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Oscillation of second-order differential equations

By JÁN OHRISKA (Ružomberok)

Abstract. The aim of this paper is to present sufficient conditions for the non-

linear differential equation (r(t)y′(t))′+p(t)f(y(g(t))) = 0 with deviating argument, and

for the ordinary or advanced linear differential equation (r(t)y′(t))′ + p(t)y(σ(t)) = 0 to

be oscillatory. Obtained results replenish and extend some known results. The technique

used in the paper is established on the notion of the v-derivative of a function.

1. Introduction

We consider the non-linear differential equation with deviating argument

(r(t)y′(t))′ + p(t)f(y(g(t))) = 0 (1)

and its special case, the linear ordinary or advanced differential equation

(r(t)y′(t))′ + p(t)y(σ(t)) = 0 (2)

on the interval [t0,∞), where

(i) r ∈ C([t0,∞)), r(t) > 0;

(ii) p ∈ C([t0,∞)), p(t) ≥ 0, p(t) 6≡ 0 in any neighborhood of infinity;

(iii) f ∈ C(R), xf(x) > 0 for x 6= 0 and f is a non-decreasing function;

(iv) g ∈ C([t0,∞)), limt→∞ g(t) =∞;

(v) σ ∈ C([t0,∞)), σ(t) ≥ t.
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We call a function u a solution of the equation of the type (1) for t ≥ t0
if u ∈ C1[t0,∞), ru′ ∈ C1[t0,∞) and it satisfies the equation considered on the

interval [t0,∞). As usual, we restrict our attention to solutions of (1) which

exist, and are nontrivial, on some ray [t0,∞), where t0 ≥ 0 may depend on the

particular solution. Such a solution is said to be oscillatory if it has arbitrarily

large zeros and non-oscillatory otherwise. An equation is said to be oscillatory if

all of its solutions are oscillatory.

Here we shall supplement the results of the paper [9] with results concerning

the differential equations (1) and (2). As it will be noted, obtained results reple-

nish, extend and improve several known results. The technique used in the paper,

analogous to the paper [9], is established on the notion of the v-derivative of a

function.

In the study of oscillatory nature of differential equations of the type (1) the

following two possibilities are mostly considered. One of them is
∫∞ dt

r(t) = ∞,

then the equation (1) has, as it were, the canonical form. Other possibility is∫∞ dt
r(t) <∞ and then the equation (1) has the non-canonical form. In this paper

the condition
∫∞ dt

r(t) <∞ we substitute by the monotonicity of the function r(t)

when both above mentioned cases are possible. It seems the monotonicity of the

function r(t) is a new phenomenon in the study of oscillatory nature of differential

equations.

2. Preliminaries and auxiliary results

We start with the following definition introduced in [6].

Definition 2.1. Let functions f and v be defined in a neighborhood O(t) of a

point t ∈ R and let the conditions x ∈ O(t), x 6= t imply v(x) 6= v(t). If the limit

lim
x→t

f(x)− f(t)

v(x)− v(t)

exists, then it is called the v-derivative of the function f at the point t and is

denoted by f ′v(t) or df(t)
dv .

Remark 2.1. One can easily find out that if c ∈ R and f and v are functions

then for t ∈ R the v-derivative df(t)
dv exists if and only if the v-derivative df(t)

d(v+c)

exists. Moreover df(t)
d(v+c) = df(t)

dv .

In the sequel we will use the following result concerned with the v-derivative.
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Theorem 2.1 (Theorem 1.2 in [6]). Let there exist v′(t) 6= 0 on an interval

I ⊂ R. Then for t ∈ I the v-derivative f ′v(t) exists if and only if the derivative

f ′(t) exists. Moreover,

f ′v(t) =
f ′(t)

v′(t)
.

We give a definition of v-derivatives of higher orders introduced in [6].

Definition 2.2. Let n > 1 be a natural number. Let functions vn and

f
(n−1)
v1,v2,...,vn−1 be defined on a neighborhood O(t) of a point t ∈ R and let the

conditions x ∈ O(t), x 6= t imply vn(x) 6= vn(t). If the limit

lim
x→t

f
(n−1)
v1,v2,...,vn−1(x)− f (n−1)v1,v2,...,vn−1(t)

vn(x)− vn(t)

exists, then it is called the n-th v-derivative of the function f at the point t and

is denoted by

f (n)v1,v2,...,vn(t) or
dnf(t)

dvn . . . dv2dv1
.

Now we present auxiliary results needed in next section. We start with an

extension of Lemma 2 from [5] which is proved in [9] .

We put

R(t) =

∫ t

t0

ds

r(s)
.

Lemma 2.1 (Lemma 2.1 in [9]). Suppose u ∈ C1[t0,∞), u(t) 6= 0 and

assume that d2u(t)
dtdR exists for t ≥ T ≥ t0. Let

u(t)
du(t)

dR
≥ 0, u(t)

d2u(t)

dtdR
≤ 0 for t ≥ T, (3)

where the equalities cannot hold in any neighborhood of infinity. Then for each

k ∈ (0, 1) there is a point T1 ≥ T such that

(a) |u(t)| ≥ kR(t)
∣∣du(t)

dR

∣∣ for t ≥ T1, if
∫∞ dt

r(t) =∞,

(b) |u(t)| ≥ k t
r(t)

∣∣du(t)
dR

∣∣ for t ≥ T1, if the function r is non-decreasing in a

neighborhood of infinity.

Lemma 2.2. Suppose u ∈ C1[t0,∞), u(t) 6= 0 and assume that d2u(t)
dtdR exists

for t ≥ T ≥ t0. If the function r(t) is non-decreasing and

u(t)
d2u(t)

dtdR
≤ 0 for t ≥ T,

where the equality cannot hold in any neighborhood of infinity, then

u(t)
du(t)

dR
> 0 for t ≥ T.
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Proof. First we consider the case

u(t) > 0,
d2u(t)

dtdR
=

d

dt

(
du(t)

dR

)
≤ 0 for t ≥ T.

Using the monotonicity of functions du(t)
dR (= r(t)u′(t)) and r(t) we have

u′(t1) ≥ r(t2)

r(t1)
u′(t2) ≥ u′(t2)

for any t2 > t1 ≥ T , i.e. the function u′(t) is non-increasing on the interval

[T,∞). This implies u′(t) > 0 for t ≥ T . Really, because if there exists a point

t3 ≥ T such that u′(t3) = 0, then due to assumptions there exists t4 > t3 such

that u′(t4) < 0 and the monotonicity of u′(t) implies that u(t)→ −∞ as t→∞
which contradicts the assumption u(t) > 0 for t ≥ T . Then also u(t)du(t)

dR > 0 for

t ≥ T .

In the opposite case, i.e. when

u(t) < 0,
d2u(t)

dtdR
≥ 0 for t ≥ T

we put v(t) = −u(t). Then

v(t) > 0,
d2v(t)

dtdR
=

d

dt

(
dv(t)

dR

)
≤ 0 for t ≥ T

and according to what was just proved we have v(t)dv(t)
dR > 0 for t ≥ T and so

u(t)
du(t)

dR
= −v(t)

d(−v(t))

dR
= v(t)

dv(t)

dR
> 0 for t ≥ T. �

Note that if
∫∞ dt

r(t) =∞, the assertion of Lemma 2.2 follows from Lemma 2.3

without assumption of monotonicity of the function r(t). For all that Lemma 2.2

is interesting especially when
∫∞ dt

r(t) < ∞. Now we give one example of such

type.

Example 1. Consider the functions r(t) = t2 and u(t) = 10 − t−3 on the

interval [1,∞). Then the function r(t) is increasing,
∫∞ dt

r(t) <∞ and the function

u(t) is positive for t ≥ 1. Moreover d2u(t)
dtdR = (r(t)u′(t))′ = −6t−3 < 0 and

du(t)
dR = r(t)u′(t) = 3t−2 > 0.

Lemma 2.3 (Lemma 2.3 in [9]). Suppose u ∈ C1[t0,∞), u(t) 6= 0 and

assume that d2u(t)
dtdR exists for t ≥ T ≥ t0. Let

u(t)
du(t)

dR
≤ 0, u(t)

d2u(t)

dtdR
≤ 0 for t ≥ T ≥ t0, (4)

where the equalities cannot hold in any neighborhood of infinity. Then
∞∫

dt
r(t) <∞.
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3. Main results

It is known that fulfilment of the conditions
∫∞ dt

r(t) =∞,
∫∞

p(t)dt =∞ suf-

fices for the oscillatory nature of the self-adjoint differential equation (r(t)y′(t))′+

p(t)y(t) = 0 (see e.g. [3], [4], or [7]). Now we show that the same result holds true

for a non-linear differential equation with any deviating argument. Hence, first

we consider the differential equation (1) and give the following result.

Theorem 3.1. Assume the conditions (i), (ii), (iii) and (iv) are satisfied.

Let ∫ ∞ dt

r(t)
=∞ and

∫ ∞
p(t)dt =∞.

Then equation (1) is oscillatory.

Proof. Suppose there exists a non-oscillatory solution u(t) of (1). Then it

is eventually of one sign and we assume that u(t) > 0 for t ≥ t1(≥ t0). In view of

the condition (iv) there exists t2 ≥ t1 such that g(t) ≥ t1 for t ≥ t2 and in regard

to the equation (1) we see that

(r(t)u′(t))′ = −p(t)f(u(g(t))) ≤ 0 for t ≥ t2.

Now using Lemma 2.3 and the first integral condition we know that r(t)u′(t) > 0

(therefore also u′(t) > 0) for t large enough, e.g. for t ≥ t3(≥ t2). Then, in view

of the monotonicity of u and f we have

(r(t)u′(t))′ + f(u(t1))p(t) ≤ 0, t ≥ t3.

The integration of this inequality from t3 to t (t ≥ t3) yields

r(t)u′(t)− r(t3)u′(t3) + f(u(t1))

∫ t

t3

p(s)ds ≤ 0.

As the function r(t)u′(t) is positive and non-increasing and f(u(t1)) > 0, the last

inequality, in view of the second integral condition, produces a contradiction.

A similar proof follows if we assume u(t) < 0 for t ≥ t1(≥ t0). �

Here we give the following example of a linear differential equation with

advanced argument as illustration of the above Theorem.

Example 2. Consider the differential equation

(tu′(t))′ +
√
t2 + 4π

(
t2 − 1

t2

)
u
(√

t2 + 4π
)

= 0, t ≥ 1. (5)
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Then r(t) = t, p(t) =
√
t2 + 4π

(
t2 − 1

t2

)
. It is evident that

∫∞ dt
r(t) = ∞ and

also
∫∞

p(t)dt =∞ so by Theorem 3.1 the equation (5) is oscillatory. Note that

u(t) = 1
t sin t2

2 is a solution of (5).

Using the monotone nature of the function r we obtain the following result.

Theorem 3.2. Assume the conditions (i), (ii), (iii) and (iv) are satisfied.

Let

(α) the function r be non-decreasing in a neighborhood of infinity,

(β)
∫∞

p(t)dt =∞.

Then equation (1) is oscillatory.

One can prove this Theorem in a similar way as the Theorem 3.1 was proved

where the Lemma 2.2 will be used instead of Lemma 2.3.

We illustrate the Theorem 3.2 in the following example.

Example 3. Consider the advanced differential equation

(t
√
tu′(t))′+

(
25t3− 3

2t2

)
5

√
(t2
√
t+ 10π)3u

(
5

√
(t2
√
t+ 10π)2

)
= 0, t≥1. (6)

Then the function r(t) = t
√
t is non-decreasing and the function

p(t) =

(
25t3 − 3

2t2

)
5

√(
t2
√
t+ 10π

)3
has the property

∫∞
p(t)dt = ∞. Moreover, it is clear that for function σ(t) =

5

√
(t2
√
t+ 10π)2 the inequality σ(t) ≥ t holds true. Therefore, by Theorem 3.2

the equation (6) is oscillatory. Note that u(t) = 2
t
√
t

cos(2t2
√
t ) is a solution of

(6). Mention that
∫∞
1

1
s
√
s

ds = 2.

Now we consider the equation (2) and give further sufficient conditions for

oscillation of this equation.

Theorem 3.3. Let
∫∞ dt

r(t) = ∞. Assume the conditions (i), (ii), (v) are

satisfied and

lim sup
t→∞

R(t)

∫ ∞
t

p(s)ds > 1. (7)

Then equation (2) is oscillatory.
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Proof. Suppose there exists a non-oscillatory solution u of equation (2).

Without loss of generality (−u is a solution of (2) too) we may assume that

u(t) > 0 and u(σ(t)) > 0 for t ≥ T ≥ t0. Then from (2) we see that (r(t)u′(t))′ ≤ 0

for t ≥ T and by Lemma 2.3 we have r(t)u′(t) > 0 for t ≥ T . Therefore we can

integrate equation (2) from t to ∞ and the monotonicity of the function r(t)u′(t)

yields the inequality

du(t)

dR
(= r(t)u′(t)) ≥

∫ ∞
t

p(s)u(σ(s))ds. (8)

If we multiply this inequality by kR(t), where k ∈ (0, 1) and use Lemma 2.1 (part

(a)) then we have

u(t) ≥ kR(t)

∫ ∞
t

p(s)u(σ(s))ds, t ≥ T1 ≥ T (9)

and with reference the monotonicity of the function u we obtain

1 ≥ kR(t)

∫ ∞
t

p(s)ds, t ≥ T1, k ∈ (0, 1), (10)

which means that

lim sup
t→∞

R(t)

∫ ∞
t

p(s)ds <∞.

Now we put a = lim supt→∞R(t)
∫∞
t
p(s)ds and take into account the assumpt-

ion (7). Then there exists a sequence {tn} with the properties

lim
n→∞

tn =∞, lim
n→∞

R(tn)

∫ ∞
tn

p(s)ds = a > 1.

But then for ε = a−1
2 there exists a number n0 such that for every n ∈ N, n ≥ n0

we have
a+ 1

2
= a− ε < R(tn)

∫ ∞
tn

p(s)ds.

If we choose n > n0 such that tn ≥ T1 and take k ∈ ( 2
a+1 , 1) then

kR(tn)

∫ ∞
tn

p(s)ds > k
a+ 1

2
>

2

a+ 1

a+ 1

2
= 1

which contradicts (10) and the proof is complete. �



18 Ján Ohriska

Here we can compare Theorem 3.3 with several known results. So we note

that our Theorem 3.3 is an extension of Theorem 1.5 in [1] to equations with ad-

vanced argument and of Corollary 1 in [5] to equation with a quasi derivative. And

next, our Theorem replenishes and extends Theorem 2.3 in [2], where the author

has proved the following result: If p(t) ≥ 0 and lim supt→∞ t
∫∞
t
sn−2p(s)ds >

(n − 1)!, then all solutions of the equation u(n)(t) + p(t)u(t) = 0, n ≥ 3 are

oscillatory for n even, and . . . for n odd.

The following example illustrates application of Theorem 3.3.

Example 4. Consider the linear differential equation with advanced argument(
1√
t
u′(t)

)′
+

1 + 2t

2t2
(√
t+ π

)u((
√
t+ π)2

)
= 0, t ≥ 1. (11)

Then r(t) = 1√
t

and

p(t) =
1 + 2t

2t2(
√
t+ π)

.

Simple computation shows that
∫∞ dt

r(t) =∞. Using the Remark 2.1 we can put

R(t) = 2
3 t

3/2. Then we can write

lim sup
t→∞

R(t)

∫ ∞
t

p(s)ds ≥ lim sup
t→∞

2

3
t3/2

∫ ∞
t

2s

4s5/2
ds = lim sup

t→∞

2

3
t =∞ > 1

and thus, by Theorem 3.3 the equation (11) is oscillatory. Note that u(t) =√
t sin(2

√
t ) is a solution of (11).

Theorem 3.4. Assume the conditions (i), (ii), and (v) are satisfied. Let the

function r be non-decreasing in a neighborhood of infinity, and

lim sup
t→∞

t

r(t)

∫ ∞
t

p(s)ds > 1.

Then equation (2) is oscillatory.

Proof. The proof of this Theorem is similar to the previous one. Thereat

we suppose there exists a non-oscillatory solution u of equation (2). We assume

that u(t) > 0 and u(σ(t)) > 0 for t ≥ T ≥ t0. Then from (2) we see that

(r(t)u′(t))′ ≤ 0 for t ≥ T and by Lemma 2.2 we have r(t)u′(t) > 0 for t ≥ T .

Therefore we can integrate equation (2) from t to ∞ and the monotonicity of the

function r(t)u′(t) yields the inequality

du(t)

dR
(= r(t)u′(t)) ≥

∫ ∞
t

p(s)u(σ(s))ds. (12)
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If we multiply this inequality with k t
r(t) , where k ∈ (0, 1) and use Lemma 2.1

(part (b)) then we have

u(t) ≥ k t

r(t)

∫ ∞
t

p(s)u(σ(s))ds, t ≥ Tk ≥ T (13)

and with reference the monotonicity of the function u we obtain

1 ≥ k t

r(t)

∫ ∞
t

p(s)ds, t ≥ T ∗ ≥ Tk, k ∈ (0, 1), (14)

which means that

lim sup
t→∞

t

r(t)

∫ ∞
t

p(s)ds <∞.

Continue likewise as in the proof of Theorem 3.3 we obtain a contradiction which

finishes the proof. �

As demonstration of using the above Theorem 3.4 we present the following

example.

Example 5. We consider the ordinary linear differential equation(√
tu′(t)

)′
+

1

t
√
t
u(t) = 0, t ≥ 1. (15)

Then r(t) =
√
t is the non-decreasing function. Moreover p(t) = 1

t
√
t

and thus

lim sup
t→∞

t

r(t)

∫ ∞
t

p(s)ds = 2 > 1

what, according Theorem 3.4, means that the equation (15) is oscillatory. One

solution of this equation is the function u(t) = 4
√
t cos

(√
15
2 ln(2

√
t )
)
.

Note that the equation (15) is so-called generalized Euler equation. Some infor-

mation about such equations can be found in [8].
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