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Nonlinear contractions in metrically convex space

By JANUSZ MATKOWSKI (Bielsko-Biata)

Abstract. In this paper we prove among other things the following fixed point
theorem. Let T be a selfmapping of a complete Menger convex metric space (X, d) and
1) : [0,00) — [0, 00) a function such that

d(T(z), T(y)) < Y(d(z,y)), (z,y€ X).
Suppose that 1 is continuous at 0 and that there exists a positive sequence t,,
(n € N), such that lim t, = 0 and ¥ (tn) < tn, (n € N). Then T has a unique fixed
n—oo

point. Moreover T is ~-contractive for an increasing concave function v and such that
~(t) <t for all t > 0.
An application to a functional equation is also given.

Introduction

Let (X, d) be a metric space and T : X — X a selfmapping of X. If
there exists a function v : [0,00) — [0, 00) such that
1°. d(T(2), T(y)) < (d(z,y)) for all 3,y € X;
2°. (t) < t for every t > 0,
then we say that T is v-contractive.

A metric space (X, d) is said to be Menger convex or metrically convex
iff for every z,y € X, x # y, there is z € X such that x # z # y and

d(z,y) =d(x,z) + d(z,y).

Let T be a 1-contractive selfmap of a Menger convex metric space.
D. W. Boyp and J. S. W. WONG [4] proved that T" has a unique fixed
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point. Moreover, there exists a subadditive and right continuous function
v : [0,00) — [0,00) such that T is v-contractive. The last statement
of the Boyd and Wong result has been improved by C. S. Wong [12] who
showed that T is y-contractive with « sucht that the function t — ~(t)/t is
nonincreasing in (0,00). Afterwards J. MATKOWSKI and R. WEGRZYK [8]
proved that T is vy-contractive with an increasing and concave function ~y.

In this paper we prove the following generalization of the result of
D. W. Boyp and J. S. W. WoNG.

Let T be a selfmapping of a complete Menger convex metric space
(X,d) and 1) : [0,00) — [0,00) a function such that

d(T(x), T(y) < y(d(z,y)), (2,y € X).

If 1) is continuous at 0 and there exists a positive sequence t,, (n € N),
such that

lim ¢, =0, ¥(t,) <tn, (neN),

n—oo

then T has a unique fixed point a € X and lim T"(x) = a for every

n—oo
x € X. Moreover there exists an increasing and concave function 7y :

[0,00) — [0, 00) such that T is y-contractive.

The arguments of the present paper strongly depend on some proper-
ties of subadditive functions discussed in section 1. We wish to emphasise
that, due to them, the proof of the above result is short and elementary.

In section 4, as a consequence of our main result, we obtain the follow-
ing theorem. Let T' be a uniformly continuous selfmapping of a nonempty
closed convex subset X of a Banach space. If for a positive sequence t,,,
(n € N), with nlirréo t, = 0 we have

sup {[|T(z) =T W) : [lx =yl = tn; 2,y € X} <tp, (n€N),

then T has a unique fixed point. Moreover T is ~y-contractive for an in-
creasing and concave function ~y.

In the same section we improve some results obtained by NADIM A.
Assap and W. A. KIRK in [1] and [2].

At the end of this paper we apply the main result to the theory of inte-
grable solutions of a nonlinear iterative functional equation. The concavity
of ~ plays there an important role.

Let us also mention that using the methods applied in this paper
one can generalize the BROWDER—GOEHDE—-KIRK fixed point theorem for
nonexpansive mappings (cf. [11]).
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1. Some remarks on subadditive functions

A function A : [0,00) — [0,00) is a said to be subadditive if
A(s+1) < A(s) +A(t), (s,t>0).
The following result plays an important role in this paper.

Proposition 1. Let A : (0,00) — [0,00) be subadditive and let
g:(0,00) — [0,00) be defined by

If }in(l) A(t) =0 then
a) there exists g(0) := %in(l) g(t) and g(0) = sup g(t);
- >0
b) there exists g(co) := tlim g(t) and g(o0) = 7%1;1%9(15);

c) for every positive r there exist the one-sided limits g(r—), g(r+)
and g(r+) < g(r) < g(r—). If moreover g(0) < oo and there is an s > 0
such that g(s) < g(0) then for every r € (s,00) we have

g9(r—) < g(0).

PROOF. Part a) is a reformulation of Theorem 7.11.1 in [6]. Part b)
follows from Theorem 7.6.1 in [6] and c¢) is an immediate consequence of
Theorem 7.8.3 in [6]. To prove the last statement of the proposition note
that g(t) < g(0) for all t > 0. Now the definition of g and subadditivity of
A imply that

At) S A(S)+A(t—3) <A(s)+9g(0)(t—s), te((s,r).

Letting here ¢ tend to 7, we obtain A(r—) < A(s)+g(0)(r—s). Making use of
the inequality g(s) < g(0), (i.e. A(s) < g(0)s), we hence get A\(r—) < g(0)r,
which means that g(r—) < ¢(0). This completes the proof.

Corollary 1. Let A : [0,00) — [0,00) be a subadditive and continuous
at 0. Suppose that there exist ¢ > 0 and t,, > 0, (n € N), such that

lim ¢, =0, A(tn) < ctpn, (n€N).

n—oo

Then the function i : (0,00) — [0, 00) defined by the formula

wu(t) == sup{¥ tu > t}

pu(t) <e, (t>0).

is decreasing and
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In particular we have \(t) < ct, (t > 0).

PROOF. It is enough to note that g(0) < ¢ and apply Proposition 1
with s :=t,, (n € N).

Corollary 2. If X : (0,00) — [0,00) is subadditive, moreover there
exists a ¢ > 0 such that A(t) < ct, t > 0, and limsup A(f) = cr for some

t—r

positive r, then \(t) = ct for all t € (0,r).

Remark 1. The above Proposition 1 shows that every subadditive
function X\ : (0,00) — [0,00) such that A(t) < ct, (t > 0), for some ¢ > 0
satisfies the following condition: for any s > 0 we have

Taking ¢ = 1 we hence obtain a negative answer to the problem posed by
D. W. Boyp and J. S. W. WONG at the end of the paper [4]. A longer
argument is given in [12].

In the sequel we need the following

Lemma 1. Suppose that X : (0,00) — [0,00) and ¢ > 0. If
At)
sup — t>sp<c

for every s > 0 then there exists an increasing and concave function 7y :
(0,00) — [0,00) such that \(t) < y(t) < ct, (t > 0).

PROOF. Denote by £ the family of all the functions ¢ : (0,00) —
[0,00) of the form ¢(t) = at + b, (a,b > 0), such that \(¢) < £(¢) for every
t > 0 and put y(¢) := gngﬁ(t).

€

For every a, 3 > 0; a + 8 =1, and u,v > 0 we have
= 1 = 1 >
v(au + fv) éggﬁ(au + fv) t}gE(@f(u) + BL(v)) >
S o . _
2 o fof l(u) + B inf £(v) = ay(u) + By (v),

which shows that 7 is concave in (0,00). Since the function £(t) := ct,
(t > 0), belongs to L, we have

v(t) <et, (t>0).
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Now we have to show that the set A := {t > 0 : y(t) = ct} is empty. By
assumption there are s > 0 and k, 0 < k < ¢, such that A\(¢) < kt for t > s,
and therefore,

ANt) <k(t—s)+cs=kt+ (c—k)s, (t>0).

In view of the definition of v we have y(t) < ¢(t — s) + ¢s = ct for t > s.
This proves that A C (0, s). Suppose for an indirect proof that A # () and
put tg := sup A. The concavity of v and the inequality v(t) < ct, (t > 0),
imply that

y(t)=ct, (0<t<tp); y(t) <ct, (t>tg).
According to the assumption there are tq, to; t1 < tg < to, such that
At) < cty, (t <t<ty).
Let m := max{ct1,v(t2)}. By the concavity of v the function

m — cty

=

(t—t1)+6t1, (t>0),

satisfies the inequality A\(t) < ¢(t) for all t > 0 and, consequently,

m — ctq

—(to — tl) +1 < C(t() — tl) + ct1 = ctp.
la—1

V(to) < L(to) =
This contradiction shows that A = (). Since every ¢ € L is increasing it
follows that so is . This completes the proof.

2. A fixed point theorem for an arbitrary complete metric space

In this section we present the following

Proposition 2. Let (X, d) be an arbitrary complete metric space and
T : X — X a selfmapping of X. Suppose that X\ : [0,00) — [0,00) is
continuous at 0, subadditive and there exists a sequence t,, > 0, (n € N),
such that

lir% tn =0, A(t,) <tn, (n€N).
If
d(T(x),T(y)) < Ad(z,y)), (z,y € X),

then T has a unique fixed point a € X and lim T"(x) = a for every

n—oo
x € X. Moreover T is a y-contractive with an increasing and concave 7.

Proor. By Corollary 1 and Lemma 1 the mapping T is a y-contra-
ctive with an increasing and concave . Denote by 4" the nth iterate of
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7. Since y(t) < t for t > 0, we have
lim v™(t) =0, (t>0).

Now the existence of a unique fixed point of T and the convergence of
every sequence of successive approximations follows from [9] p. 8, Theo-
rem 1.2, (cf. also J. DuGUNDJI, A. GRANAS [5] p. 12, Theorem 3.2, and
[10], Theorem 2).

3. A family of nonlinear contractions in Menger convex space
We begin this section with the following well known result of MENGER
(cf. [3], p. 41).

Lemma 2. If (X,d) is a complete and Menger convex metric space
then any two points are the endpoints of at least one metric segment. More
precisely, for every x,y € X, x # y, there exists a function
F :]0,d(z,y)] — X such that

F0) ==, F(d(z,y)=y
and for every s,t € [0,d(z,y)| we have
A(F(s), F(t)) = |s — 1.
In particular, for every z,y € X and « € (0,1) there is z € X such that
d(flf, Z) = O[d(:L‘, y)7 d(Z, y) = (1 - a)d(m,y)

By this Lemma P := d(X x X), the range of the metric d, is an
interval of the form [0,b), (0 < b < c0), or [0,b], (0 < b < o0).

Now, applying Lemma 1, Lemma 2 and Corollary 1, we can prove the
following basic

Proposition 3. Let (X, d) be a complete Menger-convex metric space,
(Y, p) a metric space, T, : X — Y, (v € I), a family of mappings and
Y : [0,00) — [0,00) continuous at 0. Suppose that there exist ¢ > 0 and a
positive sequence t,,, (n € N), such that

nh_)rgo tn =0, Y(t,) <ct,, (neN).
If
p(T.(x), T.(y)) <¥(d(z,y)), (v,y€X;€l),

then there exists an increasing concave function v : [0,00) — [0, 00) such
that v(t) < ct, (t > 0), and

p(T,(x), T.(y)) <~(d(z,y)), (v,ye€X;el).
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PROOF. Let us define a function A : [0,00) — [0,00) by the formula

A(t) :=sup{p(T,(x), T,(y)) : xz,y € X, v €I, d(x,y) =t},
te P=d(X x X),
and, if P = [0,b] with b < co, we put
A(t) =0, tel0,00)\P.

Applying an idea of BoyD and WoNG, (cf. [4], Lemma 2), we first prove
that A is subadditive, i.e. that A(s + 1) < A(s) + A(?), (s,t > 0). Take
arbitrary s,t > 0. This inequality is obviously true if b < oo and s+t €
[0,00) \ P. Suppose that s+t € P. Thus s+t = d(z,y) for some z,y € X

and, in view of Lemma 2, there exists a point z € X such that d(z,z) = s
and d(z,y) = t. Then we clearly have

p(T(z), T.(y)) < p(Ti(x),T.(2)) + p(T.(2), Tu(y)) < Als) + A(t)
for all © € I. Now, taking the supremum over all z,y € X with d(z,y) =
s+tand €I, we get AN(s+1) < A(s)+ A(?).
By the definition of A\ we clearly have
A#) <) <ct, (t=0).
Moreover, according to the assumption, we hence get

Atn) < Y(tn) < ctp, (n€N).

Now the proposition results from Corollary 1 and Lemma 1.

4. Fixed point theorems in Menger convex space

We begin this section with the following

Theorem 1. Let T be a selfmapping of a complete Menger convex
metric space (X, d) and v : [0,00) — [0,00) a function such that

d(T'(x),T(y)) < ¢(d(z,y)), (2,y € X).

If 4 is continuous at 0 and there exists a positive sequence t,, (n € N),
such that
lim t, =0, ¥(t,) <tn, (n€N),

n—oo

then T' has a unique fixed point a € X and lim T"(x) = a for every

n—oo

x € X. Moreover T is y-contractive for an increasing and concave 7.

Proor. Taking in Proposition 3 : (Y, p) := (X,d), T,:=T, (t€Il), and
¢ := 1 we infer that there exists an increasing concave v : [0,00) — [0, 00),
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v(t) < t, (t > 0), such that
d(T'(x),T(y)) <~(d(z,y)), (z,y € X).

Since klim ¥ (t) = 0 for every t > 0, the existence of a unique fixed point
—00

of T and the convergence of every sequence of successive approximations
easily follows (cf. [9] p. 8, Theorem 1.2, [5] p. 12, Theorem 3.2, and [10],
Theorem 2).

Theorem 2. Let T be a uniformly continuous selfmapping of a com-
plete Menger convex metric space (X, d). If there exists a positive sequence
tn, (n € N), lim t, =0, such that

n—od
sup {d(T'(z), T(y)) : d(z,y) = tn; z,y € X} <tn, (n€N),
then T' has a unique fixed point a € X and lim T"(x) = a for every

n—oo
x € X. Moreover T is y-contractive for an increasing and concave -.

PROOF. According to the assumptions, given € > 0 thereis a d(g) > 0
such that for every z,y € X, d(x,y) < d(¢) implies d(T'(z),T(y)) < e.
Take € := 1, an arbitrary t € P := d(X x X) and z,y € X such that
d(z,y) = t. In view of Lemma 2 there exist n=n(t) € Nand zp,...,z, € X
such that 2o = z, 2, = y; d(2i_1,2;) = n~td(x,y) < §(1). Hence

d(T(x), T(y)) < Z d(T(zi-1), T(z:)) <n = n(t).

This proves that for every ¢t € P the number
¥(t) == sup{d(T'(2), T(y)) : d(z,y) = ¢, z,y € X}
is finite. Put 1(t) := 0 for ¢ € (0,00) \ P. Then ¢ : [0, 00) — [0, 00) and
d(T(z), T(y)) <v(d(z,y), (z,y€X).

By the uniform continuity of T" the function v is continuous at 0. Moreover,
according to the remaining assumption, we have ¢ (t,) < t,, for all n € N.
Now the result follows from Theorem 1.

Let us note the following obvious

Corollary 3. Let T' be a uniformly continuous selfmapping of a non-
empty closed convex subset X of a Banach space. If for a positive sequence
tn, (n € N), with lim ¢y = 0 we have

n—oo

sup {[|T(z) =T W) : [lx =yl = tn; z,y € X} <tp, (n€N),
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then T has a unique fixed point. Moreover T' is ~y-contractive for an in-
creasing and concave function .

For a subset K of a metric space (X, d) denote by 0K the boundary
of K. NaADIM A. AssaD [2] proved the following theorem.

Let (X, d) be a complete Menger convex metric space and K a non-
empty closed subset of X. Suppose that T : K — X satisfies the following
condition: given € > 0, there exists o > 0 such that

e<d(r,y) <e+d = d(T(x),T(y) <e, (z,y€K),
and T(x) € K for x € K. Then T has a unique fixed point in K.
Applying this results we prove the following

Theorem 3. Let (X,d) be a complete Menger convex metric space
and K a nonempty closed and Menger convex subset of X. Suppose that
T : K — X satisfies the following conditions: T'(x) € K for z € K and

(%) there exist a continuous at 0 function 1;[0,00) — [0,00) and a
positive sequence t,, (n € N), such that

nleréo tn =0, ¢Y(t,) <tn, (n€N),
and
d(T'(z), T(y)) <¢(d(z,y), (z,y€K).

Then T has a unique fixed point in K. Moreover there exists an increasing
and concave function 7y : [0, 00) — [0,00) such that v(t) < t for t > 0 and

d(T(x),T(y)) <~(d(z,y)), (2,y € K).

Proor. Taking in Proposition 3 : X := K, Y := X and the one-
elemet family {7} we get the existence of the function v. The existence of
a unique fixed point results from the above Assad theorem.

Remark 2. Let us note that the above theorem remains true on re-
placing (x) by each of the following conditions:

(xx) T is uniformly continuous and there exists a positive se-
quence t,, (n € N), lim ¢, =0 such that
n—oo

sup{d(T(x),T(y)) : d(z,y) =tn; z,y € K} <t,, (neN);
(x % %) given € > 0, there exists 6 > 0 such that
e<d(xz,y)<e+d = d(T(x),T(y)) <e, (z,y€K).
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For a metric space (X,d) denote by (B(X), D) the metric space of
all nonempty bounded closed subsets of X with the Hausdorff metric D
induced by d. NADIM A. AssaD and W. A. KIRK [1] proved the following
fixed point theorem for set-valued contractive mappings.

Let (X, d) be a complete Menger convex metric space, K a nonempty
closed subset of X and T : K — B(X) a mapping such that T'(z) C K for
every x € OK. If there is a constant ¢ < 1 such that

D(T(x),T(y)) < cd(z,y), (x,y € K),
then there exists a € K such that a € T'(a).
Using this results, Proposition 3 and Corollary 1 one can prove

Theorem 4. Let (X, d) be a complete Menger convex metric space,
K a nonempty closed Menger convex subset of X and T : K — B(X) a
mapping such that T(x) C K for every x € 0K. If there is a continuous
at 0 function v : [0,00) — [0,00), a sequence t, > 0, (n € N), and ¢ < 1
such that

D(T(z), T(y)) < ¢(d(z,y)), (2,y € K),

and
lim ¢, =0, ¥(t,) <ctp, (n €N),

then there exists a point a € K such that a € T'(a). Moreover
D(T(x),T(y)) < cd(z,y), (z,y € K).

5. An application to a functional equation

In this section we apply Proposition 3 and Theorem 1 to the theory
of integrable solutions of the functional equation

(1) ¢(x) = h(z, o[f(x)])

where ¢ is an unknown function. We assume that the given functions f
and h satisfy the following hypotheses:
(i) f:1]0,1] — [0,1] is increasing and absolutely continuous;
(i) h:[0,1] x R — R and
(a) for every y € R the function h(-,y) : [0,1] — R is
measurable,
(b) for almost all x € [0,1] the function h(x,-) : R — R is
continuous;
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(iii) there exist n : [0,1] — (0,00) and @ : [0,00) — [0,00) such
that
[h(z,y1) — h(@,y2)| < 0(2)Y(|ly1 — v2]), (z €[0,1); y1,92 €R)

1 is continuous at 0, and there exists a positive sequence t,,,
(n € N), such that

Bm t, =0, (ty) <tn, (n€N).

n—oo

Lemma 3. If h : [0,1] x R — R satisfies (iii) then there exists an
incereasing concave function v : [0,00) — [0, 00) such that

|h(x,y1) - h(x7y2)| < 77(33)7(|y1 - y2|)v (yl,y2 € R)»
~v(t) <t, (t>0).

Proor. With the following specification: X =Y = R; I := [0,1],
(t=2x); and T, = T, : R — R defined by Ty(y) := [n(z)] " h(x,y), the
lemma is an immediate consequence of Proposition 3.

In the sequel L! stands for the Banach space of all the Lebesgue
integrable functions ¢ : [0,1] — R.

Theorem 2. Suppose that conditions (i)—(iii) are fulfilled. If
h(-,00€ L' and n<f ae inl0,1]

then equation (1) has exactly one solution ¢ € L. Moreover, for every
¢o € L' the sequence of successive approximations (¢,,)°_, given by

¢n+1(1’) = h($,¢n[f($)]), (n:0717"~)7
converges (in the L'-norm) to ¢.

PRrROOF. By (i)—(ii) and Caratheodory’s theorem, the function

T(¢)(x) := h(z, ¢[f(z)]), (x€]0,1]),

is measurable for every ¢ € L!. Moreover for ¢ € L' we have

(2, Lf (2)])] < n(2)|oLf (2)]] + | (=, 0)]

and, consequently, making use of the inequality n < f’, we get
J @@ < [ ra@iels@id+ [ .o -
:/ M@M+/W%Mm<m
f(I) I
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which shows that 7' : L' — L!'. Take arbitrary ¢, ¢» € L'. Applying
in turn Lemma 3, inequality n < f’ and the Jensen integral inequality for
concave functions, (cf. M. KuczMA [7], p. 181), we obtain

IT(61) — T(62) | = / I, d1 [ (2)]) — bz, dolf (2)])]de <
< / V|1l @)] — dalf @)]]) (@) dr = / (11 (2) — do)])de <
I F)

< [2(01(2) ~ dala)do < ( [1oxt2) —¢2<m>|dx) — (61 — dall).

Thus the theorem folows from Theorem 1.
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