Characterizing injective operator space V for which $I_{11}(V) \cong B(H)$

By ALI REZA MEDGHALCHI (Tehran) and HAMED NIKPEY (Tehran)

Abstract

Let $V \cong B(K, H)$ where H and K are Hilbert spaces. Then we know that $I_{11}(V) \cong B(H)$. Let V be an injective operator space. In this paper we recover the above result and show that $I_{11}(V) \cong \oplus_{i=1}^{n} B\left(H_{i}\right)$ where H_{1}, \ldots, H_{n} are Hilbert spaces if and only if there are Hilbert spaces K_{1}, \ldots, K_{n} such that $V \cong \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)$.

1. Introduction

Let $B(H)$ be the set of all bounded linear operators on the Hilbert space H. Operator spaces are the concrete closed subspaces of $B(H)$ as formulated in [3]. Given operator spaces V and W and a linear mapping $\varphi: V \rightarrow W$, for each $n \in \mathbb{N}$, there is a corresponding linear mapping $\varphi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ defined by $\varphi_{n}(T)=\left[\varphi\left(T_{i, j}\right)\right]$ for all $T=\left[T_{i, j}\right] \in M_{n}(V)$. The completely bounded norm of φ is defined by

$$
\|\varphi\|_{c b}=\sup \left\{\left\|\varphi_{n}\right\|: n \in \mathbb{N}\right\}
$$

(this might be infinite). It is evident that the norms $\left\|\varphi_{n}\right\|$ form an increasing sequence

$$
\|\varphi\| \leq\left\|\varphi_{2}\right\| \leq \cdots \leq\left\|\varphi_{n}\right\| \leq \cdots \leq\|\varphi\|_{c b}
$$

It is said that φ is completely bounded (respectively, completely contractive) if $\|\varphi\|_{c b}<\infty$ (respectively, $\|\varphi\|_{c b} \leq 1$). We say that the operator spaces V and W are completely isometrically isomorphic if there is an onto linear map $\varphi: V \rightarrow W$

[^0]such that each mapping $\varphi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ is an isometry. This notion is indicated by $V \cong W$.

Recall that an operator space V is injective, if for given operator spaces $W_{1} \subseteq W_{2}$, any completely bounded linear map $\varphi_{1}: W_{1} \rightarrow V$ can be extended to a completely bounded map $\varphi_{2}: W_{2} \rightarrow V$ with $\left\|\varphi_{2}\right\|_{c b}=\left\|\varphi_{1}\right\|_{c b}$. It has been known for a long time that $B(H)$ is an injective operator space for any Hilbert space H (see [7]). If we are given a linear space V, then we say that a linear mapping $\varphi: V \rightarrow V$ is a projection if $\varphi^{2}=\varphi$.

Lemma 1.1. Let V be an operator subspace of $B(H)$. Then V is an injective operator space if and only if there is a completely contractive projection of $B(H)$ onto V.

Let V be an operator subspace of $B(H)$. From Wittstock Theorem [7], $B(H)$ is an injective operator space contains V. Hamana [5], [6] and Ruan [4] independently have shown that for any operator space V in $B(H)$ there is a minimal injective operator subspace of $B(H)$ contains V, called injective envelope of V and denoted by $I(V)$.

Let A be a unital C^{*}-algebra with the unit $I=I_{A}$. The operator space $V \subseteq A$ is called an operator system if $I \in V$ and $V^{*}=V$ such that V^{*} is the space of all adjoint of members of V. If V is an operator system then $M_{n}(V)$ is an operator system. Given operator systems V and W, a linear mapping $\varphi: V \rightarrow W$ is called completely positive if $\varphi_{n} \geq 0$ for all $n \in \mathbb{N}$, and we then write $\varphi \geq_{c b} 0$. We need the following theorem which proof is found in [3, Theorem 6.1.3].

Theorem 1.1. If $V \subseteq B(H)$ is an injective operator system, then there is a unique multiplication

$$
\circ: V \times V \rightarrow V
$$

for which, together with its given *-operation and norm, is a C^{*}-algebra with the multiplication identity I.

Suppose V is an injective operator system, we may fix a completely contractive onto projection $\varphi: B(H) \rightarrow V$. Given $T, S \in V$, we define an operation \circ_{φ} on V by

$$
T \circ_{\varphi} S=\varphi(T S)
$$

With this definition $\left(V, \circ_{\varphi}\right)$ is a unital C^{*}-algebra. For more detail see $[3$, Section 6].

Lemma 1.2. Let V be a unital operator space. Then $I(V)$ is a unital injective C^{*}-algebra.

$$
\begin{equation*}
\text { Characterizing injective operator space } V \text { for which } I_{11}(V) \cong B(H) \tag{23}
\end{equation*}
$$

Proof. From Hamana theorem, V has an injective envelope $I(V)$ in $B(H)$, thus there is a completely contractive onto projection $\varphi: B(H) \rightarrow I(V)$. Since V is a unital operator space, φ is a unital map and so φ is completely positive [3, Corollary 5.1.2] therefore, $I(V)$ is a unital operator system. Now by Theorem 1.1, $I(V)$ is a unital injective C^{*}-algebra.

Let V be a subspace of $B(H)$, the Paulsen operator system $\mathcal{S}(V)$ is defined by

$$
\mathcal{S}(V)=\left[\begin{array}{cc}
\mathbb{C} I_{H} & V \\
V^{*} & \mathbb{C} I_{H}
\end{array}\right]=\left\{\left[\begin{array}{cc}
\alpha & T \\
S^{*} & \beta
\end{array}\right]: T, S \in V, \alpha, \beta \in \mathbb{C}\right\}
$$

in $M_{2}(B(H))$, where the entries α and β stand for αI_{H} and βI_{H} and S^{*} means the adjoint of S in $B(H)$. Hence $\mathcal{S}(V)$ is an operator subspace of $B\left(H^{2}\right)$. From Hamana and Ruan Theorems, $\mathcal{S}(V)$ has an injective envelope in $B\left(H^{2}\right)$ which we denote by $I(\mathcal{S}(V))$. So there is a unital completely contractive onto projection $\Phi: B\left(H^{2}\right) \rightarrow I(\mathcal{S}(V))$. Therefore $I(\mathcal{S}(V))$ is a unital C^{*}-algebra with the new product $T \circ_{\Phi} S=\Phi(T S)$ where $T, S \in I(\mathcal{S}(V))$. Indeed, since $\Phi: B(H \oplus K) \rightarrow$ $B(H \oplus K)$ fixes the C^{*}-algebra $\mathbb{C} \oplus \mathbb{C}$ which is the diagonal of $\mathcal{S}(V)$, it follows immediately that the following elements of $\mathcal{S}(V)$ are two self adjoint projections with sum I in the C^{*}-algebra $I(\mathcal{S}(V))$:

$$
p=\left[\begin{array}{cc}
I_{H} & 0 \\
0 & 0
\end{array}\right], \quad q=\left[\begin{array}{cc}
0 & 0 \\
0 & I_{H}
\end{array}\right]
$$

Since $\Phi(p)=p$ and $\Phi(q)=q$, it follows from [1, 2.6.16] that Φ is 'cornerpreserving', thus we can write $\Phi=\left[\begin{array}{cc}\varphi_{1} & \varphi \\ \varphi^{*} & \varphi_{2}\end{array}\right]$, such that $\varphi^{*}(T)=\varphi\left(T^{*}\right)^{*}$ for any $T \in B(H)$. Therefore, we may decompose $I(\mathcal{S}(V))$ to write it as consisting of 2×2 matrices. Hamana has shown that $p I(\mathcal{S}(V)) q$, the 1-2 corner of $I(\mathcal{S}(V))$, is the injective envelope of V. The four corners of $I(\mathcal{S}(V))$ we will name:

$$
I(\mathcal{S}(V))=\left[\begin{array}{cc}
I_{11}(V) & I(V) \\
I(V)^{*} & I_{22}(V)
\end{array}\right]
$$

It is clear that $I_{11}(V)$ and $I_{22}(V)$ are also injective C^{*}-algebras with the new product. We define

$$
I M_{l}(V)=\left\{T \in I_{11}(V): T \circ_{\varphi} V \subseteq V\right\}
$$

where $T \circ_{\varphi} S=\varphi(T S)$ for any $T \in I_{11}(V)$ and $S \in V$. From [1, Theorem 4.5.5], V is a left operator $I M_{l}(V)$-module. Now we define the left multiplier space of V
to be the family of all linear maps $\psi: V \rightarrow V$ such that there exists a Hilbert space $K, T \in B(K)$, and a linear completely isometry $\pi: V \rightarrow B(K)$ such that $\pi(\psi(S))=T \pi(S)$ for any $S \in V$. We define the multiplier norm of ψ to be the infimum of $\|T\|$ over all possible K, T, π as above and denote that with $\mathcal{M}_{l}(V)$. From [1, Theorem 4.5.5] we have $\mathcal{M}_{l}(V)$ and $I M_{l}(V)$ are completely isometrically isomorphic, i.e. $\mathcal{M}_{l}(V) \cong I M_{l}(V)$. Let H and K be Hilbert spaces. Then from [1] 4.5.1 and 4.12 we have
$\mathcal{M}_{l}(B(K, H)) \cong I M_{l}(B(K, H))=\left\{T \in I_{11}(B(K, H)): T \circ B(K, H) \subseteq B(K, H)\right\}$
(with the new product) is a subspace of $B(H)$. From the definition of $\mathcal{M}_{l}(B(K, H)$) we have $B(H) \subseteq \mathcal{M}_{l}(B(K, H))$. Thus

$$
\mathcal{M}_{l}(B(K, H)) \cong I M_{l}(B(K, H))=B(H)
$$

2. Main results

Let $V=B(K, H)$ be such that H and K are Hilbert spaces. Then from the above notation we have $I_{11}(V) \cong B(H)$. By using this, our aim is to characterize injective operator space V for which $I_{11}(V) \cong B(H)$. We will show that this is the case if and only if $V \cong B(K, H)$ where K is a Hilbert space. We then characterize the operator spaces V for which $I_{11}(V) \cong \oplus_{i=1}^{n} B\left(H_{i}\right)$.

Theorem 2.1. Let V be an injective operator space. Then $I_{11}(V) \cong B(H)$ if and only if V is completely isometrically isomorphic to $B(K, H)$ for some Hilbert space K.

Proof. (\Leftarrow) Let V be completely isometrically isomorphic to $B(K, H)$. Then from the definition of the left multiplier algebra and [1, Theorem 4.5.5] we have

$$
I_{11}(V) \cong I_{11}(B(K, H))=I M_{l}(B(K, H)) \cong \mathcal{M}_{l}(B(K, H))=B(H)
$$

(\Rightarrow) Let V be an injective operator subspace of $B(L)$ for some Hilbert space L. By the injectivity of $I(\mathcal{S}(V)) \subseteq B\left(L^{2}\right)$ there is a completely contractive onto projection

$$
\Phi=\left[\begin{array}{cc}
\varphi_{1} & \varphi \\
\varphi^{*} & \varphi_{2}
\end{array}\right]: B\left(L^{2}\right) \rightarrow I(\mathcal{S}(V))=\left[\begin{array}{cc}
I_{11}(V) & V \\
V^{*} & I_{22}(V)
\end{array}\right]
$$

Thus by Theorem 1.1, $\left(I(\mathcal{S}(V)), \circ_{\Phi}\right)$ is a unital injective C^{*}-algebra with the new product. From assumption, there is some unital completely isometric isomorphism mapping $\psi: I_{11}(V) \rightarrow B(H)$. Now we define the map $m: V \otimes V^{*} \rightarrow B(H)$ by $m\left(T \otimes S^{*}\right)=\psi\left(\varphi_{1}\left(T S^{*}\right)\right)$ for any $T, S \in V$ which infact comes from

$$
\left[\begin{array}{ll}
0 & T \\
0 & 0
\end{array}\right] \circ_{\Phi}\left[\begin{array}{cc}
0 & 0 \\
S^{*} & 0
\end{array}\right]=\Phi\left(\left[\begin{array}{cc}
0 & T \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
S^{*} & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
\varphi_{1}\left(T S^{*}\right) & 0 \\
0 & 0
\end{array}\right] \in\left[\begin{array}{cc}
I_{11}(V) & 0 \\
0 & 0
\end{array}\right] .
$$

We have $I(\mathcal{S}(V))$ is a C^{*}-algebra and also an operator algebra with the new product. Thus from [1, Theorem 2.3.2], m can be extended to Haagerup tensor product $V \otimes_{h} V^{*}$ and trivially we have $\|m\|_{c b}=\left\|\psi \circ \varphi_{1}\right\|_{c b} \leq 1$. From [3, Theorem 9.4.3] there exists a Hilbert space K and completely contractive mappings

$$
\psi_{1}: V \rightarrow B(K, H) \quad \text { and } \quad \psi_{2}: V^{*} \rightarrow B(H, K)
$$

such that for any $T, S \in V$ we have

$$
\psi\left(\varphi_{1}\left(T S^{*}\right)\right)=m\left(T \otimes S^{*}\right)=\psi_{1}(T) \psi_{2}\left(S^{*}\right)
$$

Let p be a projection in K onto the closure of $\psi_{2}\left(V^{*}\right) H$. Then we have

$$
\psi\left(\varphi_{1}\left(T S^{*}\right)\right)=m\left(T \otimes S^{*}\right)=\left[\psi_{1}(T) p\right]\left[p \psi_{2}\left(S^{*}\right)\right]
$$

thus we can assume that $\psi_{2}\left(V^{*}\right) H$ is a dense subspace of Hilbert space K. For any $T \in V$ we have

$$
\begin{gathered}
\|T\|^{2}=\left\|\left[\begin{array}{cc}
0 & T \\
0 & 0
\end{array}\right]\right\|^{2}=\left\|\left[\begin{array}{cc}
0 & T \\
0 & 0
\end{array}\right] \circ_{\Phi}\left[\begin{array}{ll}
0 & T \\
0 & 0
\end{array}\right]^{*}\right\| \\
=\left\|\varphi_{1}\left(T T^{*}\right)\right\|=\left\|\psi\left(\varphi_{1}\left(T T^{*}\right)\right)\right\|=\left\|\psi_{1}(T) \psi_{2}\left(T^{*}\right)\right\| \leq\left\|\psi_{1}(T)\right\|\|T\| \leq\|T\|^{2} .
\end{gathered}
$$

So ψ_{1} is a completely isometry and $V \cong \psi_{1}(V)$. Let I_{H} and I_{K} be identities for $B(H)$ and $B(K)$. Then $\mathcal{S}\left(\psi_{1}(V)\right)$ and $\left[\begin{array}{cc}\mathbb{C} I_{H} \\ \psi_{1}(V)^{*} & \psi_{1}(V) \\ \mathbb{C} I_{K}\end{array}\right]$ are completely isometrically isomorphic together, so are $I\left(\mathcal{S}\left(\psi_{1}(V)\right)\right)$ and $I\left(\left[\begin{array}{cc}\mathbb{C} I_{H} & \psi_{1}(V) \\ \psi_{1}(V)^{*} & \mathbb{C} I_{K}\end{array}\right]\right)$. Therefore we have

$$
\left[\begin{array}{cc}
I_{11}\left(\psi_{1}(V)\right) & \psi_{1}(V) \\
\psi_{1}(V)^{*} & I_{22}\left(\psi_{1}(V)\right)
\end{array}\right]=I\left(\left[\begin{array}{cc}
\mathbb{C} I_{H} & \psi_{1}(V) \\
\psi_{1}(V)^{*} & \mathbb{C} I_{K}
\end{array}\right]\right) \subseteq B(H \oplus K)
$$

Now we want to prove $B(H) \psi_{1}(V) \subseteq \psi_{1}(V)$ and then $I_{11}\left(\psi_{1}(V)\right)=B(H)$. Let $T \in B(H)$. Then there is some $T^{\prime} \in I_{11}(V)$ such that $T=\psi\left(T^{\prime}\right)$. Therefore for any $S_{1}, S_{2} \in V$ and $h \in H$ we have

$$
\begin{aligned}
{\left[T \psi_{1}\left(S_{1}\right)\right] \psi_{2}\left(S_{2}^{*}\right) h } & =\psi\left(T^{\prime}\right)\left[\psi_{1}\left(S_{1}\right) \psi_{2}\left(S_{2}^{*}\right)\right] h=\psi\left(T^{\prime}\right) \psi\left(\varphi_{1}\left(S_{1} S_{2}^{*}\right)\right) h \\
& \left.=\psi\left(T^{\prime} \circ_{\varphi_{1}} \varphi_{1}\left(S_{1} S_{2}^{*}\right)\right) h=\psi\left(\varphi\left(T^{\prime} S_{1}\right) \circ_{\varphi_{1}} S_{2}^{*}\right)\right) h \\
& =\psi\left(\varphi_{1}\left(\varphi\left(T^{\prime} S_{1}\right) S_{2}^{*}\right)\right) h=\left[\psi_{1}\left(\varphi\left(T^{\prime} S_{1}\right)\right)\right] \psi_{2}\left(S_{2}^{*}\right) h
\end{aligned}
$$

Thus for any $S \in V$ we have $T \psi_{1}(S)=\psi_{1}\left(\varphi\left(T^{\prime} S\right)\right)$ on $\psi_{2}\left(V^{*}\right) H$. Therefore $T \psi_{1}(S)=\psi_{1}\left(\varphi\left(T^{\prime} S\right)\right) \in \psi_{1}(V)$. That means, $B(H) \psi_{1}(V) \subseteq \psi_{1}(V)$ and therefore the new product of $I_{11}\left(\psi_{1}(V)\right)$ on $\psi_{1}(V)$ comes from the usual product of $B(H)$ on $B(K, H)$.

By [2, Corollary 1.2], $\varphi_{1}\left(V V^{*}\right)=V \circ_{\varphi_{1}} V^{*}$ is an essential ideal of the C^{*} algebra $\left(I_{11}(V), \circ_{\varphi_{1}}\right)$. By assumption, since $\psi:\left(I_{11}(V), \circ_{\varphi_{1}}\right) \rightarrow B(H)$ is a unital completely isometric surjection between two C^{*}-algebras, by [1, Corollary 1.3.10], ψ is an $*$-homomorphism. Thus $\psi\left(\varphi_{1}\left(V V^{*}\right)\right)=\psi_{1}(V) \psi_{2}\left(V^{*}\right)$ is an essential ideal of $B(H)$. Let $T \in B(H)$ such that $T \psi_{1}(V)=0$. Then $T \psi_{1}(V) \psi_{2}\left(V^{*}\right)=0$. Since $\psi_{1}(V) \psi_{2}\left(V^{*}\right)$ is an essential ideal of $B(H), T=0$. Therefore by definition of the left multiplier algebra of an operator space, for any $T \in B(H), \varphi_{T} \in \mathcal{M}_{l}\left(\psi_{1}(V)\right)$ by definition $\varphi_{T}\left(\psi_{1}(S)\right)=T \psi_{1}(S)$ for any $S \in V$. By [1, Theorem 4.5.2] there is some $T^{\prime \prime} \in I_{11}\left(\psi_{1}(V)\right) \subseteq B(H)$ such that $\varphi_{T}\left(\psi_{1}(S)\right)=T^{\prime \prime} \circ \psi_{1}(S)$ (with the new product). On the other hand, the product of $I_{11}\left(\psi_{1}(V)\right)$ on $\psi_{1}(V)$ is the usual product. So, for any $S \in V$,

$$
T \psi_{1}(S)=\varphi_{T}\left(\psi_{1}(S)\right)=T^{\prime \prime} \circ \psi_{1}(S)=T^{\prime \prime} \psi_{1}(S)
$$

i.e. $T^{\prime \prime}=T$. Therefore $I_{11}\left(\psi_{1}(V)\right)=B(H)$ such that $B(H) \psi_{1}(V) \subseteq \psi_{1}(V)$.

Let $W=\psi_{1}(V)$. Then $\mathcal{S}(W)$ is completely isometrically isomorphic to $\left[\begin{array}{cc}\begin{array}{c}I_{H} \\ W^{*}\end{array} & W \\ W_{K}\end{array}\right]$, so are $I(\mathcal{S}(W))$ and $\left[\begin{array}{cc}B(H) & W \\ W^{*} & I_{22}(W)\end{array}\right]$. Thus there is some completely contractive onto projection

$$
\Phi: B(H \oplus K) \rightarrow\left[\begin{array}{cc}
B(H) & W \\
W^{*} & I_{22}(W)
\end{array}\right] \subseteq B(H \oplus K)
$$

such that $\left[\begin{array}{cc}B(H) & W \\ W^{*} & I_{22}(W)\end{array}\right]$ is a C^{*}-algebra with the new product. Φ is the identity on $B(H)$. Thus from [3, Corollary 5.2.2] we have

$$
\Phi\left(\left[\begin{array}{ll}
T & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right]\right)=\Phi\left(\left[\begin{array}{ll}
T & 0 \\
0 & 0
\end{array}\right]\right) \Phi\left(\left[\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
T & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right]
$$

$$
\text { Characterizing injective operator space } V \text { for which } I_{11}(V) \cong B(H)
$$

for any $T \in B(H)$ and $S \in W$. That means the new product of $B(H)$ on W comes from the usual product of $B(H)$ on $B(K, H)$ and therefore $B(H) W \subseteq W$.

Let $\left\{e_{\alpha}\right\}_{\alpha \in \Gamma}$ be an orthogonal basis for the Hilbert space H. Then $e_{\alpha} \otimes e_{\alpha}$'s are projections in $B(H)$, where $\left(e_{\alpha} \otimes e_{\alpha}\right)(h)=\left\langle h, e_{\alpha}\right\rangle e_{\alpha}$ for any $h \in H .\left(e_{\alpha} \otimes\right.$ $\left.e_{\alpha}\right) W \subseteq W$. Since, the product of $B(H)$ on W is the usual product. For any $T \in\left(e_{\alpha} \otimes e_{\alpha}\right) W$ there is a $h \in K$ such that $T(g)=\langle g, h\rangle e_{\alpha}$ for each $g \in K$, we then denote T with $T_{h, e_{\alpha}}$. Let $K_{\alpha}=\left\{h \in K: T_{h, e_{\alpha}} \in\left(e_{\alpha} \otimes e_{\alpha}\right) W\right\}^{-\|\cdot\|}$. We have $\left(e_{\alpha} \otimes e_{\beta}\right) W \subseteq W$ for each $\alpha, \beta \in \Gamma$, thus $K_{\alpha}=K_{\beta}$ for each $\alpha, \beta \in \Gamma$. So we can assume that $W \subseteq B\left(K^{\prime}, H\right)$ where $K^{\prime}=K_{\alpha}$ for some $\alpha \in \Gamma$.

Also $\Sigma_{\alpha \in F}\left(e_{\alpha} \otimes e_{\alpha}\right) W \subseteq W$ for any finite set F. Therefore $K\left(K^{\prime}, H\right)$, the space of compact operators in $B\left(K^{\prime}, H\right)$ is a subspace of W too. We have

$$
K\left(H \oplus K^{\prime}\right)=\left[\begin{array}{cc}
K(H) & K\left(K^{\prime}, H\right) \\
K\left(H, K^{\prime}\right) & K\left(K^{\prime}\right)
\end{array}\right]
$$

is an essential ideal of

$$
B\left(H \oplus K^{\prime}\right)=\left[\begin{array}{cc}
B(H) & B\left(K^{\prime}, H\right) \\
B\left(H, K^{\prime}\right) & B\left(K^{\prime}\right)
\end{array}\right]
$$

Therefore by [2] we have $I\left(K\left(H \oplus K^{\prime}\right)\right)=B\left(H \oplus K^{\prime}\right)$, so $W=B\left(K^{\prime}, H\right)$. Thus we have $V \cong B\left(K^{\prime}, H\right)$

Corollary 2.1. Let V be an injective operator space. Then V is completely isometrically isomorphic to some row Hilbert operator space if and only if $I_{11}(V) \cong C$.

Proof. By Theorem 2.1 we have $I_{11}(V) \cong \mathbb{C}$ if and only if $V \cong B(K, \mathbb{C})$ for some Hilbert space K, such that $B(K, \mathbb{C})$ is a row Hilbert space.

Corollary 2.2. Let V be an operator space. Then $I_{11}(V)=I_{22}(V) \cong \mathbb{C}$ if and only if $V \cong \mathbb{C}$.

Proof. If $V \cong \mathbb{C}$, then obviously we have $I_{11}(V)=I_{22}(V) \cong \mathbb{C}$. On the other hand, if $I_{11}(V)=I_{22}(V) \cong \mathbb{C}$ then V is completely isomorphic to row and column Hilbert operator spaces. Therefore V is one dimensional.

Note that for any operator space V, we have $I(\mathcal{S}(V))=I(\mathcal{S}(I(V)))$ and so

$$
I_{11}(V)=I_{11}(I(V))=I M_{l}(I(V)) \cong M_{l}(I(V))
$$

and

$$
I_{22}(V)=I_{22}(I(V))=I M_{r}(I(V)) \cong M_{r}(I(V))
$$

Lemma 2.1. Let V and W be two operator spaces. Then $I_{11}(V \oplus W)=$ $I_{11}(V) \oplus I_{11}(W)$ and $I_{22}(V \oplus W)=I_{22}(V) \oplus I_{22}(W)$.

Proof. For any operator spaces V and W, we have $I(V \oplus W)=I(V) \oplus I(W)$. So

$$
\mathcal{S}(V \oplus W) \subseteq\left[\begin{array}{cc}
I_{11}(V) \oplus I_{11}(W) & I(V) \oplus I(W) \\
I(V)^{*} \oplus I(W)^{*} & I_{22}(V) \oplus I_{22}(W)
\end{array}\right] \cong I(\mathcal{S}(V)) \oplus I(\mathcal{S}(W))
$$

such that $I(\mathcal{S}(V)) \oplus I(\mathcal{S}(W))$ is an injective operator space. So $I_{11}(V \oplus W) \subseteq$ $I_{11}(V) \oplus I_{11}(W)$. On the other hand, let $T \in I_{11}(V)=I M_{l}(I(V)) \cong M_{l}(I(V))$ and $S \in I_{11}(W)=I M_{l}(I(W)) \cong M_{l}(I(W))$. Then

$$
\begin{aligned}
{\left[\begin{array}{cc}
T & 0 \\
0 & S
\end{array}\right] \in M_{l}(I(V) \oplus I(W)) } & \cong I M_{l}(I(V) \oplus I(W))=I M_{l}(I(V \oplus W)) \\
& =I_{11}(I(V \oplus W))=I_{11}(V \oplus W)
\end{aligned}
$$

This means that $I_{11}(V) \oplus I_{11}(W) \subseteq I_{11}(V \oplus W)$, so the proof is completed. For I_{22} one can use the same argument.

Theorem 2.2. Let V be an injective operator space. Then $I_{11}(V) \cong$ $\oplus_{i=1}^{n} B\left(H_{i}\right)$ if and only if $V \cong \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)$ where H_{i} and K_{i} are Hilbert spaces $(1 \leq i \leq n)$.

Proof. (\Leftarrow) Let $V \cong \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)$. Then by Lemma 2.1 and Theorem 2.1, we have

$$
I_{11}(V) \cong I_{11}\left(\oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)\right)=\oplus_{i=1}^{n} I_{11}\left(B\left(K_{i}, H_{i}\right)\right) \cong \oplus_{i=1}^{n} B\left(H_{i}\right)
$$

(\Rightarrow) Let V be an injective operator subspace of $B(L)$ for some Hilbert space L. From the injectivity of $I(\mathcal{S}(V))$ there is a completely contractive onto projection

$$
\Phi=\left[\begin{array}{cc}
\varphi_{1} & \varphi \\
\varphi^{*} & \varphi_{2}
\end{array}\right]: B\left(L^{2}\right) \rightarrow I(\mathcal{S}(V))=\left[\begin{array}{cc}
I_{11}(V) & V \\
V^{*} & I_{22}(V)
\end{array}\right]
$$

Thus by Theorem 1.1, $\left(I(\mathcal{S}(V)), \circ_{\Phi}\right)$ is a unital injective C^{*}-algebra with the new product. Let $\psi: I_{11}(V) \rightarrow \oplus_{i=1}^{n} B\left(H_{i}\right)$ be a unital completely isometric isomorphism. Thus by the same technique of the above theorem, we can define a completely contractive map $m: V \otimes_{h} V^{*} \rightarrow \oplus_{i=1}^{n} B\left(H_{i}\right)$ by $m\left(T \otimes S^{*}\right)=$
$\psi\left(\varphi_{1}\left(T S^{*}\right)\right)$. Suppose $\pi_{i}: \oplus_{i=1}^{n} B\left(H_{i}\right) \rightarrow B\left(H_{i}\right)$ is a completely contractive onto projection, then there are Hilbert spaces K_{i} and completely contractive mappings

$$
\psi_{i}: V \rightarrow B\left(K_{i}, H_{i}\right) \quad \text { and } \quad \psi_{i}^{\prime}: V^{*} \rightarrow B\left(H_{i}, K_{i}\right)
$$

such that for any $T, S \in V$ we have

$$
\pi_{i}\left(m\left(T \otimes S^{*}\right)\right)=\psi_{i}(T) \psi_{i}^{\prime}\left(S^{*}\right)
$$

For each $T \in V$ we have

$$
\begin{aligned}
\|T\|^{2} & =\left\|\left[\begin{array}{cc}
0 & T \\
0 & 0
\end{array}\right] \circ_{\Phi}\left[\begin{array}{ll}
0 & T \\
0 & 0
\end{array}\right]^{*}\right\|=\left\|\varphi_{1}\left(T T^{*}\right)\right\|=\left\|\psi\left(\varphi_{1}\left(T T^{*}\right)\right)\right\|=\left\|m\left(T \otimes T^{*}\right)\right\| \\
& =\max _{1 \leq i \leq n}\left\|\pi_{i}\left(m\left(T \otimes T^{*}\right)\right)\right\|=\max _{1 \leq i \leq n}\left\|\psi_{i}(T) \psi_{i}^{\prime}\left(T^{*}\right)\right\| \\
& \leq \max _{1 \leq i \leq n}\left\|\psi_{i}(T)\right\|\|T\| \leq\|T\|^{2} .
\end{aligned}
$$

Therefore there are completely isometric map

$$
\Psi=\left(\psi_{i}\right)_{i=1}^{n}: V \rightarrow \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)
$$

and completely contractive map

$$
\Psi^{\prime}=\left(\psi_{i}^{\prime}\right)_{i=1}^{n}: V^{*} \rightarrow \oplus_{i=1}^{n} B\left(H_{i}, K_{i}\right)
$$

where

$$
\psi\left(\varphi_{1}\left(T S^{*}\right)\right)=m\left(T \otimes S^{*}\right)=\Psi(T) \Psi^{\prime}\left(S^{*}\right)
$$

Thus $V \cong \Psi(V) \subseteq \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)$, respectively. Let I_{1} and I_{2} be identities for operator space $\oplus_{i=1}^{n} B\left(H_{i}\right)$ and $\oplus_{i=1}^{n} B\left(K_{i}\right)$. Thus $\mathcal{S}(\Psi(V))$ and $\left[\begin{array}{cc}\mathbb{C} I_{1} & \Psi(V) \\ \Psi(V)^{*} & \mathbb{C} I_{2}\end{array}\right]$ are completely isometrically isomorphic, so are $I(\mathcal{S}(\Psi(V)))$ and $I\left(\left[\begin{array}{cc}\mathbb{C} I_{1} & \Psi(V) \\ \Psi(V)^{*} & \mathbb{C} I_{2}\end{array}\right]\right)$. Therefore there is a completely contractive onto projection

$$
\left[\begin{array}{cc}
\varphi_{1}^{\prime} & \varphi^{\prime} \\
\varphi^{\prime *} & \varphi_{2}^{\prime}
\end{array}\right]:\left[\begin{array}{cc}
\oplus_{i=1}^{n} B\left(H_{i}\right) & \oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right) \\
\oplus_{i=1}^{n} B\left(H_{i}, K_{i}\right) & \oplus_{i=1}^{n} B\left(K_{i}\right)
\end{array}\right] \rightarrow\left[\begin{array}{cc}
I_{11}(\Psi(V)) & \Psi(V) \\
\Psi(V)^{*} & I_{22}(\Psi(V))
\end{array}\right]
$$

such that the first operator space is completely isometrically isomorphic to the injective operator space $\oplus_{i=1}^{n} B\left(H_{i} \oplus K_{i}\right)$.

Similar to Theorem 2.1 we have $I_{11}(\Psi(V))=\oplus_{i=1}^{n} B\left(H_{i}\right)$ and the new product of $\oplus_{i=1}^{n} B\left(H_{i}\right)$ on $\Psi(V)$ is the usual product on $\oplus_{i=1}^{n} B\left(K_{i}, H_{i}\right)$. Let P_{i} be a projection on $\oplus_{i=1}^{n} B\left(H_{i}\right)$ which is the identity on $B\left(H_{i}\right)$ and zero else. Thus $P_{i} V \subseteq V$ for $1 \leq i \leq n$. Then we can write $V=\oplus_{i=1}^{n} V_{i}$ such that V_{i} are injective operator spaces in $B\left(K_{i}, H_{i}\right)$ and $I_{11}\left(V_{i}\right)=B\left(H_{i}\right)$ for $1 \leq i \leq n$. Hence by Theorem 2.1 there are Hilbert spaces $K_{i}^{\prime} \subseteq K_{i}$ such that $V_{i} \cong B\left(K_{i}^{\prime}, H_{i}\right)$ for $1 \leq i \leq n$, i.e. $V \cong \oplus_{i=1}^{n} B\left(K_{i}^{\prime}, H_{i}\right)$.

30 A. R. Medghalchi and H. Nikpey : Characterizing injective operator space...
Corollary 2.3. Let V be an injective operator space. Then V is a direct sum of row Hilbert spaces if and only if $I_{11}(V)=\oplus_{i=1}^{n} \mathbb{C}$.

Proof. Put $H_{i}=\mathbb{C}$ in the above theorem.
Note that all of above statements are true for $I_{22}(V)$ too.

References

[1] D. Blecher and C. Le Merdy, Operator algebras and their modules-an operator space approach, London Mathematical Society Monographs, New Series 30, Oxford Science Publications, Oxford, 2004.
[2] D. Blecher and V. I. Paulsen, Multipliers of operator spaces and the injective envelope, Pacific J. Math. 200, no. 1 (2001), 1-17.
[3] E. G. Effros and Z. J. Ruan, Operator Space, London Math. Soc. Monographs, New Series 23, Oxford University Press, New York, 2000.
[4] Z. J. Ruan, Injectivity of Operator Spaces, Trans. Amer. Math. Soc. 315, no. 1 (1989), 89-104.
[5] M. Hamana, Injective envelopes of operator systems, Publ. RIMS, Kyoto Univ. 15 (1979), 773-785.
[6] M. Hamana, Injective envelopes of dynamical systems, in "Operator Algebras and Operator Theory",, Pitman Research Notes 271 (1992), 69-77.
[7] G. Wittstock, Extension of completely bounded C^{*}-module homomorphisms, Proceedings, Conf. on Operator Algebras and Group Representations, 1983, 238-250.

ALI REZA MEDGHALCHI
DEPARTMENT OF MATHEMATICS
TARBIAT MOALLEM UNIVERSITY
50 TALEGHANI AVENUE
TEHRAN 15618
IRAN
E-mail: a_medghalchi@saba.tmu.ac.ir
HAMED NIKPEY
DEPARTMENT OF MATHEMATICS
TARBIAT MOALLEM UNIVERSITY
50 TALEGHANI AVENUE
TEHRAN 15618
IRAN
E-mail: hamednikpey@gmail.com

[^0]: Mathematics Subject Classification: 47L25, 47L05.
 Key words and phrases: operator space, Paulsen operator system, injective operator space, left multiplier, Haagerup tensor product.

