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Characterizing injective operator space V for which
I11(V ) ∼= B(H)

By ALI REZA MEDGHALCHI (Tehran) and HAMED NIKPEY (Tehran)

Abstract. Let V ∼= B(K,H) where H and K are Hilbert spaces. Then we know

that I11(V ) ∼= B(H). Let V be an injective operator space. In this paper we recover the

above result and show that I11(V ) ∼= ⊕n
i=1B(Hi) where H1, . . . , Hn are Hilbert spaces

if and only if there are Hilbert spaces K1, . . . ,Kn such that V ∼= ⊕n
i=1B(Ki, Hi).

1. Introduction

Let B(H) be the set of all bounded linear operators on the Hilbert space H.

Operator spaces are the concrete closed subspaces of B(H) as formulated in [3].

Given operator spaces V and W and a linear mapping ϕ : V → W , for each

n ∈ N, there is a corresponding linear mapping ϕn : Mn(V ) → Mn(W ) defined

by ϕn(T ) = [ϕ(Ti,j)] for all T = [Ti,j ] ∈ Mn(V ). The completely bounded norm

of ϕ is defined by

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N},

(this might be infinite). It is evident that the norms ‖ϕn‖ form an increasing

sequence

‖ϕ‖ ≤ ‖ϕ2‖ ≤ · · · ≤ ‖ϕn‖ ≤ · · · ≤ ‖ϕ‖cb.

It is said that ϕ is completely bounded (respectively, completely contractive) if

‖ϕ‖cb <∞ (respectively, ‖ϕ‖cb ≤ 1). We say that the operator spaces V and W

are completely isometrically isomorphic if there is an onto linear map ϕ : V →W
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such that each mapping ϕn : Mn(V ) → Mn(W ) is an isometry. This notion is

indicated by V ∼= W .

Recall that an operator space V is injective, if for given operator spaces

W1 ⊆ W2, any completely bounded linear map ϕ1 : W1 → V can be extended

to a completely bounded map ϕ2 : W2 → V with ‖ϕ2‖cb = ‖ϕ1‖cb. It has been

known for a long time that B(H) is an injective operator space for any Hilbert

space H (see [7]). If we are given a linear space V , then we say that a linear

mapping ϕ : V → V is a projection if ϕ2 = ϕ.

Lemma 1.1. Let V be an operator subspace of B(H). Then V is an injective

operator space if and only if there is a completely contractive projection of B(H)

onto V .

Let V be an operator subspace of B(H). From Wittstock Theorem [7],

B(H) is an injective operator space contains V . Hamana [5], [6] and Ruan

[4] independently have shown that for any operator space V in B(H) there is a

minimal injective operator subspace of B(H) contains V , called injective envelope

of V and denoted by I(V ).

Let A be a unital C∗-algebra with the unit I = IA. The operator space

V ⊆ A is called an operator system if I ∈ V and V ∗ = V such that V ∗ is the

space of all adjoint of members of V . If V is an operator system then Mn(V ) is an

operator system. Given operator systems V and W , a linear mapping ϕ : V →W

is called completely positive if ϕn ≥ 0 for all n ∈ N, and we then write ϕ ≥cb 0.

We need the following theorem which proof is found in [3, Theorem 6.1.3].

Theorem 1.1. If V ⊆ B(H) is an injective operator system, then there is a

unique multiplication

◦ : V × V → V

for which, together with its given ∗-operation and norm, is a C∗-algebra with the

multiplication identity I.

Suppose V is an injective operator system, we may fix a completely contrac-

tive onto projection ϕ : B(H) → V . Given T, S ∈ V , we define an operation ◦ϕ
on V by

T ◦ϕ S = ϕ(TS).

With this definition (V, ◦ϕ) is a unital C∗-algebra. For more detail see [3, Sec-

tion 6].

Lemma 1.2. Let V be a unital operator space. Then I(V ) is a unital

injective C∗-algebra.
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Proof. From Hamana theorem, V has an injective envelope I(V ) in B(H),

thus there is a completely contractive onto projection ϕ : B(H) → I(V ). Since

V is a unital operator space, ϕ is a unital map and so ϕ is completely positive [3,

Corollary 5.1.2] therefore, I(V ) is a unital operator system. Now by Theorem 1.1,

I(V ) is a unital injective C∗-algebra. �

Let V be a subspace of B(H), the Paulsen operator system S(V ) is defined by

S(V ) =

[
CIH V

V ∗ CIH

]
=

{[
α T

S∗ β

]
: T, S ∈ V, α, β ∈ C

}

in M2(B(H)), where the entries α and β stand for αIH and βIH and S∗ means

the adjoint of S in B(H). Hence S(V ) is an operator subspace of B(H2). From

Hamana and Ruan Theorems, S(V ) has an injective envelope in B(H2) which we

denote by I(S(V )). So there is a unital completely contractive onto projection

Φ : B(H2) → I(S(V )). Therefore I(S(V )) is a unital C∗-algebra with the new

product T ◦Φ S = Φ(TS) where T, S ∈ I(S(V )). Indeed, since Φ : B(H ⊕K) →
B(H ⊕K) fixes the C∗-algebra C ⊕ C which is the diagonal of S(V ), it follows

immediately that the following elements of S(V ) are two self adjoint projections

with sum I in the C∗-algebra I(S(V )):

p =

[
IH 0

0 0

]
, q =

[
0 0

0 IH

]
.

Since Φ(p) = p and Φ(q) = q, it follows from [1, 2.6.16] that Φ is ‘corner-

preserving’, thus we can write Φ =
[ ϕ1 ϕ
ϕ∗ ϕ2

]
, such that ϕ∗(T ) = ϕ(T ∗)∗ for any

T ∈ B(H). Therefore, we may decompose I(S(V )) to write it as consisting of

2× 2 matrices. Hamana has shown that pI(S(V ))q, the 1-2 corner of I(S(V )), is

the injective envelope of V . The four corners of I(S(V )) we will name:

I(S(V )) =

[
I11(V ) I(V )

I(V )∗ I22(V )

]
.

It is clear that I11(V ) and I22(V ) are also injective C∗-algebras with the new

product. We define

IMl(V ) = {T ∈ I11(V ) : T ◦ϕ V ⊆ V },

where T ◦ϕ S = ϕ(TS) for any T ∈ I11(V ) and S ∈ V . From [1, Theorem 4.5.5],

V is a left operator IMl(V )-module. Now we define the left multiplier space of V
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to be the family of all linear maps ψ : V → V such that there exists a Hilbert

space K, T ∈ B(K), and a linear completely isometry π : V → B(K) such that

π(ψ(S)) = Tπ(S) for any S ∈ V . We define the multiplier norm of ψ to be the

infimum of ‖T‖ over all possible K,T, π as above and denote that with Ml(V ).

From [1, Theorem 4.5.5] we haveMl(V ) and IMl(V ) are completely isometrically

isomorphic, i.e. Ml(V ) ∼= IMl(V ). Let H and K be Hilbert spaces. Then from

[1] 4.5.1 and 4.12 we have

Ml(B(K,H)) ∼= IMl(B(K,H)) = {T ∈ I11(B(K,H)) : T ◦B(K,H) ⊆ B(K,H)}

(with the new product) is a subspace ofB(H). From the definition ofMl(B(K,H))

we have B(H) ⊆Ml(B(K,H)). Thus

Ml(B(K,H)) ∼= IMl(B(K,H)) = B(H).

2. Main results

Let V = B(K,H) be such that H and K are Hilbert spaces. Then from the

above notation we have I11(V ) ∼= B(H). By using this, our aim is to characterize

injective operator space V for which I11(V ) ∼= B(H). We will show that this

is the case if and only if V ∼= B(K,H) where K is a Hilbert space. We then

characterize the operator spaces V for which I11(V ) ∼= ⊕ni=1B(Hi).

Theorem 2.1. Let V be an injective operator space. Then I11(V ) ∼= B(H) if

and only if V is completely isometrically isomorphic to B(K,H) for some Hilbert

space K.

Proof. (⇐) Let V be completely isometrically isomorphic to B(K,H).

Then from the definition of the left multiplier algebra and [1, Theorem 4.5.5]

we have

I11(V ) ∼= I11(B(K,H)) = IMl(B(K,H)) ∼=Ml(B(K,H)) = B(H).

(⇒) Let V be an injective operator subspace of B(L) for some Hilbert space

L. By the injectivity of I(S(V )) ⊆ B(L2) there is a completely contractive onto

projection

Φ =

[
ϕ1 ϕ

ϕ∗ ϕ2

]
: B(L2)→ I(S(V )) =

[
I11(V ) V

V ∗ I22(V )

]
.
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Thus by Theorem 1.1, (I(S(V )), ◦Φ) is a unital injective C∗-algebra with the new

product. From assumption, there is some unital completely isometric isomorphism

mapping ψ : I11(V ) → B(H). Now we define the map m : V ⊗ V ∗ → B(H) by

m(T ⊗ S∗) = ψ(ϕ1(TS∗)) for any T, S ∈ V which infact comes from[
0 T

0 0

]
◦Φ

[
0 0

S∗ 0

]
= Φ

([
0 T

0 0

][
0 0

S∗ 0

])
=

[
ϕ1(TS∗) 0

0 0

]
∈

[
I11(V ) 0

0 0

]
.

We have I(S(V )) is a C∗-algebra and also an operator algebra with the new

product. Thus from [1, Theorem 2.3.2], m can be extended to Haagerup tensor

product V ⊗h V ∗ and trivially we have ‖m‖cb = ‖ψ ◦ ϕ1‖cb ≤ 1. From [3, The-

orem 9.4.3] there exists a Hilbert space K and completely contractive mappings

ψ1 : V → B(K,H) and ψ2 : V ∗ → B(H,K)

such that for any T, S ∈ V we have

ψ(ϕ1(TS∗)) = m(T ⊗ S∗) = ψ1(T )ψ2(S∗).

Let p be a projection in K onto the closure of ψ2(V ∗)H. Then we have

ψ(ϕ1(TS∗)) = m(T ⊗ S∗) = [ψ1(T )p][pψ2(S∗)],

thus we can assume that ψ2(V ∗)H is a dense subspace of Hilbert space K. For

any T ∈ V we have

‖T‖2 =

∥∥∥∥∥
[

0 T

0 0

]∥∥∥∥∥
2

=

∥∥∥∥∥
[

0 T

0 0

]
◦Φ

[
0 T

0 0

]∗∥∥∥∥∥
= ‖ϕ1(TT ∗)‖ = ‖ψ(ϕ1(TT ∗))‖ = ‖ψ1(T )ψ2(T ∗)‖ ≤ ‖ψ1(T )‖‖T‖ ≤ ‖T‖2.

So ψ1 is a completely isometry and V ∼= ψ1(V ). Let IH and IK be identities for

B(H) and B(K). Then S(ψ1(V )) and
[

CIH ψ1(V )
ψ1(V )∗ CIK

]
are completely isometrically

isomorphic together, so are I(S(ψ1(V ))) and I
([

CIH ψ1(V )
ψ1(V )∗ CIK

])
. Therefore we

have [
I11(ψ1(V )) ψ1(V )

ψ1(V )∗ I22(ψ1(V ))

]
= I

([
CIH ψ1(V )

ψ1(V )∗ CIK

])
⊆ B(H ⊕K).
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Now we want to prove B(H)ψ1(V ) ⊆ ψ1(V ) and then I11(ψ1(V )) = B(H). Let

T ∈ B(H). Then there is some T ′ ∈ I11(V ) such that T = ψ(T ′). Therefore for

any S1, S2 ∈ V and h ∈ H we have

[Tψ1(S1)]ψ2(S∗2 )h = ψ(T ′)[ψ1(S1)ψ2(S∗2 )]h = ψ(T ′)ψ(ϕ1(S1S
∗
2 ))h

= ψ(T ′ ◦ϕ1 ϕ1(S1S
∗
2 ))h = ψ(ϕ(T ′S1) ◦ϕ1 S

∗
2 ))h

= ψ(ϕ1(ϕ(T ′S1)S∗2 ))h = [ψ1(ϕ(T ′S1))]ψ2(S∗2 )h.

Thus for any S ∈ V we have Tψ1(S) = ψ1(ϕ(T ′S)) on ψ2(V ∗)H. Therefore

Tψ1(S) = ψ1(ϕ(T ′S)) ∈ ψ1(V ). That means, B(H)ψ1(V ) ⊆ ψ1(V ) and therefore

the new product of I11(ψ1(V )) on ψ1(V ) comes from the usual product of B(H)

on B(K,H).

By [2, Corollary 1.2], ϕ1(V V ∗) = V ◦ϕ1 V
∗ is an essential ideal of the C∗-

algebra (I11(V ), ◦ϕ1). By assumption, since ψ : (I11(V ), ◦ϕ1)→ B(H) is a unital

completely isometric surjection between two C∗-algebras, by [1, Corollary 1.3.10],

ψ is an ∗-homomorphism. Thus ψ(ϕ1(V V ∗)) = ψ1(V )ψ2(V ∗) is an essential ideal

of B(H). Let T ∈ B(H) such that Tψ1(V ) = 0. Then Tψ1(V )ψ2(V ∗) = 0. Since

ψ1(V )ψ2(V ∗) is an essential ideal of B(H), T = 0. Therefore by definition of the

left multiplier algebra of an operator space, for any T ∈ B(H), ϕT ∈Ml(ψ1(V ))

by definition ϕT (ψ1(S)) = Tψ1(S) for any S ∈ V . By [1, Theorem 4.5.2] there is

some T ′′ ∈ I11(ψ1(V )) ⊆ B(H) such that ϕT (ψ1(S)) = T ′′ ◦ψ1(S) (with the new

product). On the other hand, the product of I11(ψ1(V )) on ψ1(V ) is the usual

product. So, for any S ∈ V ,

Tψ1(S) = ϕT (ψ1(S)) = T ′′ ◦ ψ1(S) = T ′′ψ1(S),

i.e. T ′′ = T . Therefore I11(ψ1(V )) = B(H) such that B(H)ψ1(V ) ⊆ ψ1(V ).

Let W = ψ1(V ). Then S(W ) is completely isometrically isomorphic to[
CIH W
W∗ CIK

]
, so are I(S(W )) and

[
B(H) W
W∗ I22(W )

]
. Thus there is some completely

contractive onto projection

Φ : B(H ⊕K)→

[
B(H) W

W ∗ I22(W )

]
⊆ B(H ⊕K)

such that
[
B(H) W
W∗ I22(W )

]
is a C∗-algebra with the new product. Φ is the identity

on B(H). Thus from [3, Corollary 5.2.2] we have

Φ

([
T 0

0 0

][
0 S

0 0

])
= Φ

([
T 0

0 0

])
Φ

([
0 S

0 0

])
=

[
T 0

0 0

][
0 S

0 0

]
,
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for any T ∈ B(H) and S ∈ W . That means the new product of B(H) on W

comes from the usual product of B(H) on B(K,H) and therefore B(H)W ⊆W .

Let {eα}α∈Γ be an orthogonal basis for the Hilbert space H. Then eα⊗ eα’s

are projections in B(H), where (eα ⊗ eα)(h) = 〈h, eα〉eα for any h ∈ H. (eα ⊗
eα)W ⊆ W . Since, the product of B(H) on W is the usual product. For any

T ∈ (eα ⊗ eα)W there is a h ∈ K such that T (g) = 〈g, h〉eα for each g ∈ K, we

then denote T with Th,eα . Let Kα = {h ∈ K : Th,eα ∈ (eα⊗ eα)W}−‖.‖. We have

(eα ⊗ eβ)W ⊆ W for each α, β ∈ Γ, thus Kα = Kβ for each α, β ∈ Γ. So we can

assume that W ⊆ B(K ′, H) where K ′ = Kα for some α ∈ Γ.

Also Σα∈F (eα ⊗ eα)W ⊆ W for any finite set F . Therefore K(K ′, H), the

space of compact operators in B(K ′, H) is a subspace of W too. We have

K(H ⊕K ′) =

[
K(H) K(K ′, H)

K(H,K ′) K(K ′)

]

is an essential ideal of

B(H ⊕K ′) =

[
B(H) B(K ′, H)

B(H,K ′) B(K ′)

]
.

Therefore by [2] we have I(K(H ⊕ K ′)) = B(H ⊕ K ′), so W = B(K ′, H).

Thus we have V ∼= B(K ′, H) �

Corollary 2.1. Let V be an injective operator space. Then V is complet-

ely isometrically isomorphic to some row Hilbert operator space if and only if

I11(V ) ∼= C.

Proof. By Theorem 2.1 we have I11(V ) ∼= C if and only if V ∼= B(K,C) for

some Hilbert space K, such that B(K,C) is a row Hilbert space. �

Corollary 2.2. Let V be an operator space. Then I11(V ) = I22(V ) ∼= C if

and only if V ∼= C.

Proof. If V ∼= C, then obviously we have I11(V ) = I22(V ) ∼= C. On the

other hand, if I11(V ) = I22(V ) ∼= C then V is completely isomorphic to row and

column Hilbert operator spaces. Therefore V is one dimensional. �

Note that for any operator space V , we have I(S(V )) = I(S(I(V ))) and so

I11(V ) = I11(I(V )) = IMl(I(V )) ∼= Ml(I(V ))

and

I22(V ) = I22(I(V )) = IMr(I(V )) ∼= Mr(I(V )).
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Lemma 2.1. Let V and W be two operator spaces. Then I11(V ⊕W ) =

I11(V )⊕ I11(W ) and I22(V ⊕W ) = I22(V )⊕ I22(W ).

Proof. For any operator spaces V andW , we have I(V⊕W ) = I(V )⊕I(W ).

So

S(V ⊕W ) ⊆

[
I11(V )⊕ I11(W ) I(V )⊕ I(W )

I(V )∗ ⊕ I(W )∗ I22(V )⊕ I22(W )

]
∼= I(S(V ))⊕ I(S(W )),

such that I(S(V )) ⊕ I(S(W )) is an injective operator space. So I11(V ⊕W ) ⊆
I11(V ) ⊕ I11(W ). On the other hand, let T ∈ I11(V ) = IMl(I(V )) ∼= Ml(I(V ))

and S ∈ I11(W ) = IMl(I(W )) ∼= Ml(I(W )). Then[
T 0

0 S

]
∈Ml(I(V )⊕ I(W )) ∼= IMl(I(V )⊕ I(W )) = IMl(I(V ⊕W ))

= I11(I(V ⊕W )) = I11(V ⊕W ).

This means that I11(V )⊕ I11(W ) ⊆ I11(V ⊕W ), so the proof is completed.

For I22 one can use the same argument. �

Theorem 2.2. Let V be an injective operator space. Then I11(V ) ∼=
⊕ni=1B(Hi) if and only if V ∼= ⊕ni=1B(Ki, Hi) where Hi and Ki are Hilbert spaces

(1 ≤ i ≤ n).

Proof. (⇐) Let V ∼= ⊕ni=1B(Ki, Hi). Then by Lemma 2.1 and Theorem 2.1,

we have

I11(V ) ∼= I11(⊕ni=1B(Ki, Hi)) = ⊕ni=1I11(B(Ki, Hi)) ∼= ⊕ni=1B(Hi).

(⇒) Let V be an injective operator subspace of B(L) for some Hilbert

space L. From the injectivity of I(S(V )) there is a completely contractive onto

projection

Φ =

[
ϕ1 ϕ

ϕ∗ ϕ2

]
: B(L2)→ I(S(V )) =

[
I11(V ) V

V ∗ I22(V )

]
.

Thus by Theorem 1.1, (I(S(V )), ◦Φ) is a unital injective C∗-algebra with the

new product. Let ψ : I11(V ) → ⊕ni=1B(Hi) be a unital completely isometric

isomorphism. Thus by the same technique of the above theorem, we can define

a completely contractive map m : V ⊗h V ∗ → ⊕ni=1B(Hi) by m(T ⊗ S∗) =
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ψ(ϕ1(TS∗)). Suppose πi : ⊕ni=1B(Hi)→ B(Hi) is a completely contractive onto

projection, then there are Hilbert spaces Ki and completely contractive mappings

ψi : V → B(Ki, Hi) and ψ′i : V ∗ → B(Hi,Ki)

such that for any T, S ∈ V we have

πi(m(T ⊗ S∗)) = ψi(T )ψ′i(S
∗).

For each T ∈ V we have

‖T‖2 =

∥∥∥∥∥
[

0 T

0 0

]
◦Φ

[
0 T

0 0

]∗∥∥∥∥∥ = ‖ϕ1(TT ∗)‖ = ‖ψ(ϕ1(TT ∗))‖ = ‖m(T ⊗ T ∗)‖

= max
1≤i≤n

‖πi(m(T ⊗ T ∗))‖ = max
1≤i≤n

‖ψi(T )ψ′i(T
∗)‖

≤ max
1≤i≤n

‖ψi(T )‖‖T‖ ≤ ‖T‖2.

Therefore there are completely isometric map

Ψ = (ψi)
n
i=1 : V → ⊕ni=1B(Ki, Hi)

and completely contractive map

Ψ′ = (ψ′i)
n
i=1 : V ∗ → ⊕ni=1B(Hi,Ki),

where

ψ(ϕ1(TS∗)) = m(T ⊗ S∗) = Ψ(T )Ψ′(S∗).

Thus V ∼= Ψ(V ) ⊆ ⊕ni=1B(Ki, Hi), respectively. Let I1 and I2 be identities for

operator space ⊕ni=1B(Hi) and ⊕ni=1B(Ki). Thus S(Ψ(V )) and
[

CI1 Ψ(V )
Ψ(V )∗ CI2

]
are

completely isometrically isomorphic, so are I(S(Ψ(V ))) and I
([

CI1 Ψ(V )
Ψ(V )∗ CI2

])
.

Therefore there is a completely contractive onto projection[
ϕ′1 ϕ′

ϕ′∗ ϕ′2

]
:

[
⊕ni=1B(Hi) ⊕ni=1B(Ki, Hi)

⊕ni=1B(Hi,Ki) ⊕ni=1B(Ki)

]
→

[
I11(Ψ(V )) Ψ(V )

Ψ(V )∗ I22(Ψ(V ))

]
,

such that the first operator space is completely isometrically isomorphic to the

injective operator space ⊕ni=1B(Hi ⊕Ki).

Similar to Theorem 2.1 we have I11(Ψ(V )) = ⊕ni=1B(Hi) and the new pro-

duct of ⊕ni=1B(Hi) on Ψ(V ) is the usual product on ⊕ni=1B(Ki, Hi). Let Pi be

a projection on ⊕ni=1B(Hi) which is the identity on B(Hi) and zero else. Thus

PiV ⊆ V for 1 ≤ i ≤ n. Then we can write V = ⊕ni=1Vi such that Vi are in-

jective operator spaces in B(Ki, Hi) and I11(Vi) = B(Hi) for 1 ≤ i ≤ n. Hence

by Theorem 2.1 there are Hilbert spaces K ′i ⊆ Ki such that Vi ∼= B(K ′i, Hi) for

1 ≤ i ≤ n, i.e. V ∼= ⊕ni=1B(K ′i, Hi). �
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Corollary 2.3. Let V be an injective operator space. Then V is a direct

sum of row Hilbert spaces if and only if I11(V ) = ⊕ni=1C.

Proof. Put Hi = C in the above theorem. �

Note that all of above statements are true for I22(V ) too.
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