June 16, 2011; revised September 14, 2011)

[^0]: Mathematics Subject Classification: 53C15, 53C25, 53C40.
 Key words and phrases: Chen's invariant, scalar curvature, squared mean curvature, k-Ricci curvature, quaternionic space form, slant submanifold.
 This work was partially supported by CNCSIS - UEFISCSU, project PNII - IDEI code 8/2008, contract no. 525/2009.

