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Characterizing injective operator space V for which
Ii1(V) =2 B(H)

By ALI REZA MEDGHALCHI (Tehran) and HAMED NIKPEY (Tehran)

Abstract. Let V = B(K, H) where H and K are Hilbert spaces. Then we know
that 111 (V) = B(H). Let V be an injective operator space. In this paper we recover the
above result and show that I11(V) = @®j_, B(H;) where Hu,..., H, are Hilbert spaces
if and only if there are Hilbert spaces Ki, ..., K, such that V = @i, B(K;, H;).

1. Introduction

Let B(H) be the set of all bounded linear operators on the Hilbert space H.
Operator spaces are the concrete closed subspaces of B(H) as formulated in [3].
Given operator spaces V and W and a linear mapping ¢ : V. — W, for each
n € N, there is a corresponding linear mapping ¢, : M, (V) — M, (W) defined
by on(T) = [¢(T; ;)] for all T = [T; ;] € M, (V). The completely bounded norm
of ¢ is defined by

l[olles = sup{l|nl| : n € N},

(this might be infinite). It is evident that the norms |¢,| form an increasing
sequence
el < llpall < -+ < lonll < -+ < lollep-

It is said that ¢ is completely bounded (respectively, completely contractive) if
llolles < 0o (respectively, ||¢|le < 1). We say that the operator spaces V and W
are completely isometrically isomorphic if there is an onto linear map ¢ : V. — W
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such that each mapping ¢, : M,(V) — M, (W) is an isometry. This notion is
indicated by V = W.

Recall that an operator space V is injective, if for given operator spaces
W1 C Ws, any completely bounded linear map 1 : W7 — V can be extended
to a completely bounded map ¢y : Wo — V' with ||¢2/et = [|¢1]|cb- It has been
known for a long time that B(H) is an injective operator space for any Hilbert
space H (see [7]). If we are given a linear space V, then we say that a linear
mapping ¢ : V — V is a projection if p? = .

Lemma 1.1. Let V be an operator subspace of B(H). Then V is an injective
operator space if and only if there is a completely contractive projection of B(H)
onto V.

Let V be an operator subspace of B(H). From Wittstock Theorem [7],
B(H) is an injective operator space contains V. HAMANA [5], [6] and RUAN
[4] independently have shown that for any operator space V' in B(H) there is a
minimal injective operator subspace of B(H) contains V', called injective envelope
of V and denoted by I(V).

Let A be a unital C*-algebra with the unit I = I4. The operator space
V C A is called an operator system if I € V and V* = V such that V* is the
space of all adjoint of members of V. If V' is an operator system then M, (V) is an
operator system. Given operator systems V and W, a linear mapping ¢ : V. — W
is called completely positive if ¢,, > 0 for all n € N, and we then write ¢ > 0.
We need the following theorem which proof is found in [3, Theorem 6.1.3].

Theorem 1.1. If V C B(H) is an injective operator system, then there is a
unique multiplication
o:VxV -V

for which, together with its given x-operation and norm, is a C'*-algebra with the
multiplication identity I.

Suppose V' is an injective operator system, we may fix a completely contrac-
tive onto projection ¢ : B(H) — V. Given T, S € V, we define an operation o,
on V by
To,S=¢(TS).

With this definition (V,o,) is a unital C*-algebra. For more detail see [3, Sec-
tion 6].

Lemma 1.2. Let V be a unital operator space. Then I(V) is a unital
injective C*-algebra.
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PRrROOF. From Hamana theorem, V has an injective envelope I(V) in B(H),
thus there is a completely contractive onto projection ¢ : B(H) — I(V). Since
V is a unital operator space, ¢ is a unital map and so ¢ is completely positive [3,
Corollary 5.1.2] therefore, I(V) is a unital operator system. Now by Theorem 1.1,
I(V) is a unital injective C*-algebra. O

Let V be a subspace of B(H), the Paulsen operator system S(V') is defined by

|

in My(B(H)), where the entries « and § stand for afly and Iy and S* means
the adjoint of S in B(H). Hence S(V) is an operator subspace of B(H?). From
Hamana and Ruan Theorems, S(V') has an injective envelope in B(H?) which we

Clg V
Vv Cly

a T

S(V) = o

:T,Se%a,ﬁe@}

denote by I(S(V)). So there is a unital completely contractive onto projection
® : B(H?) — I(S(V)). Therefore I(S(V)) is a unital C*-algebra with the new
product T og S = ®(T'S) where T, S € I(S(V)). Indeed, since ¢ : B(H ® K) —
B(H & K) fixes the C*-algebra C @ C which is the diagonal of S(V), it follows
immediately that the following elements of S(V') are two self adjoint projections
with sum [ in the C*-algebra I(S(V)):

~Ig O 100
P=1o o> 7|0 |
Since ®(p) = p and ®(q) = ¢, it follows from [1, 2.6.16] that ® is ‘corner-
preserving’, thus we can write & = [gi fz], such that o*(T) = o(T*)* for any
T € B(H). Therefore, we may decompose I(S(V)) to write it as consisting of
2 x 2 matrices. Hamana has shown that pI(S(V))q, the 1-2 corner of I(S(V)), is
the injective envelope of V. The four corners of I(S(V)) we will name:

(V) I(V)

TSV = 1) vy

It is clear that I11(V) and Isp(V) are also injective C*-algebras with the new
product. We define

IM(V)={T € 1(V):To,V CV},

where T o, S = o(T'S) for any T € I;1(V) and S € V. From [1, Theorem 4.5.5],
V is a left operator IM;(V)-module. Now we define the left multiplier space of V'
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to be the family of all linear maps ¥ : V' — V such that there exists a Hilbert
space K, T € B(K), and a linear completely isometry 7 : V' — B(K) such that
w((S)) = Tn(S) for any S € V. We define the multiplier norm of ) to be the
infimum of ||T'|| over all possible K, T, 7 as above and denote that with M;(V).
From [1, Theorem 4.5.5] we have M; (V') and IM;(V') are completely isometrically
isomorphic, i.e. M(V) = IM;(V). Let H and K be Hilbert spaces. Then from
[1] 4.5.1 and 4.12 we have

M(B(K,H)) 2 IM(B(K,H))={T € I11(B(K,H)) : ToB(K,H) C B(K,H)}

(with the new product) is a subspace of B(H). From the definition of M,;(B(K,H))
we have B(H) C M;(B(K,H)). Thus

M, (B(K, H)) = IM,(B(K, H)) = B(H).

2. Main results

Let V = B(K, H) be such that H and K are Hilbert spaces. Then from the
above notation we have I11(V) & B(H). By using this, our aim is to characterize
injective operator space V' for which I1;(V) = B(H). We will show that this
is the case if and only if V = B(K, H) where K is a Hilbert space. We then

characterize the operator spaces V for which I1; (V) = @, B(H,).

Theorem 2.1. Let V be an injective operator space. Then I11(V) = B(H) if
and only if V' is completely isometrically isomorphic to B(K, H) for some Hilbert
space K.

PROOF. (<) Let V be completely isometrically isomorphic to B(K, H).
Then from the definition of the left multiplier algebra and [1, Theorem 4.5.5]
we have

(V)2 11/(B(K,H)) =1IM(B(K,H)) 2 M;(B(K,H)) = B(H).

(=) Let V be an injective operator subspace of B(L) for some Hilbert space
L. By the injectivity of I(S(V')) C B(L?) there is a completely contractive onto
projection

: B(L?) = I(S(V)) = Il%/(’}/) 1'22‘(/‘/)

*

p—|Pr ¥
Y P2
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Thus by Theorem 1.1, (I(S(V)), o) is a unital injective C*-algebra with the new
product. From assumption, there is some unital completely isometric isomorphism
mapping ¢ : I11(V) — B(H). Now we define the map m : V@ V* — B(H) by
m(T ® S*) = Y(p1(T'S*)) for any T,.S € V which infact comes from

:¢< >:

We have I(S(V)) is a C*-algebra and also an operator algebra with the new

0 T
0 0

0 0
S* 0

0 T
0 0

0 0
S* 0

(V) 0

oe 0 0

%@W)ﬂ
0 0

product. Thus from [1, Theorem 2.3.2], m can be extended to Haagerup tensor
product V ®, V* and trivially we have ||m||c = [|¢ 0 ¢1]lev < 1. From [3, The-
orem 9.4.3] there exists a Hilbert space K and completely contractive mappings

1:V - B(K,H) and 5:V* — B(H,K)
such that for any T, S € V we have
P(pr(TS7)) = m(T © §7) = 1 (T)¢h2(S7).
Let p be a projection in K onto the closure of 19 (V*)H. Then we have
P(pr(TS™)) = m(T @ 5%) = [ha(T)pl[ph2(S7));

thus we can assume that ¥o(V*)H is a dense subspace of Hilbert space K. For
any T € V we have

*

0 T
0 0

0 T
0 0

0 T

“® 1o 0

2
I :| :‘

= o1 (TT) = [ (e (TT)) = [T (T < [ (DINTI < 1T

So 1 is a completely isometry and V' = 41 (V). Let Iy and Ik be identities for
B(H) and B(K). Then S(31(V)) and [w(cj” wl(v)} are completely isometrically

1(V)* CIg
isomorphic together, so are I(S(¢1(V))) and I ([w(lc(l‘f)* w&Z)D. Therefore we
have
In((V)) (V) | Cly (V)
(V)" bmmm>‘l<mwr mK>ng@K>
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Now we want to prove B(H)y1 (V) C ¢1(V) and then I11(¢1(V)) = B(H). Let
T € B(H). Then there is some T” € I;1(V) such that T = ¢(T"). Therefore for
any 51,5 € V and h € H we have

[T41(S1)|2(S5)h = h(T") [01(S1)¥2(S3)]h = (T ) (¢1(S153))h
= (T 0y, p1(5153))h = Y(p(T'S1) oy, S3))h
= TP(@l(@(T/Sl)S;))h = Wl(@(T/Sl))Wz(Sz) .

Thus for any S € V we have T¢1(S) = ¥1(p(T"S)) on ¢o(V*)H. Therefore
T (S) = 1 (p(T'S)) € 1 (V). That means, B(H)y1 (V) C 11 (V) and therefore
the new product of I11(11(V)) on 91 (V) comes from the usual product of B(H)
on B(K,H).

By [2, Corollary 1.2], ¢1(VV*) = V o,, V* is an essential ideal of the C*-
algebra (I11(V),0,,). By assumption, since ¢ : (I11(V),0,,) — B(H) is a unital
completely isometric surjection between two C*-algebras, by [1, Corollary 1.3.10],
1 is an *-homomorphism. Thus (o1 (VV™*)) = 91 (V)2 (V*) is an essential ideal
of B(H). Let T € B(H) such that T%;(V) = 0. Then Ty (V)2(V*) = 0. Since
1 (V)1ha(V*) is an essential ideal of B(H), T = 0. Therefore by definition of the
left multiplier algebra of an operator space, for any T' € B(H), o1 € M;(¥1(V))
by definition 7 (11(S)) = T¢1(S) for any S € V. By [1, Theorem 4.5.2] there is
some T" € I1(1(V)) C B(H) such that o7 (11(S)) = T" 011(S) (with the new
product). On the other hand, the product of I11(¢1(V)) on ¢1(V) is the usual
product. So, for any S € V,

T (S) = @r(11(5)) = T" 0 1 (S) = T"¢1(9),

i.e. T" =T. Therefore I11(¢1(V)) = B(H) such that B(H)y1 (V) C ¢¥1(V).
Let W = 91(V). Then S(W) is completely isometrically isomorphic to
(

[(%13 CVIVK], so are I(S(W)) and {BW},{) Izzv(VW)]‘ Thus there is some completely

contractive onto projection

B(H w
®:BH®K)— Vif*) Lo (W) CB(H®K)
such that [ VE,H) I V(VW)} is a C*-algebra with the new product. ® is the identity

on B(H). Thus from [3, Corollary 5.2.2] we have

(o sl o) -+ (le 5= (b 2)-

T 0
0 O

T 0
0 0

T 0
0 0

b ol
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for any T € B(H) and S € W. That means the new product of B(H) on W
comes from the usual product of B(H) on B(K, H) and therefore B(H)W C W.
Let {eq }aer be an orthogonal basis for the Hilbert space H. Then e, ® e,’s
are projections in B(H), where (eq ® €4)(h) = (h,eq)eq for any h € H. (eq ®
eq)W C W. Since, the product of B(H) on W is the usual product. For any
T € (eq ® eq)W there is a h € K such that T'(g) = (g, h)eqn for each g € K, we
then denote T with T}, .. Let Ko ={h € K : T, € (en ®eu)W}_H'”. We have
(e ® €)W C W for each o, 8 € T, thus K, = K for each o, 8 € I'. So we can
assume that W C B(K', H) where K’ = K, for some o € T.
Also Yperp(eq ® €)W C W for any finite set F. Therefore K(K', H), the
space of compact operators in B(K’, H) is a subspace of W too. We have
K(H & K — l K(H) K(K/’H)]
K(H,K') K(K")

is an essential ideal of

BH®K) = B(H,K') B(K')

B(H) B(K H)]

Therefore by [2] we have I(K(H & K')) = B(H ® K'), so W = B(K', H).
Thus we have V = B(K', H) O

Corollary 2.1. Let V' be an injective operator space. Then V is complet-

ely isometrically isomorphic to some row Hilbert operator space if and only if
LL(V)=C.

PROOF. By Theorem 2.1 we have I11(V) = C if and only if V = B(K, C) for
some Hilbert space K, such that B(K,C) is a row Hilbert space. (]

Corollary 2.2. Let V be an operator space. Then I;1(V) = Io(V) =2 C if
and only if V= C.

Proor. If V = C, then obviously we have I11(V) = I(V) = C. On the
other hand, if I;31(V) = Ioo(V) = C then V is completely isomorphic to row and
column Hilbert operator spaces. Therefore V' is one dimensional. (]

Note that for any operator space V', we have I(S(V)) = I(S(I(V))) and so
11 (V) = 1n(I(V) = IM(I(V)) = My(I(V'))

and
Io (V) = I (I(V)) = IM,(I(V)) = M. (I(V)).
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Lemma 2.1. Let V and W be two operator spaces. Then I11(V & W) =
Ill(V) ) I11(W) and IQQ(V ) W) = I22(V) (&%) IQQ(W).

PROOF. For any operator spaces V and W, we have (VW) = I(V)®I(W).
So

In(V)eInW) I(V)oI(W)

SVEWIC | 1)y e 1) In(V) @ Ina(W)

=~ [(S(V)) @ [(S(W)),

such that I(S(V)) @ I(S(W)) is an injective operator space. So I11(V @ W) C
L1 (V) @ I;:(W). On the other hand, let T' € I11(V) = IM;(I(V)) = M;(I(V))
and S € I} (W) = IM,(I(W)) =2 M;(I(W)). Then

T 0

0 S e Mi(I(V)@ I(W)) 2 IM(I(V) @ I(W)) = IM(I(V&W))

= In(I(V e W) = I, (VaW).

This means that I;31(V) @ I;1 (W) C I11(V @& W), so the proof is completed.
For 155 one can use the same argument. O

~

Theorem 2.2. Let V be an injective operator space. Then I;1(V) =
? | B(H;) if and only if V = @, B(K;, H;) where H; and K, are Hilbert spaces
(1<i<mn).

PrOOF. («<)LetV = @' , B(K;, H;). Then by Lemma 2.1 and Theorem 2.1,
we have

I1(V) = In (@72, B(K;, Hi)) = ©;2 I (B(Ki, H;)) = &7 B(H;).

(=) Let V be an injective operator subspace of B(L) for some Hilbert
space L. From the injectivity of I(S(V)) there is a completely contractive onto
projection

:B(L?) = I(S8(V)) = an<,Y> IQXV) :

*

P — [901 ¥
P2

Thus by Theorem 1.1, (I(S(V)),o0¢) is a unital injective C*-algebra with the
new product. Let ¢ : I11(V) — @, B(H;) be a unital completely isometric
isomorphism. Thus by the same technique of the above theorem, we can define
a completely contractive map m : V @, V* — @, B(H;) by m(T ® S*) =
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¥(1(TS*)). Suppose 7; : @ B(H;) — B(H;) is a completely contractive onto
projection, then there are Hilbert spaces K; and completely contractive mappings

;1 V — B(K;,H;) and .:V* — B(H;, K;)
such that for any T, S € V we have
mi(m(T ® 8)) = i (T);(S7).

For each T' € V we have

*

0 T 0 T y i} .
171" = o = o1 (TT)|| = (1 (TT™) | = [Im(T & T7)|
0 0 0 O
_ | o s
= max [|mi(m(T © )|l = max [[vi(T)¢;(T")]
< max [[gu(DIIT] < 1T

~ 1<i<n
Therefore there are completely isometric map
U= (i)iey 1V — &Ly B(K;, Hi)
and completely contractive map
U= (p)iey V' = @i, B(H;, K),
where
(1 (TS7)) = m(T & §*) = ¥(T)W'(S7).
Thus V = U(V) C @, B(K;, H;), respectively. Let I and I be identities for

operator space @, B(H;) and &7 ; B(K;). Thus S(¥(V)) and [\I’%I/l)* qg};)} are

completely isometrically isomorphic, so are I(S(¥(V))) and I ({\D(f‘l/l)* \I:(:(I‘:)D
Therefore there is a completely contractive onto projection

lwa ¢ @7, B(H,) @7_1B<K¢,Hi>] (¥(v) (V)

¢ pa| @ B(H, K L B(K)) UV Ia(¥(V))

)

such that the first operator space is completely isometrically isomorphic to the
injective operator space @ B(H; & K;).

Similar to Theorem 2.1 we have I;1(¥(V)) = @ B(H;) and the new pro-
duct of @ B(H;) on ¥(V) is the usual product on &, B(K;, H;). Let P; be
a projection on @7 ;B(H;) which is the identity on B(H;) and zero else. Thus
PV CV for 1 <i<n. Then we can write V = @], V; such that V; are in-
jective operator spaces in B(K;, H;) and I11(V;) = B(H;) for 1 < i < n. Hence
by Theorem 2.1 there are Hilbert spaces K| C K; such that V; = B(K, H;) for
1<i<n,ie V=l B(K], H). O
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Corollary 2.3. Let V be an injective operator space. Then V is a direct

sum of row Hilbert spaces if and only if I1 (V) = @&, C.

(1]

PRrROOF. Put H; = C in the above theorem. ([l

Note that all of above statements are true for I53(V) too.
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