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Abstract. Let p be a prime number which is congruent to 3 modulo 4. For an odd

positive integer n, we define a quadratic field kp,n by kp,n := Q(
√
4− ppn ). Moreover let

Mp,n be the composite field of kp,n and the maximal real subfield of the pth cyclotomic

field. Then Mp,n is an imaginary cyclic fields of degree p − 1. In this paper, we prove

that the p-rank of ideal class groups of Mp,n is at least 2 for any odd integer n ≥ 1

except for (p, n) = (3, 1). Furthermore, we can show Mp,n 6= Mp,m for any distinct two

integers n and m. As a consequence, we see that there exist infinitely many imaginary

cyclic field of degree p− 1 whose ideal class group have p-rank at least 2.

1. Introduction

According to D. A. Buell’s calculations [1], as for about 95% of the ima-

ginary quadratic fields Q(
√
D ) (D : fund. disc., −4000000 < D < 0) the ideal

class group (ignore 2-part) is cyclic. So it is interesting to produce infinitely many

algebraic number fields whose ideal class groups are not cyclic.

Recently, the author proved the following:

Theorem 1 ([7, Theorem 3]). The 3-rank of ideal class group of imaginary

quadratic field Q(
√
4− 33n ) is at least 2 for any odd integer n ≥ 3.
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The goal of this paper is to extend this to general prime p with p ≡ 3 (mod 4).

Let p be a prime with p ≡ 3 (mod 4) and n odd positive integer. We define

two quadratic fields kp,n and k′p,n by

kp,n := Q(
√
4− ppn ),

k′p,n := Q(
√
−p(4− ppn) ) = Q(

√
ppn+1 − 4p).

Let ζ be a primitive pth root of unity and put ω := ζ + ζ−1. Moreover we denote

the composite field kp,n and Q(ω) by Mp,n:

Mp,n := kp,n ·Q(ω).
Then Mp,n is an imaginary cyclic field of degree p− 1. The following is the main

theorem of this paper.

Theorem 2. Under the above notation, the p-rank of ideal class group of

Mp,n is at least 2 for any odd integer n ≥ 1 except for (p, n) = (3, 1).

Furthermore, we will show the following:

Proposition 1.1. For odd positive integers n and m,

n 6= m ⇐⇒ Mp,n 6= Mp,m.

From this proposition and Theorem 2, we immediately have

Theorem 3. For any p ≡ 3 (mod 4), there exist infinitely many Mn,p with

odd n ≥ 1 such that the p-rank of the ideal class group of Mn,p is at least 2.

Remark 1.2. For the case p ≡ 1 (mod 4), S.-i. Katayama and the author [5]

gave an infinite family of imaginary cyclic fields of degree p− 1 whose ideal class

groups have p-rank at least 2.

2. Proof of Proposition 1.1

To prove Proposition 1.1, we need the following proposition which is led from

Y. Bugeaud and T. N. Shorey’s result [2, Theorem 1].

Proposition 2.1. For a positive integer D and a prime p, the number of

positive integer solutions (x, y) of the equation

Dx2 + 4 = py

is at most 1 except for (p,D) = (5, 1).
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Let us show Proposition 1.1. If n = m, then it is obviously Mp,n = Mp,m.

Conversely, we assume Mp,n = Mp,m. Then we easily see kp,n = kp,m. Hence

there exist integers u and v such that

4− ppn = −du2 and 4− ppm = −dv2,

where d is a square free positive integer. By Proposition 2.1, therefore, we have

n = m. Proposition 1.1 is now proved.

3. Proof of Theorem 2

We consider the case p ≥ 7 because the case p = 3 is proved in [7]. We will

construct to two unramified cyclic extensions L1 and L2 of Mp,n of degree p such

that L1/kp,n (resp. L2/kp,n) is an abelian (resp. a non-abelian) extension.

3.1. Construction of L1. From F. S. A. Muriefah [8] and A. Ito [4], we

have

Theorem 4. For a prime p with p ≡ 3 (mod 4) and an odd positive integer

n, the class number of kp,n = Q(
√
4− ppn ) is divisible by p.

By this theorem, there exists an unramified cyclic extension L of kp,n of

degree p. Put L1 := L ·Mp,n. Then L1 is an unramified cyclic extension of Mp,n

of degree p. Furthermore, it holds that Gal(L1/kp,n) ' C(p−1)/2 × Cp; namely,

L1/kp,n is an abelian extension.

3.2. Construction of L2. First we introduce our previous results in [3] and [6].

Let p be an odd prime in general. Let ζ be a primitive pth root of unity and put

ω := ζ + ζ−1. Moreover let k be a real quadratic field which is not contained in

Q(ζ). Then there exists a unique proper subextension of the bicyclic biquadratic

extension k(ζ)/Q(ω) other than k(ω) and Q(ζ). We denote it by M . Then M is

a cyclic field of degree p − 1. (In the case p ≡ 3 (mod 4), M coincides with the

composite field of Q(
√−pdk) and Q(ω), where dk is the discriminant of k.) For

an element γ of k, define the polynomial fγ by

fγ(X) :=

(p−1)/2∑

i=0

(−Nk(γ))
i p

p− 2i

(
p− i− 1

i

)
Xp−2i −Nk(γ)

(p−1)/2 Trk(γ),

where Nk and Trk are the norm map and the trace map of k/Q, respectively.



450 Yasuhiro Kishi

Proposition 3.1 ([3, Corollary 2.6], [6, Theorem 1.1]). Let the notation be

as above. For a unit ε of k with the conditions




Nk(ε) = 1,

Trk(ε) ≡ ±2 (mod p3),

ε 6∈ kp,

the splitting field SplQ(fε) of fε over Q is an unramified cyclic extension of M of

degree p and

Gal(SplQ(fε)/Q) ' Fp,

where Fp is the following group which is called Frobenius group:

Fp = 〈σ, ι|σp = ιp−1 = 1, σι = ισa〉, ord(a) = p− 1 in (Fp)×.

Express pn+ 1 = 2s (s ∈ Z) and put

ε1 :=
p2s−1 − 2 + ps−1

√
p2s − 4p

2
∈ k′p,n = Q(

√
p2s − 4p ).

Then

Trk′
p,n

(ε1) = p2s−1 − 2 ≡ −2 (mod p3),

Nk′
p,n

(ε1) =
(p2s−1 − 2)2 − p2(s−1)(p2s − 4p)

4
= 1.

Let us show that ε1 is not a pth power in k′p,n.
Here, we will show the following lemma.

Lemma 3.2. For an integer t ≥ 5, fix a unit

ε =
t− 2 +

√
t(t− 4)

2
=

t− 2 + u
√
m

2
,

and denote the jth power of ε by

εj =
tj + (−1)j2 + uj

√
m

2
.

Then we have t | tj for any j ≥ 1.

Proof. We see inductively that tj satisfies

t1 = t, t2 = t2 − 2t, tj+1 = (t− 2)tj − tj−1 + (−1)j2t.

Then it is clear that t | tj for any j ≥ 1. ¤
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Now assume that ε1 is a pth power in k′p,n. Then we can express ε1 = εp0 for

some ε0 ∈ k′p,n. Taking the norm, we have

1 = Nk′
p,n

(ε1) = Nk′
p,n

(εp0) = Nk′
p,n

(ε0)
p,

and hence

Nk′
p,n

(ε0) = 1.

Now we denote

ε0 =
t− 2 +

√
t(t− 4)

2

and

εn0 =
tn + (−1)n2 + un

√
m

2

for any n ≥ 1. Then tp = p2s−1 because

tp + (−1)p2 + up
√
m

2
= εp0 = ε1 =

p2s−1 − 2 + ps−1
√
p2s − 4p

2
.

Hence by Lemma 3.2, we have t | p2s−1. Write

t = pα (0 ≤ α ≤ 2s− 1);

we have

ε0 =
pα − 2 +

√
pα(pα − 4)

2
.

Since ε0 ∈ k′p,n, we have

k′p,n = Q(
√
pα(pα − 4)).

Remark that p is ramified in k′p,n = Q(
√
p2s − 4p ). Then α must be odd. Write

α = 2s′ − 1; we obtain

pα(pα − 4) = p2s
′−1(p2s

′−1 − 4) = p2(s
′−1)(p2s

′ − 4p).

Therefore we have

Q(
√
p2s − 4p) = Q(

√
p2s′ − 4p).

It holds by Proposition 1.1 that s = s′. This implies ε0 = ε1, which leads a

contradiction. So now we have proved ε1 6∈ (k′p,n)
p.
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In the above, we verified that ε1 satisfies three conditions



Nk′
p,n

(ε1) = 1,

Trk′
p,n

(ε1) ≡ −2 (mod p3),

ε1 6∈ (k′p,n)
p.

Then by Proposition 3.1, L2 := SplQ(fε1) is an unramified extension of Mp,n with

Gal(L2/Q) ' Fp. Since Fp does not have abelian subgroups of degree p(p− 1)/2,

L2/kp,n is a non-abelian extension. Hence we have L1 6= L2. Therefore we get

two distinct unramified cyclic extensions L1 and L2 of Mp,n of degree p. This

completes the proof of Theorem 2.
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