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Homogeneity is superstable

By JACEK TABOR (Kraków) and JÓZEF TABOR (Kraków)

Abstract. Let X be a set, (Y, d) a metric space, G a semigroup with unit. We
assume that G acts on X and Y , respectively. Given a mapping g : G ×X → R+ we
consider the following condition for mappings f from X into Y :

d(f(αx), αf(x)) ≤ g(α, x) for α ∈ G, x ∈ X .

We prove that under suitable assumptions on g and the acting of G on Y the mapping
f is homogeneous, i.e.

f(αx) = αf(x) for α ∈ G, x ∈ X .

A topological version of the problem for mappings from a vector space into a topological
vector space is considered, too.

0. Let E1 be a real vector space, E2 a real normed space and let
ε ∈ [0,∞). In [3] Józef Tabor considered the problem of stability of
linear mappings from E1 into E2. It has been proved there that every
mapping f : E1 → E2 satisfying the condition

(1) ‖f(αx)− αf(x)| ≤ ε for α ∈ R, x ∈ E1

is homogeneous.
This result raised the following question asked by K. Baron during

the seminar of R. Ger (Katowice, October 1992):
Is it true that every solution of the inequality

(2) ‖f(αx)− αf(x)‖ ≤ ε|α| for α ∈ R, x ∈ E1

is homogeneous?
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It turns out that conditions (1) and (2) are equivalent. For the proof
it is sufficient to replace in (1) and (2) α by 1

α and x by αx for α 6= 0 and
to note that (1) implies f(0) = 0. But the problem can be generalized.
Then it becomes interesting though we known the answer to the original
question of K. Baron.

Both conditions (1) and (2) mean that the expression f(αx)−αf(x) is
suitably bounded. Therefore some kinds of boundedness will be involved in
their generalizations. We shall use the notion of a metric space in the first
generalization and the notion of a topological vector space in the second
one.

1. We begin our considerations with the most general result.

Lemma. Let X be a set, Y a Hausdorff topological space and let
g1 : X → X, g2 : Y → Y , f : X → Y be any mappings. If g2 is continuous
then the following conditions are equivalent:

(i) g2(f(x)) = f(g1(x)) for x ∈ X,
(ii) there exists a sequence of mappings fn : X → Y such that

(3) lim
n→∞

fn(x) = f(x) for x ∈ X

and

(4) lim
n→∞

g2(fn(x)) = f(g1(x)) for x ∈ X .

Proof. To obtain (ii) from (i) we need only to put fn := f . Now
suppose that (ii) holds. Making use of (4), (3) and continuity of g2 we
obtain

f(g1(x)) = lim
n→∞

g2(fn(x)) = g2(f(x)) for x ∈ X .

As one expects, the continuity of g2 is an essential assumption in the
Lemma.

Example. Take X = Y = [0, 1], d – the usual metric,

g1(x) = x for x ∈ [0, 1] , g2(y) =
{

1 for y = 0
y2 for y ∈ (0, 1]

,

f(x) =
{

0 for x ∈ [0, 1]
1 for x = 1

, fn(x) =
{ 1

n for x ∈ [0, 1)
1 for x = 1

.

Then (3) and (4) hold but (i) does not.
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Before we prove the next theorems we need to recall some definitions
and to establish some notations.

Let X be a set and G a semigroup with the unit 1. We say that G
acts on X if we are given a mapping F : G×X → X such that

F (β, F (α, x)) = F (βα, x) for α, β ∈ G, x ∈ X ,

F (1, x) = x for x ∈ X .

We write αx instead of F (α, x).
By R+ we denote the set of non-negative real numbers, K stands for

the real or complex field and by 00 we mean 1.

Theorem 1. Let X be a set, (Y, d) a metric space, G a semigroup with
unit acting on X and Y , respectively. We assume that for each α ∈ G the
mapping Y 3 y → αy is continuous. Let g : G × X → R+ be a given
mapping and let f : X → Y satisfy the following condition:

(5) d(f(αx), αf(x)) ≤ g(α, x) for α ∈ G, x ∈ X .

If there exists a sequence αn of invertible elements of G such that

(6) lim
n→∞

g(ααn, (αn)−1x) = 0 for α ∈ G, x ∈ X ,

then
f(αx) = αf(x) for α ∈ G, x ∈ X .

Proof. Inserting into (5) ααn and (αn)−1x in place of α and x,
respectively, we obtain

d(f(αx), α(αnf((αn)−1x)) ≤ g(ααn, (αn)−1x) for α ∈ G, x ∈ X, n ∈ N ,

whence by (6) we have

(7) lim
n→∞

α(αnf((αn)−1x)) = f(αx) for α ∈ G, x ∈ X .

Taking α = 1 we obtain from (7)

(8) lim
n→∞

αnf((αn)−1x) = f(x) for x ∈ X .

Fix an α ∈ G. We put

fn(x) := αnf(αn))−1x) for x ∈ X ,

g1(x) := αx for x ∈ X ,

g2(y) := αy for y ∈ Y .
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Then (8) means that fn satsifies (3) and by (7) it satisfies (4). By the
Lemma we obtain

f(g1(x)) = g2(f(x)) for x ∈ X ,

i.e.
f(αx) = αf(x) for x ∈ X .

This completes the proof.

Corollary 1. Let X be a normed space, L(X) the semigroup of con-
tinuous linear operators on X with the composition as a binary operation
and let p1, p2 ∈ R+, p1 6= p2. Let k : X → R+ be a given mapping such
that

(9) k(Ax) ≤ ‖A‖p2k(x) for A ∈ L(X), x ∈ X .

If a mapping f : X → X satisfies the condition

(10) ‖f(Ax)−Af(x)‖ ≤ ‖A‖p1k(x) for A ∈ L(X), x ∈ X ,

then there exists an α ∈ K such that

f(x) = αx for x ∈ X .

Proof. We put

g(A, x) := ‖A‖p1k(x) for A ∈ L(X), x ∈ X ,

An = αnI ,

where I denotes the identity mapping, αn = 1
n if p1 > p2 and αn = n if

p1 < p2. Then (10) means that condition (5) is satisfied. By (9) we have
for x ∈ X

g(AAn, (An)−1x) = ‖AAn‖p1k((An)−1x) ≤
≤ ‖A‖p1‖An‖p1‖(An)−1‖p2k(x) = ‖A‖p1 |αn|p1−p2k(x) −−−→

n→∞
0 ,

which means that condition (6) holds. By Theorem 1 we obtain

(11) f(Ax) = Af(x) for A ∈ L(X), x ∈ X .

We are going to prove that for each x ∈ X there exists an α ∈ K such
that f(x) = αx. Inserting into (11) x = 0, A = 2I we obtain that
f(0) = 0 = α0 for α ∈ K. Now suppose for the proof by contradiction that
there exists an x ∈ X, x 6= 0 such that f(x) 6= αx for each α ∈ K. Then x
and f(x) are linearly independent and therefore there exists an A ∈ L(X)
such that Af(x) = 0 and Ax = x. Now applying (11) we obtain that
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f(x) = 0, which gives a contradiction. We have just proved that for each
x ∈ X there exists an α ∈ K such that f(x) = αx. We need to prove yet
that α does not depend on x. Let x1, x2 ∈ X, x1 6= 0, x2 6= 0, x1 6= x2 and
let f(x1) = α1x1, f(x2) = α2x2. Take an A ∈ L(X) such that Ax1 = x2.
Then by (11) we obtain

α1x2 = α1A(x1) = A(α1x1) = Af(x1) = f(Ax1) = f(x2) = α2x2 .

Hence α1 = α2, which completes the proof.

Corollary 2. Let K be a real or complex field and let p, p1, p2 ∈ R+,
p 6= p2. Let X be a vector space over K, Y a normed space over K and let
k : X → R+ be a given mapping such that

(12) k(αx) ≤ |α|p2k(x) for α ∈ K, x ∈ X .

If a mapping f : X → Y satisfies the condition

(13) ‖f(αx)− |α|pf(x)‖ ≤ |α|p1k(x) for α ∈ K, x ∈ X ,

then

(14) f(αx) = |α|pf(x) for α ∈ K, x ∈ X .

Proof. An acting of K on X is the multiplication by scalars whereas
an acting of K on Y is defined by the formula

α ∗ y := |α|py for α ∈ K, y ∈ Y .

We put
g(α, x) := |α|p1k(x) for α ∈ K, x ∈ X .

Then (13) means that condition (5) is fulfilled. We take αn = 1
n if p1 > p2

and αn = n if p1 < p2. Then by (12) we obtain for α ∈ K, x ∈ X:

g(ααn, (αn)−1x) ≤ |α|p1 |αn|p1−p2k(x) −−−→
n→∞

0 ,

which proves that condition (7) is satisfied. By Theorem 1 we obtain

f(αx) = α ∗ f(x) = |α|pf(x) for α ∈ K, x ∈ X .

It is obvious that in Corollary 2 X and Y may be replaced by their
subsets X1 and Y1 such that KX1 ⊂ X1 and K ∗Y1 ⊂ Y1, respectively. We
also note that the function f of the form (14) satisfies condition (13) for
any function k. Hence assuming (12) we get equivalency of (13) and (14).
For p = 1 condition (14) means the absolute homogeneity of f . Therefore
by applying condition (13) we can weaken the definitions of a norm and a
seminorm.
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Corollary 3. Let K, p1, p2, X, Y, k be as in Corollary 2. If a mapping
f : X → Y satisfies the condition

‖f(αx)− αf(x)‖ ≤ |α|p1k(x) for α ∈ K, x ∈ X ,

then

f(αx) = αf(x) for α ∈ K, x ∈ X .

Proof. The proof runs similarly as that of Corollary 2.

Similarly as before, X and Y in Corollary 3 may be replaced by
their subsets X1 and Y1 closed with respect to multiplication by scalars.
Putting in Corollary 3 p1 = 1, p2 = 0, k(x) = ε we obtain that each
mapping f : X → Y satisfying (2) is homogeneous. This gives a positive
answer to the question of K. Baron. Similarly, setting in Corollary 2
p = 1, p1 = 1, p2 = 0, k(x) = ε we obtain an analogous result concerning
absolute homogeneity. Inequality (2) may be interpreted as some kind of
approximate homogeneity. Similarly the inequality

‖f(αx)− |α|f(x)‖ ≤ ε|α| for α ∈ R, x ∈ X

may be treated as an absolute approximate homogeneity. Then, according
to the terminology introduced by R. Ger [1], our results mean that the
equation of homogeneity as well as the absolute homogeneity are super-
stable.

2. Inequality (2) can be considered not only in a normed space but
in a topological vector space as well. For this purpose we have to rewrite
condition (2) in a different form. Denote

V := {x ∈ X : ‖x‖ ≤ ε} .

Then (2) can be written as

f(αx)− αf(x) ∈ αV for α ∈ R, x ∈ X .

Now it is clear that the condition

f(αx)− αf(x) ∈ g(α, x)V for α ∈ R, x ∈ X ,

where V ⊂ X and g maps R×X into R, generalizes condition (2).
We recall that a subset V of a topological vector space over K is called

bounded if for each neighrbourhood U of zero there exists an r ∈ K \ {0}
such that rV ⊂ U (cf. [2]).
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Theorem 2. Let X be a vector space over K,Y a topological vector
space over K and let X1 and Y1 be subsets of X and Y , respectively,
such that KX1 ⊂ X1 and KY1 ⊂ Y1. Let V ⊂ Y be a bounded set and
g : K×Y1 → K a mapping such that there exists a sequence αn of non-zero
elements of K such that

(15) lim
n→∞

g(ααn, (αn)−1x) = 0 for α ∈ K, x ∈ X1 .

If a mapping f : X1 → Y1 satisfies the condition

(16) f(αx)− αf(x) ∈ g(α, x)V for α ∈ K, x ∈ X1 ,

then

(17) f(αx) = αf(x) for α ∈ K, x ∈ X1 .

Proof. We have by (16)

f(αnx)
αn

∈ f(x) +
g(αn, x)

αn
V for x ∈ X1, n ∈ N .

Thus
α

αn
f(αnx) ∈ αf(x) +

α

αn
g(αn, x)V for α ∈ K, x ∈ X1, n ∈ N .

This condition and (16) yield
α

αn
f(αnx)− f(αx) ∈ α

αn
g(αn, x)V − g(α, x)V

for α ∈ K, x ∈ X1, n ∈ N .

Now replacing α and x by ααn and (αn)−1x respectively, we obtain

αf(x)− f(αx) ∈ αg(ααn, (αn)−1x)V − g(ααn, (αn)−1x)V
for α ∈ K, x ∈ X1, n ∈ N .

Since V is bounded, this condition and (15) imply (17).

Modifying slightly the proof of Theorem 2 we obtain the following
topological analogue of Corollary 2:

Theorem 3. Let X, Y, X1, Y1, V, g, αn be as in Theorem 2 and let
p ∈ R+. If a mapping f : X1 → Y1 satisfies the condition

f(αx)− |α|pf(x) ∈ g(α, x)V for α ∈ K, x ∈ X1 ,

then
f(αx) = |α|pf(x) for α ∈ K,x ∈ X1 .
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POLAND
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