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On sumset of certain sets

By NORBERT HEGYVÁRI (Budapest)

1. Introduction

In 1971 R. L. Graham raised the following question: Let α, β > 0
be real numbers and put

Aαβ = {[2nα], [2nβ] | n ∈ N}.
For which pairs of (α, β) is the sequence Aαβ complete?

We say that A is complete if every sufficiently large integer belongs
to P (A) = {∑ εiai | ai ∈ A; εi = 0 or 1}. An infinite sequence of integers
is said to be subcomplete if it contains an infinite arithmetic progression.

It became clear that the structure of P (Aαβ) depends on the dyadic
representations of α and β.

Let ρ > 0 and let ρ =
∞∑

i=−k

εi(ρ) · 2−i; εi(ρ) ∈ {0, 1} and assume

that εi(ρ) = 0 infinitely many times. Let us call a real number ρ an
infinite diadical fraction (briefly IDF) if εi(ρ) = 1 infinitely many times,
otherwise let us call ρ a finite diadical fraction (briefly FDF). Actually we
can distinguish three cases:

Definition 1. Let us say that the type of Aαβ is
(a) F if α and β are FDF

(b) M if α is FDF and β is IDF

(c) I if α and β are IDF.

In [3] I proved that if the type of Aαβ is M then Aα,β is complete
and I showed in [4] that if α > 0 and Xα = {β | Aαβ is complete} then
µ(Xα) = 0 or ∞ (µ is the Lebesgue-measure). I also proved in [3]:
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creétes Marseille.
1980 Mathematics Subject Calssification (1985 Revision): 11P81.



116 Norbert Hegyvári

Theorem A. There are continuum many pairs of (α, β) for which Aαβ

is not complete.

We are going to sharpen this result in section 3, proving the following

Theorem 1. There are continuum many pairs of (α, β) for which Aαβ

is not subcomplete.

Furthermore we would like to pay a dept: we shall investigate Aαβ if
it has type F .

Definition 2. Let α, γ be FDF. Let
(1) m∗

γ = min{m | ∀k > m =⇒ εk(γ) = 0} and let
(2) gα(m) = |{B | m∗

β = m and Aαβ is complete} |/2m.

Actually the function gα(m) counts those β’s for which Aαβ is com-
plete and has type F . In section 3 we prove

Theorem 2. Let α > 0 be FDF. Then

lim
m→∞

gα(m) = 1.

2. The structure of P (Aα)

The second aim of this note is to investigate the structure of P (Aα).
It is easy to see that Aα is subcomplete if and only if α is FDF.

Definition 3. Let

fα(x) = max{L | ∃y ≤ x− L for which ∀t, 1 ≤ t ≤ 1, y + t /∈ P (Aα)}.

In other words fα(x) is the biggest gap in P (Aα)∩ [1, x]. In section 4
we prove the following theorem:

Theorem 3. (1) lim sup
x→∞

fα(x)/ log2 x ≤ 1.

(2) For almost all α we have lim
x→∞

fα(x) = 1/2.

(3) Let

GA(η, x) = G(η, x) =
{

α | A− 1 ≤ α < A and
(

fα(x)− log2 x

2

) / (√
log x /2

)
≤ η

}
.

Then
lim

x→∞
µ(G(η, x)) = Φ(η),
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where Φ(η) = 1√
2π

η∫
−∞

e−t2/2dt.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let an = [2nα] and let xn = a0 + a1 + · · · +
an + 1.

Lemma 1. Let α ≥ 2 and β = 2nα (n ∈ N). Then xn /∈ P (Aαβ) for
every n ∈ N.

See the proof of Theorem 2 in [3].

Thus by Lemma 1 we only have to show that there are continuum
many α such that for every n ∈ N and 0 ≤ r < n there is an m for which
xm ≡ r (mod n). Let us arrange the set of the arithmetical progressions
according to their modulus to a non-decreasing sequence. Let us assume,
that we have defined the digits

ε1(α), ε2(α), . . . , εN−1(α)

N = N(n), so that for every m, 1 ≤ m ≤ n and for every s, 0 ≤ s < m
there are r ≤ N − 1 and k ∈ N for which xr = k ·m + s.

Now let us choose εN (α) equal to 0 or 1 arbitrarily.

Lemma 2. Let N,m ∈ N. Then

xN+m − xN−1 = aN + aN+1 + · · ·+ aN+m =

= aN (2m+1 − 1) + εN+1(α)(2m − 1)+

+εN+2(α)(2m−1 − 1) + · · ·+ εN+m(α).

Proof of Lemma 2. It is easy to check that if α = a0 +
∞∑

i=1

εi(α) ·2−i

then

(1.1) an+1 = 2 · an + εn+1(α).

This implies that for every k ∈ N
aN+k = 2k · aN + εN+1(α) · 2k−1 + εN+2(α) · 2k−2 + · · ·+ εN+k(α).

Thus we get

xN+m − xN−1 =
m∑

h=0

aN+h =
m∑

h=0

(
2h · aN +

h∑

k=1

εN+h(α) · 2k−h

)
=

= aN · (2m+1 − 1) + εN+1(α) · (2m − 1) + · · ·+ εN+m(α)
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as we asserted.
Let now m = n3. In the next step we show that there is an u ∈ N for

which (u, n) = 1 and the congruence

(1.2) 2x − 1 ≡ u (mod n)

has infinitely many solutions. If n = 2t then for every x ∈ N (2x−1, n)=1
and by the pigeonhole principle for some u (1.2) has infinitely many solu-
tions. Now let n = 2t · z, z = pα1

1 · pα2
2 . . . pαr

r > 1. Then for every i

2s·φ(z)+1 − 1 ≡ 2 · (2φ(z))s − 1 ≡ 2− 1 ≡ 1 (mod pi)

and by 2 - 2x − 1 we get (2s·φ(z)+1 − 1, n) = 1. Furthermore let us note
that if a > t then for every i ∈ N

2a − 1 ≡ 2a+i·φ(z) − 1 (mod n).

Let U = {(t + i) · φ(z) + 1 | i ∈ N} = {u1 < u2 < . . . }. Thus if x ∈ U then
x is a solution of (1.2). Clearly m > max

1≤i≤n
{ui}.

Now we are going to prove that there are m-tuples of digits

εN+1(α), εN+2(α), . . . , εN+m(α)

for which

xN+m − xN−1 ≡ r − xN−1 − aN · (2m+1 − 1) (mod n).

Since (u, n) = 1, there is an y, 1 ≤ y < n for which

(1.3) y · u ≡ r − xN−1 − aN · (2m+1 − 1) (mod n).

Now if

εN+h(α) =
{

1 if ∃i for which h = m− ui + 1
0 otherwise

then by (1.3)

xN+m ≡ XN−1 + aN · (2m+1 − 1) + 2u1 − 1 + 2u2 − 1 + · · ·+ 2uy − 1 ≡
≡ xN−1 + aN · (2m+1 − 1) + y · u ≡ r (mod n).

Since the digits {εN(n)(α)} have been choosen without restriction we get
that there are continuum many α for which Aαβ is not subcomplete.

Proof of Theorem 2. First we need a lemma which is essentially a
quantative form of a results of mine [3].
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Lemma 2. Let m be a positive integer, s be a nonnegative integer.
Let us suppose that

(2.1)
∞∑

i=1

εi(β) > 2m2.

Then there exists xm,s ∈ P (Aβ) for which xm,s ≡ s (mod m).

Proof of Lemma 2. By (2.1) we can select a sequence of indices k1 <
k2 < · · · < km2 for which εki+1(β) = 1 and ki+1−ki > 1 (i = 1, 2, . . . , m2).
Using the pigeonhole principle we conclude that there is a z ∈ [0,m − 1]
for which the congruence

[2kiβ] ≡ z (mod m)

has at least m solutions. Let these be bk1 , bk2 , . . . , bkm , where bki = [2kiβ].
Let now t ≡ −2s (mod m) where 0 ≤ t < m. So

s = s(2z + 1)− 2zs ≡ s(2z + 1) + t · z ≡
≡ (bki1+1 + bki2+1 + · · ·+ bkis+1) + (bki1 + bki2 + · · ·+ bkis

) (mod m).

Let α be FDF. The number of those β’s for which β is FDF and j∗β = j is
2j . Let A := 2 · [2j∗αα]. If

∞∑

i=1

εi(β) > A

then by Lemma 2 we conclude that Aαβ is complete. This implies that the
number of those β’s for which j∗β = j and Aαβ is not complete is at most

A∑
n=1

(
j

n

)
<

A∑
n=1

jn < jA+1.

Thus

gα(j) > (2j − jA+1)/2j = 1− jA+1/2j

which means that

lim
j→∞

gα(j) = 1.
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4. Proof of Theorem 3

Lemma 3.1. Let Pn(Aα) := P (Aα) ∩ [1, an]. The biggest gap in
Pn(Aα) is the interval

(3.1) In :=

[
n−1∑

i=0

ai + 1, an

)

and

(3.2) |In| =
n∑

i=1

εi(α) + a0 − 1

(if v < u then let
v∑

i=u

ai = 0).

Proof of Lemma 3.1. We are going to show by induction on n that
the assertions of the lemma hold for every n ≥ 0.

For n = 0, I0 = [1, a0) and |I0| = a0 − 1.
Assume now that n ≥ 1 and the assertions hold with 0, 1, . . . , n − 1

in place of n. First let us observe by (1.1) that if m /∈ Pn−1(Aα) then
m + an−1 /∈ Pn(Aα). So we conclude that if J is a gap in Pn−1(Aα) then
an +J is also a gap in [an−1, an] and conversely if J ′ is a gap in [an−1, an]
then J ′ − an−1 is also one. This implies, using the inductive hypothesis,

that the biggest gap in [1, 2an−1) is the interval
[

n−1∑
i=0

ai + 1, 2an−1

)
. Since

2an−1 ∈ P (Aα) if εn(α) = 0 and 2an−1 /∈ P (Aα) otherwise, we get that

the biggest gap in Pn(Aα) is the interval In =
[

n−1∑
i=0

ai + 1, an

)
and

|In| = |In−1|+ εn(α) =
n∑

i=1

εi(α) + a0 − 1.

This completes the proof of the lemma.

Now we prove the first point of the theorem.
Let

(3.3) an ≤ x < an+1.

Then
2n ≤ [2nα] = an ≤ x < an+1 ≤ 2n+1α.

So

(3.4) log2 x− log2 α− 1 ≤ n ≤ log2 x.
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By Lemma 3.1 and by (3.3) and (3.4) we get the estimation

fα(x) = |In| =
n∑

i=1

εi(α) + a0 − 1 ≤ n + a0 − 1 ≤ log2 x + a0 − 1

i.e. lim sup
x→∞

fα(x)/ log x ≤ 1.

We turn now to the proof of the second point of the theorem.

Lemma 3.2. Suppose that α is expressed in the scale of r, and the
digit b, 0 ≤ b < r occurs nb times in the first n places. Then for almost all
numbers nb/n → 1/r.

This is a special case of Th. 148. in [5].

Lemma 3.2 implies that for almost all α lim
n→∞

n∑
i=1

εi(α)/n = 1/2. This

means that for every ε > 0

(1/2− ε) · n ≤ fα(x) ≤ (1/2 + ε) · n
if n > n0(a0, ε). By (3.4) we get

(1/2− ε) · log2 x− cα ≤ fα(x) ≤ (1/2 + ε) · log2 x

where cα depends only on α.
Thus by (3.3) we have that for almost all α

fα(x)/ log2 x → 1/2

if x →∞, which proves the second point of the theorem.
Finally we prove the third part of the theorem. (3.3) and (3.4) mean

that n = log2 x + O(1). The condition

fα(x) ≤ log x/2 + η
√

log2 x /2

means that

(3.5)
n+1∑

i=1

εi(α) + a0 − 1 ≤ n/2 + η · (n + c′)1/2/2 + c

where c, c′ depend only on α.
Let

Fn,A(η, δ) = Fn(η, δ) = {α | A− 1 ≤ α < A and
n∑

i=1

εi(α) < n/2 + (η + δ) · √n/2}.
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Clearly if α ∈ F (η, δ) then (3.5) is satisfied if n is large enough. Further-
more

µ(Fn(η, δ)) =
∑′

(
n

k

)
· 2−n

where the summation in
∑′ is taken for those k’s for which

(k − n/2)/(
√

n/2) < η + δ.

Thus for every δ > 0, using the connection between the binomial and the
normal distribution we get

lim
n→∞

µ(Fn(η, δ)) = Φ(η + δ)

and so

(3.6) lim sup
x→∞

G(x, η) ≤ Φ(η + δ).

Using a similar method we have that for every δ > 0

(3.7) lim inf
x→∞

G(x, η) ≥ Φ(η − δ).

(3.6) and (3.7) imply the third part of the theorem.
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1055 BUDAPEST, MARKÓ U. 29.
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