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On measures of weak noncompactness

By MIECZYSÃLAW CICHOŃ (Poznań)

Abstract. In this paper we give an axiomatic definition of a measure of weak
noncompactness and at the same time we present a general scheme of construction of
such measures in a useful way. This allows us to prove their important properties.
Furthermore, we prove a theorem dealing with the existence of bounded weak solutions
of a nonlinear differential equation on R+, as an example of application of our theory.

1. Introduction

The concept of measure of noncompactness is one of the most useful
concepts of general topology. This notion defined in many ways ([13], [15],
[18]). Some of the authors have tried to introduce a definition of measures
of noncompactness in an axiomatic way ([3], [23], [25]). These measures
are defined in a Banach space ([3], [13], [15], [18]), in a metric space ([18],
[25]) or in a locally convex space ([14], [23]).

In 1977 F. De Blasi introduced a notion of a measure of weak noncom-
pactness in a Banach space [11]. The usefulness of this concept was made
clear by a number of authors such as A. R. Mitchell and Ch. Smith
[20], E. Cramer, V. Lakshmikantham and A. R. Mitchell [8], I. Ku-
biaczyk and S. Szufla [17] and many others.

In this paper we give a definition of measures of weak noncompactness
in an axiomatic manner, similarly as in [4], and we present a general scheme
of construction of these measures in a useful way. It is in our interest to
look for a unified treatment of noncompactness measures via requirements
naturally imposed on such a class of mappings.
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The convenient criteria of weak noncompactness are rather unkown
except for some cases (see examples in chapter 2), also the theory of mea-
sures of weak noncompactness seems to be more interesting and at the
same time more useful than that concerning measures of strong noncom-
pactness.

Remark that our definition can be used for both the strong and the
weak topology on E (cf. [7]). We refer the reader to [3] and [16].

This approach to measures of weak noncompactness is motivated by
its usefulness in the theory of nonlinear differential equations.

A theorem which ensures the existence of bounded weak solutions
of a nonlinear differential equation on R+ is given as an example of the
applications of our concept of measures.

2. Measures of weak noncompactness

Let (E, ‖·‖) denote a Banach space and let us denote by B1 the closed
unit ball in E.

Recall the definition of De Blasi’s measure of weak noncompactness:

ω(W ) = inf {ε > 0 : there exists a weakly compact subset K of E ,

such that W ⊂ K + εB1} ,

where W is a nonempty bounded subset of E.
Fix some further notations for the families of sets that will be used in

the sequel:
M – the family of all nonempty bounded subsets of E,
N – the family of all nonempty and relatively weakly compact subsets

of E.
Throughout this paper, X̄ denotes the weak closure of the set X.

Definition 2.1. A nonempty family P ⊂ N is said to be a kernel if it
satisfies the following conditions:

(i) X ∈ P =⇒ conv X ∈ P,
(ii) Y 6= ∅, Y ⊂ X, X ∈ P =⇒ Y ∈ P,
(iii) A subfamily of all weakly compact sets in P is closed in the

family of all bounded and closed subsets of E with the topology
generated by the Hausdorff distance.

Notice that the condition P ⊂ N is really essential. In the space
L1(I, E) the familyR of all uniformly integrable subsets satisfies the above
conditions (cf. [5], Prop. 4) — see Example 2.

Now we give our axiomatic definition of a measure of weak noncom-
pactness:
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Definition 2.2. A function µ : M → [0,∞) is said to be a measure
of weak noncompactness with the kernel P if it is subject to the following
conditions:

(i) µ(X) = 0 ⇐⇒ X ∈ P,
(ii) µ(X) = µ(X̄),
(iii) µ(conv X) = µ(X),
(iv) X, Y ∈M, X ⊂ Y =⇒ µ(X) ≤ µ(Y ).

Example 1 (cf. [1]). Let φ be a continuous, convex and nondecreasing
function from R into R+ satisfying the following conditions (cf. [22]):

(E1) φ(x) = 0 ⇐⇒ x = 0,
(E2) φ(−x) = φ(x),
(E3) φ(x) > 0 whenever x 6= 0,
(E4) lim

x→∞
φ(x)/x = +∞, lim

x→0
φ(x)/x = 0,

(E5) there exists a constant k > 0, such that for x ≥ 0 we have

φ(2x) ≤ k · φ(x) whenever x ≥ 0 ,

(∆2-condition).

Let I = [0, 1]. In an Orlitcz-space Lφ(I), for each bounded subset S ⊂
Lφ(I) we define:

(*) µ(S) = lim
ε→0

sup
f∈S

1
ε
·
∫

I

φ(εf(x))dx .

Under the above assumptions µ : M→ [0,∞) is a measure of weak non-
compactness on Lφ(I). Indeed, (iv) is obvious.

Put µ(A, ε) = sup
f∈A

1
ε ·

∫
I

φ(εf(x))dx for each ε > 0.

Fix an arbitrary ε > 0 and let A,B ∈ M. Consider an arbitrary g ∈
convA. First, let us remark that there exist λ ∈ [0, 1] and f1, f2 ∈ A such
that

g = λ · f1 + (1− λ) · f2 .

By the properties of φ we have:

φ(εg) = φ(ε · λ · f1 + ε · (1− λ) · f2) ≤ λ · φ(εf1) + (1− λ) · φ(εf2), so
1
ε
·
∫

I

φ(εg(x))dx ≤ λ · µ(A, ε) + (1− λ) · µ(A, ε) = µ(A, ε) .

Thus µ(conv A, ε) ≤ µ(A, ε), and letting ε → 0, µ(conv A) ≤ µ(A).
The converse inequality follows from (iv).
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Now, let A be a convex set in Lφ(I) and let h ∈ Ā. Then there exists
a sequence (fn) ⊂ A such that fn tends to h in Lφ(I). Since φ satisfies
the ∆2-condition, we have∫

I

φ(εfn(x))dx →
∫

I

φ(εh(x))dx when n →∞ .

Next, we observe that 1
ε ·

∫
I

φ(εfn(x))dx ≤ µ(A, ε), since fn ∈ A (n =

1, 2, . . . ), and finally:
1
ε ·

∫
I

φ(εh(x))dx ≤ µ(A, ε), hence µ(Ā, ε) ≤ µ(A, ε). By (iv) again and

letting ε → 0 we have µ(Ā) = µ(A).
For a moment we distinguish a weak and a strong closure of a subset C.

However, for arbitrary C ⊂ Lφ(I) we have C ⊂ C̄w ⊂ convwC = convC,
and by the above, µ(C) ≤ µ(C̄w) ≤ µ(C), so µ has the property (ii).

Our condition (i) follows from Theorem 3 in [22] (page 144) together
with the Eberlein–Šmulian theorem.

Example 2. Let E be a reflexive Banach space, and let W be a
bounded subset of L1(I, E).

Put

γ(W ) = lim
ε→0

sup
x∈W


sup




∫

D

‖x(t)‖dt : D ⊂ I, mes D ≤ ε





 .

It is not difficult to prove that γ is a measure of weak noncompactness in
L1(I, E) (cf. [4]) such that γ(W ) ≤ ω(W ). It suffices to use Prop. 3 from
[5].

It is very difficult to construct formulas allowing us to express mea-
sures of weak noncompactness in a form convenient for applications in a
concrete Banach space E. For example, the result of this type for De
Blasi’s measure is known only for L1(I,R) (see [2]).

Let us denote by B a basis of neighbourhoods of the zero in a locally
convex space composed of closed convex sets. Let B′ = {rB : r > 0, B ∈
B}. We will need the definition of a so-called p–function:

Definition 2.3. (cf. [7]). A function p : B′ → [0,∞) is said to be a
p–function if it satisfies the following conditions:

(i) V, U ∈ B′, V ⊂ U =⇒ p(V ) ≤ p(U),
(ii) ∀ε > 0 ∃V ∈ B′ p(V ) ≤ ε,
(iii) p(U) > 0 whenever U 6∈ P.

The following definition is a key point of this paper:
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Definition 2.4. A function µ : M → [0,∞) is said to be a (P,B, p)–
measure of weak noncompactness [(P,B, p)-mwnc] iff

µ(W ) = inf {ε > 0 : ∃H ∈ P, V ∈ B′, W ⊂ H + V, p(V ) ≤ ε} ,

where W ∈M.

Theorem 2.1. Each (P,B, p)-mwnc µ is a measure of weak noncom-
pactness (in the sense of Definition 2.2.) and µ(X) = 0 ⇐⇒ X ∈ P.

Proof. (iv) Fix an arbitrary ε > 0. Let X, Y ∈ M, X ⊂ Y, H ∈ P
and V ∈ B′ be such that H ⊂ H + V, p(V ) ≤ µ(Y ) + ε. So X ⊂ H + V
and µ(X) ≤ (Y ) + ε. As ε is arbitrary we have µ(X) ≤ µ(Y ).

(iii) X ⊂ conv X, so by (iv) µ(X) ≤ µ(conv X), and if H ∈ P and V ∈
B′ are such that X ⊂ H + V, p(V ≤ µ(X) + ε then conv X ⊂ conv H + V .
But conv H ∈ P, so µ(conv X) ≤ p(V ) ≤ µ(V ) + ε.

Finally µ(X) = µ(conv X).
(ii) As in (iv), let X ⊂ H + V and p(V ) ≤ µ(X) + ε, so X̄ ⊂ H̄ + V

and µ(X̄) ≤ p(V ) ≤ µ(X) + ε. Consequently µ(X̄) = µ(X) (by (iv)).
(i) µ(X) = 0 =⇒ µ(X̄) = 0 =⇒ ∀V ∈ B′ ∃H ∈ P X̄ ⊂ H + V and

by the closure of P in the Hausdorff topology X̄ ∈ P. Thus X ⊂ X̄ and
by Definition 2.1. X ∈ P.

X ∈ P =⇒ X ⊂ X̄ + V for each V ∈ B′. Obviously X̄ ∈ P. But for
every ε > 0 there exists V ∈ B′ such that p(V ) ≤ ε, so finally µ(X) = 0.

This is a very interesting result, since a theorem of Darbo type ([4],
th. 11) guarantees that the set of all fixed points of a weakly continu-
ous operator, which is condensing with respect to the measure of weak
noncompactness, belongs to P.

We see that this paper establishes a relation between the strong and
weak measures of noncompactness. Our approach to the notion of a mea-
sure of weak noncompactness is very similar to the approach associated
with the notion of a measure of noncompactness in a strong sense. This is
the reason why many properties of these measures are the same as in the
strong case (cf. [3], [7]).

Our definition 2.4. parallels that given in [4]. The properties of
(P,B, p)-measures are similar to the properties of De Blasi’s measure [11]
and are dependent on the properties of P,B and p. Our definition of
(P,B, p)-measures of weak noncompactness allows us to look on measures
of strong and of weak noncompactness as on similar objects. Thus all
proofs of their properties run as in the strong case (see [7]).

Moreover, if by N̄ we denote a subfamily of all weakly closed subsets
of N and by B0 a family {rB1 : r > 0}, then the (N̄ ,B0, ‖ · ‖)-mwnc
coincides with De Blasi’s measure.
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Denote by L(E) the space of all continuous linear operators from E
to E with the norm | · |. Now we can prove some properties of (P,B, p)–
measures of weak noncompactness, which are very important. In the sequel
we will use the following lemmas.

Lemma 2.1. Denote by µ an (N ,B, p)-mwnc where:
(i) B is composed of balanced sets,

(ii) p(kV ) = k · p(V ), for each V ∈ B′ and k ∈ R.

Thus for each bounded subset W of E and for each L ∈ L(E) we have:

(L) µ(LW ) ≤ |L| · µ(W ) .

Proof. Fix an arbitrary ε > 0. Let H ∈ N and V ∈ B′ be such
that W ⊂ H + V with p(V ) ≤ µ(W ) + ε. Therefore LW ⊂ LH + LV ⊂
H ′ + |L| · V , where H ′ = LH ∈ N . Moreover

p (|L| · V ) = |L| · p(V ) ≤ |L| · (µ(W ) + ε) = |L| · µ(W ) + |L| · ε .

As ε is arbitrary we obtain our assertion.

Lemma 2.2. Let µ be as above. If K is a continuous mapping from a
compact interval I of R into L(E) and W is a bounded subset of E then

µ

(⋃

t∈I

K(t)W

)
≤ sup

t∈I
|K(t)| · µ(W ) .

Proof. As W is bounded there exists b > 0 such that ‖W‖ ≤ b.
Fix an arbitrary ε > 0. Let W ⊂ P + V for some P ∈ N and V ∈ B′,
p(V ) ≤ µ(W ) + ε. Put U = ε · V , so U ∈ B′. Let δ > 0 be such that
B(0, δ) = {x ∈ E : ‖x‖ ≤ δ} ⊂ U . Divide the interval I in such that a way
that t1 < t2 < · · · < tn with |K(t1)−K(ti−1)| < δ/b (by continuity of K).
For t ∈ [ti−1, ti] =: Ii, letting K(t)W ÷ K(ti)W := (K(t) − K(ti))W =
{K(t)w −K(ti)w : w ∈ W} we obtain

K(t)W ⊂ (K(t)W ÷K(ti)W ) + K(ti)W .

But ‖K(t)W÷K(ti)W‖ ≤ (δ/b)·b = δ, so K(t)W÷K(ti)W ⊂ B(0, δ) ⊂ U .
Since W ⊂ P + V , thus by Lemma 2.1 we get

K(ti)W ⊂ K(ti)P + K(ti)V ⊂ K(ti)P + sup
t∈I

|K(t)| · V .

Now we get

⋃

t∈I

K(t)W =
n⋃

i=1

⋃

t∈Ii

K(t)W ⊂
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⊂
n⋃

i=1

⋃

t∈Ii

[(K(t)W ÷K(ti)W ) + K(ti)W ] ⊂

⊂
n⋃

i=1

[
U + K(ti)P + sup

t∈I
|K(t)| · V

]
⊂

⊂ U + sup
t∈I

|K(t)| · V +
n⋃

i=1

K(ti)P =

=P ′ +
(

ε + sup
t∈I

|K(t)|
)
· V (by convexity of V ) ,

where P ′ =
n⋃

i=1

K(ti)P .

Consequently

p

((
ε + sup

t∈I
|K(t)|

)
· V

)
=

(
ε + sup

t∈I
|K(t)|

)
· p(V ) =

=
(

ε + sup
t∈I

|K(t)|
)
· (µ(W ) + ε) ,

and since ε is arbitrary we obtain

µ

(⋃

t∈I

K(t)W

)
≤ sup

t∈I
|K(t)| · µ(W ) .

The above properties of measures of weak noncompactness are very
useful in the theory of linear differential equations. Property (L) from
Lemma 2.1. does not follow from other properties of such measures and
in the case of a purely axiomatic approach to this problem it is necessary
to assume our (L)-property (cf. [21]).

Now we can state a theorem on the existence of bounded weak solu-
tions of nonlinear differential equations of the form:

(1) x′(t) = A(t)x(t) + f(t, x(t)), t ∈ R+

where A(t) ∈ L(E) for t ∈ R+, x′ denotes the weak derivative of x,
(t, x) → f(t, x) is a function from R+ × Br into E which is weakly –
weakly continuous (i.e. continuous with respect to the weak topologies on
Br and E) and Br = {x ∈ E : ‖x‖ ≤ r}.

In this chapter we use some notations and definitions from the book
of Massera–Schäffer [19].

Assume that Ew = (E, σ(E, E∗)) is sequentially complete. Moreover,
we introduce the following notations: L = L(R+, E) is the space of all
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measurable functions u : R+ → E integrable in the Bochner sense on
every finite subinterval I of R+, with the topology of convergence in the
mean on every such I, i.e., the convergence in L1(I, E) of the restrictions
to I.

Let B = B(R+, E) be a Banach space of measurable functions x :
R+ → E such that ‖x‖ ∈ B(R+,R) with the norm ‖x‖B = ‖ ‖x‖ ‖B(R),
where B(R) = B(R+,R) is a function space such that:

(i) B(R+,R) ⊂ L(R+,R) and B(R+,R) is stronger than
L(R+,R),

(ii) B(R+,R) contains all essentially bounded functions with
compact support,

(iii) if u ∈ B(R+,R), v : R+ → R is measurable and |v| ≤ |u|,
then v ∈ B(R+,R) and ‖v‖B(R) ≤ ‖u‖B(R),

(iv) if u ∈ B(R+,R), vn ∈ L(R+,R) (n ∈ N), |vn| ≤ |u| and
lim

n→∞
vn(t) = 0, a.e. on R+, then lim

n→∞
‖vn‖B(R) = 0.

Let B′ denote the space associate to B (cf. [19], p. 50).

Remark that as examples of such spaces we can consider some Orlicz–
spaces (see [19], [22]).

Let E0 be the subspace consisting of all points of E which are values
for t = 0 of bounded weak solutions of the linear differential equation

(2) x′ = A(t)x .

We assume that E0 is closed and has a closed complement E1, i.e., E is
the direct sum of E0 and E1. Take the Green function for (2):

G(t, s) =
{

U(t)PU−1(s) for 0 ≤ s ≤ t

−U(t)(Id− P )U−1(s) for 0 ≤ t ≤ s ,

where U : R+ → L(E) is the solution of the differential equation

U ′ = A(t)U, U(0) = Id ,

and P is the projection of E onto E0 with kerP = E1 (cf. [18]). Thus there
exists a positive number N such that ‖U(t)P‖ ≤ N for every t ∈ R+, i.e.,
‖G(t, 0)‖ ≤ N .

Furthermore, we assume that:
(A0) f : R+ ×Br → E is weakly–weakly continuous,
(A1) A : R+ → L(E) is strongly measurable and Bochner integrable

on every finite subinterval of R+,
(A2) G(t, · ) ∈ B′ and ‖G(t, · )‖B′ ≤ k for every t ∈ R+,
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(A3) there exists m ∈ B′ such that k · ‖m‖B < r and ‖f(t, x)‖ ≤ m(t)
for every (t, x) ∈ R+ ×Br,

(A4) q : R+ → R+ is a nondecreasing continuous function such that
q(0) = 0, q(u) < u for all u > 0,

(A5) there exists h ∈ B such that k · ‖h‖B < 1 and ∀a > 0, ∀ε > 0,
∀X ⊂ Br ∃ open Z ⊂ [0, a], mes(Z) < ε and

γ(f(T ×X)) ≤ sup{h(t) : t ∈ T} · q(γ(X))

for every compact subset T of [0, a] \ Z, where γ is a (P,B, p)–
measure of weak noncompactness satisfying the following assump-
tions:

(M1) P = N ,

(M2) ∀U, V ∈ B′ ∀k ∈ R U + V ∈ B′, k · V ∈ B′ and

p(U + V ) ≤ p(U) + p(V ), p(k · V ) = |k| · p(V ) ,

(M3) ∀U, V ∈ B′ ∃W ∈ B′ U, V ⊂ W,

p(W ) = P (U) or p(W ) = p(V )

(cf. [6]).

Theorem 2.2. If (A0)–(A5) hold then for every x0 ∈ E0 such that
‖x0‖ ≤ (r− k‖m‖B)/N there exists at least one bounded weak solution of
(1) with Px(0) = x0.

We omit the proof, because it runs as in [6]. Looking at previous of
this type ([6], [10], [21], [23] for instance), our example of an application of
(P,B, p)-measures of weak noncompactness sheds some light on the main
idea of the construction of such measures. In fact, we can enlarge a class
of measures of weak noncompactness for which (1) has a bounded weak
solution on R+ (cf. [6], [21], [24]).
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