On sumset of certain sets

By NORBERT HEGYVÁRI (Budapest)

1. Introduction

In 1971 R . L. Graham raised the following question: Let $\alpha, \beta>0$ be real numbers and put

$$
A_{\alpha \beta}=\left\{\left[2^{n} \alpha\right],\left[2^{n} \beta\right] \mid n \in \mathbb{N}\right\} .
$$

For which pairs of (α, β) is the sequence $A_{\alpha \beta}$ complete?
We say that A is complete if every sufficiently large integer belongs to $P(A)=\left\{\sum \varepsilon_{i} a_{i} \mid a_{i} \in A ; \varepsilon_{i}=0\right.$ or 1$\}$. An infinite sequence of integers is said to be subcomplete if it contains an infinite arithmetic progression.

It became clear that the structure of $P\left(A_{\alpha \beta}\right)$ depends on the dyadic representations of α and β.

Let $\rho>0$ and let $\rho=\sum_{i=-k}^{\infty} \varepsilon_{i}(\rho) \cdot 2^{-i} ; \varepsilon_{i}(\rho) \in\{0,1\}$ and assume that $\varepsilon_{i}(\rho)=0$ infinitely many times. Let us call a real number ρ an infinite diadical fraction (briefly IDF) if $\varepsilon_{i}(\rho)=1$ infinitely many times, otherwise let us call ρ a finite diadical fraction (briefly FDF). Actually we can distinguish three cases:

Definition 1. Let us say that the type of $A_{\alpha \beta}$ is
(a) \mathcal{F} if α and β are FDF
(b) \mathcal{M} if α is FDF and β is IDF
(c) \mathcal{I} if α and β are IDF.

In [3] I proved that if the type of $A_{\alpha \beta}$ is \mathcal{M} then $A_{\alpha, \beta}$ is complete and I showed in [4] that if $\alpha>0$ and $X_{\alpha}=\left\{\beta \mid A_{\alpha \beta}\right.$ is complete $\}$ then $\mu\left(X_{\alpha}\right)=0$ or $\infty(\mu$ is the Lebesgue-measure). I also proved in [3]:

Key words and phrases: Supported by CNRS Laboratoire de Mathématiques, Discreétes Marseille.
1980 Mathematics Subject Calssification (1985 Revision): 11P81.

Theorem A. There are continuum many pairs of (α, β) for which $A_{\alpha \beta}$ is not complete.

We are going to sharpen this result in section 3, proving the following
Theorem 1. There are continuum many pairs of (α, β) for which $A_{\alpha \beta}$ is not subcomplete.

Furthermore we would like to pay a dept: we shall investigate $A_{\alpha \beta}$ if it has type \mathcal{F}.

Definition 2. Let α, γ be FDF. Let
(1) $m_{\gamma}^{*}=\min \left\{m \mid \forall k>m \Longrightarrow \varepsilon_{k}(\gamma)=0\right\}$ and let
(2) $g_{\alpha}(m)=\mid\left\{B \mid m_{\beta}^{*}=m\right.$ and $A_{\alpha \beta}$ is complete $\} \mid / 2^{m}$.

Actually the function $g_{\alpha}(m)$ counts those β 's for which $A_{\alpha \beta}$ is complete and has type \mathcal{F}. In section 3 we prove

Theorem 2. Let $\alpha>0$ be FDF. Then

$$
\lim _{m \rightarrow \infty} g_{\alpha}(m)=1
$$

2. The structure of $P\left(A_{\alpha}\right)$

The second aim of this note is to investigate the structure of $P\left(A_{\alpha}\right)$. It is easy to see that A_{α} is subcomplete if and only if α is FDF.

Definition 3. Let

$$
f_{\alpha}(x)=\max \left\{L \mid \exists y \leq x-L \text { for which } \forall t, 1 \leq t \leq 1, y+t \notin P\left(A_{\alpha}\right)\right\}
$$

In other words $f_{\alpha}(x)$ is the biggest gap in $P\left(A_{\alpha}\right) \cap[1, x]$. In section 4 we prove the following theorem:

Theorem 3. (1) $\limsup _{x \rightarrow \infty} f_{\alpha}(x) / \log _{2} x \leq 1$.
(2) For almost all α we have $\lim _{x \rightarrow \infty} f_{\alpha}(x)=1 / 2$.
(3) Let

$$
\begin{aligned}
& G_{A}(\eta, x)=G(\eta, x)=\{\alpha \mid A-1 \leq \alpha<A \text { and } \\
&\left.\left(f_{\alpha}(x)-\frac{\log _{2} x}{2}\right) /(\sqrt{\log x} / 2) \leq \eta\right\} .
\end{aligned}
$$

Then

$$
\lim _{x \rightarrow \infty} \mu(G(\eta, x))=\Phi(\eta)
$$

where $\Phi(\eta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\eta} e^{-t^{2} / 2} d t$.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let $a_{n}=\left[2^{n} \alpha\right]$ and let $x_{n}=a_{0}+a_{1}+\cdots+$ $a_{n}+1$.

Lemma 1. Let $\alpha \geq 2$ and $\beta=2^{n} \alpha(n \in \mathbb{N})$. Then $x_{n} \notin P\left(A_{\alpha \beta}\right)$ for every $n \in \mathbb{N}$.

See the proof of Theorem 2 in [3].
Thus by Lemma 1 we only have to show that there are continuum many α such that for every $n \in \mathbb{N}$ and $0 \leq r<n$ there is an m for which $x_{m} \equiv r(\bmod n)$. Let us arrange the set of the arithmetical progressions according to their modulus to a non-decreasing sequence. Let us assume, that we have defined the digits

$$
\varepsilon_{1}(\alpha), \varepsilon_{2}(\alpha), \ldots, \varepsilon_{N-1}(\alpha)
$$

$N=N(n)$, so that for every $m, 1 \leq m \leq n$ and for every $s, 0 \leq s<m$ there are $r \leq N-1$ and $k \in \mathbb{N}$ for which $x_{r}=k \cdot m+s$.

Now let us choose $\varepsilon_{N}(\alpha)$ equal to 0 or 1 arbitrarily.
Lemma 2. Let $N, m \in \mathbb{N}$. Then

$$
\begin{aligned}
& x_{N+m}-x_{N-1}=a_{N}+a_{N+1}+\cdots+a_{N+m}= \\
& \quad=a_{N}\left(2^{m+1}-1\right)+\varepsilon_{N+1}(\alpha)\left(2^{m}-1\right)+ \\
& \quad+\varepsilon_{N+2}(\alpha)\left(2^{m-1}-1\right)+\cdots+\varepsilon_{N+m}(\alpha) .
\end{aligned}
$$

Proof of Lemma 2. It is easy to check that if $\alpha=a_{0}+\sum_{i=1}^{\infty} \varepsilon_{i}(\alpha) \cdot 2^{-i}$ then

$$
\begin{equation*}
a_{n+1}=2 \cdot a_{n}+\varepsilon_{n+1}(\alpha) \tag{1.1}
\end{equation*}
$$

This implies that for every $k \in \mathbb{N}$

$$
a_{N+k}=2^{k} \cdot a_{N}+\varepsilon_{N+1}(\alpha) \cdot 2^{k-1}+\varepsilon_{N+2}(\alpha) \cdot 2^{k-2}+\cdots+\varepsilon_{N+k}(\alpha)
$$

Thus we get

$$
\begin{gathered}
x_{N+m}-x_{N-1}=\sum_{h=0}^{m} a_{N+h}=\sum_{h=0}^{m}\left(2^{h} \cdot a_{N}+\sum_{k=1}^{h} \varepsilon_{N+h}(\alpha) \cdot 2^{k-h}\right)= \\
=a_{N} \cdot\left(2^{m+1}-1\right)+\varepsilon_{N+1}(\alpha) \cdot\left(2^{m}-1\right)+\cdots+\varepsilon_{N+m}(\alpha)
\end{gathered}
$$

as we asserted.
Let now $m=n^{3}$. In the next step we show that there is an $u \in \mathbb{N}$ for which $(u, n)=1$ and the congruence

$$
\begin{equation*}
2^{x}-1 \equiv u \quad(\bmod n) \tag{1.2}
\end{equation*}
$$

has infinitely many solutions. If $n=2^{t}$ then for every $x \in \mathbb{N}\left(2^{x}-1, n\right)=1$ and by the pigeonhole principle for some u (1.2) has infinitely many solutions. Now let $n=2^{t} \cdot z, z=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}>1$. Then for every i

$$
2^{s \cdot \phi(z)+1}-1 \equiv 2 \cdot\left(2^{\phi(z)}\right)^{s}-1 \equiv 2-1 \equiv 1 \quad\left(\bmod p_{i}\right)
$$

and by $2 \nmid 2^{x}-1$ we get $\left(2^{s \cdot \phi(z)+1}-1, n\right)=1$. Furthermore let us note that if $a>t$ then for every $i \in \mathbb{N}$

$$
2^{a}-1 \equiv 2^{a+i \cdot \phi(z)}-1 \quad(\bmod n)
$$

Let $U=\{(t+i) \cdot \phi(z)+1 \mid i \in \mathbb{N}\}=\left\{u_{1}<u_{2}<\ldots\right\}$. Thus if $x \in U$ then x is a solution of (1.2). Clearly $m>\max _{1 \leq i \leq n}\left\{u_{i}\right\}$.

Now we are going to prove that there are m-tuples of digits

$$
\varepsilon_{N+1}(\alpha), \varepsilon_{N+2}(\alpha), \ldots, \varepsilon_{N+m}(\alpha)
$$

for which

$$
x_{N+m}-x_{N-1} \equiv r-x_{N-1}-a_{N} \cdot\left(2^{m+1}-1\right) \quad(\bmod n)
$$

Since $(u, n)=1$, there is an $y, 1 \leq y<n$ for which

$$
\begin{equation*}
y \cdot u \equiv r-x_{N-1}-a_{N} \cdot\left(2^{m+1}-1\right) \quad(\bmod n) \tag{1.3}
\end{equation*}
$$

Now if

$$
\varepsilon_{N+h}(\alpha)= \begin{cases}1 \text { if } \exists i & \text { for which } h=m-u_{i}+1 \\ 0 & \text { otherwise }\end{cases}
$$

then by (1.3)

$$
\begin{gathered}
x_{N+m} \equiv X_{N-1}+a_{N} \cdot\left(2^{m+1}-1\right)+2^{u_{1}}-1+2^{u_{2}}-1+\cdots+2^{u_{y}}-1 \equiv \\
\equiv x_{N-1}+a_{N} \cdot\left(2^{m+1}-1\right)+y \cdot u \equiv r(\bmod n)
\end{gathered}
$$

Since the digits $\left\{\varepsilon_{N(n)}(\alpha)\right\}$ have been choosen without restriction we get that there are continuum many α for which $A_{\alpha \beta}$ is not subcomplete.

Proof of Theorem 2. First we need a lemma which is essentially a quantative form of a results of mine [3].

Lemma 2. Let m be a positive integer, s be a nonnegative integer. Let us suppose that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \varepsilon_{i}(\beta)>2 m^{2} \tag{2.1}
\end{equation*}
$$

Then there exists $x_{m, s} \in P\left(A_{\beta}\right)$ for which $x_{m, s} \equiv s(\bmod m)$.
Proof of Lemma 2. By (2.1) we can select a sequence of indices $k_{1}<$ $k_{2}<\cdots<k_{m^{2}}$ for which $\varepsilon_{k_{i}+1}(\beta)=1$ and $k_{i+1}-k_{i}>1\left(i=1,2, \ldots, m^{2}\right)$. Using the pigeonhole principle we conclude that there is a $z \in[0, m-1]$ for which the congruence

$$
\left[2^{k_{i}} \beta\right] \equiv z \quad(\bmod m)
$$

has at least m solutions. Let these be $b_{k_{1}}, b_{k_{2}}, \ldots, b_{k_{m}}$, where $b_{k_{i}}=\left[2^{k_{i}} \beta\right]$. Let now $t \equiv-2 s(\bmod m)$ where $0 \leq t<m$. So

$$
\begin{gathered}
s=s(2 z+1)-2 z s \equiv s(2 z+1)+t \cdot z \equiv \\
\equiv\left(b_{k_{i_{1}}+1}+b_{k_{i_{2}}+1}+\cdots+b_{k_{i_{s}}+1}\right)+\left(b_{k_{i_{1}}}+b_{k_{i_{2}}}+\cdots+b_{k_{i_{s}}}\right)(\bmod m) .
\end{gathered}
$$

Let α be FDF. The number of those β 's for which β is FDF and $j_{\beta}^{*}=j$ is 2^{j}. Let $A:=2 \cdot\left[2^{j_{\alpha}^{*}} \alpha\right]$. If

$$
\sum_{i=1}^{\infty} \varepsilon_{i}(\beta)>A
$$

then by Lemma 2 we conclude that $A_{\alpha \beta}$ is complete. This implies that the number of those β 's for which $j_{\beta}^{*}=j$ and $A_{\alpha \beta}$ is not complete is at most

$$
\sum_{n=1}^{A}\binom{j}{n}<\sum_{n=1}^{A} j^{n}<j^{A+1}
$$

Thus

$$
g_{\alpha}(j)>\left(2^{j}-j^{A+1}\right) / 2^{j}=1-j^{A+1} / 2^{j}
$$

which means that

$$
\lim _{j \rightarrow \infty} g_{\alpha}(j)=1
$$

4. Proof of Theorem 3

Lemma 3.1. Let $P_{n}\left(A_{\alpha}\right):=P\left(A_{\alpha}\right) \cap\left[1, a_{n}\right]$. The biggest gap in $P_{n}\left(A_{\alpha}\right)$ is the interval

$$
\begin{equation*}
\mathcal{I}_{n}:=\left[\sum_{i=0}^{n-1} a_{i}+1, a_{n}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathcal{I}_{n}\right|=\sum_{i=1}^{n} \varepsilon_{i}(\alpha)+a_{0}-1 \tag{3.2}
\end{equation*}
$$

(if $v<u$ then let $\sum_{i=u}^{v} a_{i}=0$).
Proof of Lemma 3.1. We are going to show by induction on n that the assertions of the lemma hold for every $n \geq 0$.

For $n=0, \mathcal{I}_{0}=\left[1, a_{0}\right)$ and $\left|\mathcal{I}_{0}\right|=a_{0}-1$.
Assume now that $n \geq 1$ and the assertions hold with $0,1, \ldots, n-1$ in place of n. First let us observe by (1.1) that if $m \notin P_{n-1}\left(A_{\alpha}\right)$ then $m+a_{n-1} \notin P_{n}\left(A_{\alpha}\right)$. So we conclude that if \mathcal{J} is a gap in $P_{n-1}\left(A_{\alpha}\right)$ then $a_{n}+\mathcal{J}$ is also a gap in $\left[a_{n-1}, a_{n}\right]$ and conversely if \mathcal{J}^{\prime} is a gap in $\left[a_{n-1}, a_{n}\right]$ then $\mathcal{J}^{\prime}-a_{n-1}$ is also one. This implies, using the inductive hypothesis, that the biggest gap in $\left[1,2 a_{n-1}\right)$ is the interval $\left[\sum_{i=0}^{n-1} a_{i}+1,2 a_{n-1}\right)$. Since $2 a_{n-1} \in P\left(A_{\alpha}\right)$ if $\varepsilon_{n}(\alpha)=0$ and $2 a_{n-1} \notin P\left(A_{\alpha}\right)$ otherwise, we get that the biggest gap in $P_{n}\left(A_{\alpha}\right)$ is the interval $\mathcal{I}_{n}=\left[\sum_{i=0}^{n-1} a_{i}+1, a_{n}\right)$ and

$$
\left|\mathcal{I}_{n}\right|=\left|\mathcal{I}_{n-1}\right|+\varepsilon_{n}(\alpha)=\sum_{i=1}^{n} \varepsilon_{i}(\alpha)+a_{0}-1
$$

This completes the proof of the lemma.
Now we prove the first point of the theorem.
Let

$$
\begin{equation*}
a_{n} \leq x<a_{n+1} . \tag{3.3}
\end{equation*}
$$

Then

$$
2^{n} \leq\left[2^{n} \alpha\right]=a_{n} \leq x<a_{n+1} \leq 2^{n+1} \alpha
$$

So

$$
\begin{equation*}
\log _{2} x-\log _{2} \alpha-1 \leq n \leq \log _{2} x \tag{3.4}
\end{equation*}
$$

By Lemma 3.1 and by (3.3) and (3.4) we get the estimation

$$
f_{\alpha}(x)=\left|\mathcal{I}_{n}\right|=\sum_{i=1}^{n} \varepsilon_{i}(\alpha)+a_{0}-1 \leq n+a_{0}-1 \leq \log _{2} x+a_{0}-1
$$

i.e. $\limsup _{x \rightarrow \infty} f_{\alpha}(x) / \log x \leq 1$.

We turn now to the proof of the second point of the theorem.
Lemma 3.2. Suppose that α is expressed in the scale of r, and the digit $b, 0 \leq b<r$ occurs n_{b} times in the first n places. Then for almost all numbers $n_{b} / n \rightarrow 1 / r$.

This is a special case of Th. 148. in [5].
Lemma 3.2 implies that for almost all $\alpha \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \varepsilon_{i}(\alpha) / n=1 / 2$. This means that for every $\varepsilon>0$

$$
(1 / 2-\varepsilon) \cdot n \leq f_{\alpha}(x) \leq(1 / 2+\varepsilon) \cdot n
$$

if $n>n_{0}\left(a_{0}, \varepsilon\right)$. By (3.4) we get

$$
(1 / 2-\varepsilon) \cdot \log _{2} x-c_{\alpha} \leq f_{\alpha}(x) \leq(1 / 2+\varepsilon) \cdot \log _{2} x
$$

where c_{α} depends only on α.
Thus by (3.3) we have that for almost all α

$$
f_{\alpha}(x) / \log _{2} x \rightarrow 1 / 2
$$

if $x \rightarrow \infty$, which proves the second point of the theorem.
Finally we prove the third part of the theorem. (3.3) and (3.4) mean that $n=\log _{2} x+O(1)$. The condition

$$
f_{\alpha}(x) \leq \log x / 2+\eta \sqrt{\log _{2} x} / 2
$$

means that

$$
\begin{equation*}
\sum_{i=1}^{n+1} \varepsilon_{i}(\alpha)+a_{0}-1 \leq n / 2+\eta \cdot\left(n+c^{\prime}\right)^{1 / 2} / 2+c \tag{3.5}
\end{equation*}
$$

where c, c^{\prime} depend only on α.
Let

$$
\begin{aligned}
& F_{n, A}(\eta, \delta)=F_{n}(\eta, \delta)=\{\alpha \mid A-1 \leq \alpha<A \text { and } \\
& \left.\qquad \sum_{i=1}^{n} \varepsilon_{i}(\alpha)<n / 2+(\eta+\delta) \cdot \sqrt{n} / 2\right\} .
\end{aligned}
$$

Clearly if $\alpha \in F(\eta, \delta)$ then (3.5) is satisfied if n is large enough. Furthermore

$$
\mu\left(F_{n}(\eta, \delta)\right)=\sum^{\prime}\binom{n}{k} \cdot 2^{-n}
$$

where the summation in \sum^{\prime} is taken for those k 's for which

$$
(k-n / 2) /(\sqrt{n} / 2)<\eta+\delta .
$$

Thus for every $\delta>0$, using the connection between the binomial and the normal distribution we get

$$
\lim _{n \rightarrow \infty} \mu\left(F_{n}(\eta, \delta)\right)=\Phi(\eta+\delta)
$$

and so

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} G(x, \eta) \leq \Phi(\eta+\delta) \tag{3.6}
\end{equation*}
$$

Using a similar method we have that for every $\delta>0$

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} G(x, \eta) \geq \Phi(\eta-\delta) \tag{3.7}
\end{equation*}
$$

(3.6) and (3.7) imply the third part of the theorem.

References

[1] R. L. Graham, On sums of integers taken from a fixed sequence, Proc. Wash. State Univ. Conf. on Number Theory, 1971, pp. 22-40.
[2] P. Erdős and R. L. Graham, Old and new results in combinatorial number theory, Monographie ${ }^{\circ}{ }^{\circ} 28$ de L'Enseignement Mathématique, Genève, 1980.
[3] N. Hegyvári, Some remarks on a problem of Erdős and Graham, Acta Math. Hung. 53 (1-2), 149-154.
[4] N. hegyvíri, On complete sequences, Annales Univ. Sci. Budapest 34 (1991), 7-10.
[5] G. H. Hardy and E. Wright, An introduction to the Theory of Numbers, Fourth edition, Oxford Clarendon Press, 1971.

NORBERT HEGYVÁRI
DEPARTMENT OF MATHEMATICS
ELTE TFK, L. EÖTVÖS UNIVERSITY
1055 BUDAPEST, MARKÓ U. 29.
HUNGARY
(Received March 19, 1993)

