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A finiteness condition for verbal conjugacy classes in a group

By JOSE M. MUÑOZ-ESCOLANO (Zaragoza) and PAVEL SHUMYATSKY (Brasilia)

Abstract. Given a group G and a word w, we denote by Gw the set of all w-values

in G and by w(G) the corresponding verbal subgroup. The main result of the paper is

the following theorem. Let k be a positive integer and let w be either the word γk or the

word δk. Suppose that G is a group in which 〈xGw 〉 is Chernikov for all x ∈ G. Then

〈xw(G)〉 is Chernikov for all x ∈ G as well.

1. Introduction

Let w be a word in n variables, and let G be a group. The verbal subgroup

w(G) of G determined by w is the subgroup generated by the set Gw consisting

of all values w(g1, . . . , gn), where g1, . . . , gn are elements of G. A word w is said

to be concise if whenever Gw is finite for a group G, it always follows that w(G)

is finite. P. Hall asked whether every word is concise, but it was later proved

that this problem has a negative solution in its general form (see [4], p. 439).

On the other hand, many relevant words are known to be concise. For instance,

Turner-Smith [7] showed that the lower central words γk and the derived words

δk are concise; here the words γk and δk are defined by the positions γ1 = δ0 = x,

γk+1 = [γk, γ1] and δk+1 = [δk, δk]. The corresponding verbal subgroups for these

words are the familiar kth term of the lower central series of G denoted by γk(G)

and the kth derived group of G denoted by G(k).
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There are several natural ways to look at Hall’s question from a different

angle. The circle of problems arising in this context can be characterized as

follows.

Given a word w and a group G, assume that certain restrictions are imposed

on the set Gw. How does this influence the properties of the verbal subgroup

w(G)?

If X and Y are non-empty subsets of a group G, we will write XY to denote

the set {y−1xy | x ∈ X, y ∈ Y }. In [2] groups G with the property that xGw

is finite for all x ∈ G were called FC(w)-groups. Recall that FC-groups are

precisely groups with finite conjugacy classes. The main result of [2] tells us that

if w is a concise word, then a group G is an FC(w)-group if and only if xw(G)

is finite for all x ∈ G. In particular, it follows that if w is a concise word and G

is an FC(w)-group, then the verbal subgroup w(G) is FC. Later it was shown

in [1] that there exists a function f = f(m,w) such that if, under the hypothesis

of the above theorem, xGw has at most m elements for all x ∈ G, then xw(G)

has at most f elements for all x ∈ G. In view of these results we would like to

consider the following question.

Given a concise word w and a group G, assume that for all x ∈ G the

subgroup 〈xGw〉 satisfies a certain finiteness condition. Is it true that a similar

condition is also satisfied by 〈xw(G)〉 for all x ∈ G?

Here and throughout the paper 〈M〉 denotes the subgroup generated by the

set M . The main result of the present paper is as follows.

Theorem 1.1. Let k be a positive integer and let w be either the word γk
or the word δk. Suppose that G is a group in which 〈xGw〉 is Chernikov for all

x ∈ G. Then 〈xw(G)〉 is Chernikov for all x ∈ G as well.

Recall that a group G is Chernikov if it has a subgroup of finite index that

is a direct product of finitely many groups of type Cp∞ for various primes p

(quasicyclic p-groups). By a deep result obtained independently by Shunkov [6]

and Kegel and Wehrfritz [3] Chernikov groups are precisely the locally finite

groups satisfying the minimal condition on subgroups, that is, any non-empty set

of subgroups possesses a minimal subgroup. The minimal subgroup of finite index

of a Chernikov group G is called the radicable part of G. In general a group G

is called radicable if the equation xn = a has a solution in G for every positive

integer n and every a ∈ G. It is well-known that a periodic abelian radicable

group is a direct product of quasicyclic p-subgroups.

A proof of Theorem 1.1 in the case where w = γk can be obtained from
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the case w = δk by simply replacing everywhere in the proof the term “δk-

commutators” by “γk-commutators”. That is why we do not provide an explicit

proof for the case w = γk concentrating instead on proving Theorem 1.1 in the

case w = δk.

Most of this work was done while the first author was visiting the Depart-

ment of Mathematics of the University of Brasilia. He thanks the Department of

Mathematics for support and hospitality.

2. Preliminary lemmas

We start the section with the following well-known lemma (see for example

[5, Lemma 3.13]).

Lemma 2.1. Suppose that R is a radicable abelian normal subgroup of the

group G and suppose that H is a subgroup of G such that [R,H, . . . ,H︸ ︷︷ ︸
r

] = 1 for

some natural number r. If H/H ′ is periodic, then [R,H] = 1.

From this we can easily deduce the following useful corollaries.

Corollary 2.2. In a periodic nilpotent group G every radicable abelian

subgroup Q is central.

Proof. Arguing by induction on the nilpotency class of G we assume that

the image of Q in G/Z(G) is central. Therefore Q is contained in a normal abelian

subgroup of G. In particular 〈QG〉 is a normal abelian radicable subgroup and

the result is now immediate from Lemma 2.1. �

Let G be a group acted on by a group A. As usual, [G,A] denotes the

subgroup generated by all elements of the form x−1xa, where x ∈ G, a ∈ A. It is

well-known that [G,A] is a normal subgroup of G. If B is a normal subset of A

such that A = 〈B〉, then [G,A] = 〈[G, b]; b ∈ B〉.

Corollary 2.3. Let A be a periodic group acting on a periodic radicable

abelian group G. Then [G,A,A] = [G,A].

Proof. To show this, we can assume that [G,A,A] = 1. In this case Lem-

ma 2.1 yields at once that [G,A] = 1. �

Lemma 2.4. Let A be a finite group acting on a periodic radicable abelian

group G. Then [G,A] is radicable.
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Proof. Since [G,A] =
∏
a∈A[G, a], it is sufficient to show that [G, a] is

radicable for every a ∈ A. Let x ∈ [G, a] and let n be a positive integer. Then

there exist g ∈ G such that x = [g, a] and g1 ∈ G such that gn1 = g. Since G is

abelian, we have [g1, a]n = [gn1 , a]. Hence for every x ∈ [G, a] and every positive

integer n, there exists an element [g1, a] ∈ [G, a] such that x = [g1, a]n; that is,

[G, a] is radicable, as required. �

Lemma 2.5. Let A be a radicable Chernikov group acting on a Chernikov

group B. Then [B,A,A] = 1.

Proof. Denote by B0 the radicable part of B. By [5, Theorem 3.29.2],

A/CA(B0) is finite. Since A is radicable, it follows that A has no subgroups

of finite index and so [B0, A] = 1. On the other hand, B/B0 is finite and there-

fore A/CA(B/B0) is also finite. Again, since A A has no subgroups of finite index,

it follows that [B,A] ≤ B0. Hence [B,A,A] ≤ [B0, A] = 1. �

Lemma 2.6. Let G be a group and y an element of G. Suppose that

x1, . . . , xk ∈ G are δk-commutators for k ≥ 0. Then [y, x1, . . . , xk] is a δk-

commutator as well.

Proof. Note that x1, . . . , xk can be viewed as δi-commutators for each i ≤ k.

It is clear that [y, x1] is a δ1-commutator. Arguing by induction on k assume

that k ≥ 1 and [y, x1, . . . , xk−1] is a δk−1-commutator. Then [y, x1, . . . , xk] =

[[y, x1, . . . , xk−1], xk] is a δk-commutator. �

Throughout the paper, whenever G is a Chernikov group we denote by G0

the radicable part of G and by G∗ the subgroup [G0, G].

Lemma 2.7. Let G be a Chernikov group for which there exists a positive

integer m such that G can be generated by elements of order dividing m. If

G∗ = 1, then G is finite.

Proof. Since G∗ = 1, it follows that G0 is central. The Schur Theorem [5,

Theorem 4.12] yields that G′ is finite. Since G can be generated by elements of

order dividing m, we conclude that G has finite exponent. In particular G has no

subgroups of type Cp∞ . Thus, G must be finite. �

Lemma 2.8. Let G be a group such that 〈xG〉 is Chernikov for every x ∈ G.

Then all abelian radicable subgroups of G generate an abelian radicable subgroup.

Proof. Let T be the subgroup of G generated by all abelian radicable sub-

groups. Let A be an arbitrary abelian radicable subgroup in G and choose x ∈ G.

Then Lemma 2.1 together with Lemma 2.5 shows that the product 〈xG〉0A is
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abelian. Thus, all subgroups of the form 〈xG〉0 lie in the center of T . Therefore

G/Z(T ) is a periodic FC-group. Since T has no subgroups of finite index, it

centralizes every finite normal subgroup and we conclude that the image of T in

G/Z(T ) is central. Therefore T is nilpotent of class at most two. Corollary 2.2

now enables us to deduce that T is abelian, as required. �

We will also require the following lemma.

Lemma 2.9. Let X be a normal set in a locally finite group G. Let a ∈ G
and assume that the set aX is finite. Then the set a〈X〉 is likewise finite.

Proof. Let x1, . . . , xn be elements of X with the property that aX =

{ax1 , . . . , axn} and let Y = 〈x1, . . . , xn〉. Since Y is finite, the class aY is fi-

nite as well. Let N = 〈X〉. We will show that aN = aY . Choose y ∈ N . Then

y can be written as a product y = y1 . . . ym, where yi ∈ X. It is sufficient to

show that ay ∈ aY . If m = 1, then y ∈ X and so ay ∈ {ax1 , . . . , axn} ⊆ aY .

Thus, assume that m ≥ 2 and use induction on m. Suppose that ay1 = ax1 . Set

zi = x1yix1
−1 for i = 2, . . . ,m. Since X is a normal set of G, zi ∈ X. Write

ay = ax1y2...ym = ax1y2...ymx1
−1x1 = az2...zmx1 .

By induction az2...zm ∈ aY . Since x1 ∈ Y , it follows that ay ∈ aY . This completes

the proof. �

3. Proof of Theorem 1.1

Assume the hypothesis of Theorem 1.1 with w = δk and let X denote the set

of all δk-commutators in G. By the hypothesis 〈aX〉 is Chernikov for all a ∈ G.

Set H = G(k). We wish to show that 〈aH〉 is Chernikov for all a ∈ G. First

we will deal with the particular case where a ∈ X. Thus, choose a ∈ X and let

D = 〈aX〉. As usual, the normal closure of a subset S ⊆ G is the minimal normal

subgroup of G containing S.

Lemma 3.1. With the above notation, the normal closure of D∗ in G is an

abelian radicable subgroup.

Proof. By Corollary 2.3 D∗ = [D0, D, . . . ,D︸ ︷︷ ︸
k

]. Since a ∈ X, every element

of aX is also a δk-commutator. It follows that D is generated by the normal

set X ∩ D. Therefore the subgroup D∗ is generated by subgroups of the form

[D0, b1, . . . , bk], where b1, . . . , bk ∈ X ∩D.
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Let us show that for every choice of b1, . . . , bk ∈ X ∩ D the subgroup

[D0, b1, . . . , bk] is contained in a normal abelian radicable subgroup of G. Thus,

fix b1, . . . , bk ∈ X∩D and put K = [D0, b1, . . . , bk]. Since D0 is abelian, it is clear

that for every d1, d2 ∈ D0 we have

[d1, b1, . . . , bk][d2, b1, . . . , bk] = [d1d2, b1, . . . , bk].

Now, Lemma 2.6 shows that every element of K is a δk-commutator and Lem-

ma 2.4 yields that K is radicable. Since 〈gK〉 is Chernikov for every g ∈ G, it

follows from Lemma 2.5 that [gK ,K,K] = 1. In particular [g,K,K] = 1 and we

conclude that K commutes with Kg for every g ∈ G. Therefore 〈KG〉 is abelian.

Since 〈KG〉 is generated by radicable subgroups, it follows that 〈KG〉 is radicable.

Now choose other elements b′1, . . . , b
′
k ∈ X∩D and setK1 = [D0, b

′
1, . . . , b

′
k].

Repeating the above argument we conclude that 〈KG
1 〉 is abelian and radica-

ble. Thus, the product 〈KG〉〈KG
1 〉 is nilpotent of class at most two and Corol-

lary 2.2 tells us that 〈KG〉〈KG
1 〉 is abelian. Thus, all subgroups of the form

〈[D0, x1, . . . , xk]G〉, where x1, . . . , xk ∈ X ∩ D, commute and the lemma fol-

lows. �

Set R = 〈〈yX〉∗; y ∈ X〉. This notation will be kept throughout the rest of

the paper.

Corollary 3.2. The subgroup R is abelian and radicable.

Proof. Choose y1, y2 ∈ X. Let R1 be the normal closure of 〈y1
X〉∗ and

R2 that of 〈y2
X〉∗. By Lemma 3.1 both R1 and R2 are abelian radicable sub-

groups. We conclude that the product R1R2 is nilpotent of class at most two and

Corollary 2.2 shows that R1R2 is abelian. The result follows. �

In the next lemma we use terminology and some results from the paper [2].

For the reader’s convenience we will briefly explain it. Let w be a word, G a group

and H a subgroup of w(G). We say that H has finite w-index if the elements of

Gw lie in finitely many right cosets of H in w(G). A group G is an FC(w)-group

if and only if the subgroup Cw(G)(x) has finite w-index for every element x of G.

Lemma 3.3. The group G is locally finite.

Proof. First of all we notice that G is torsion since 〈yX〉 is torsion for

every y ∈ G. Since R is abelian (Corollary 3.2), it is sufficient to prove the local

finiteness of G under the assumption that R = 1. Choose y ∈ X. By the above

assumption 〈yX〉∗ = 1. Since 〈yX〉 is generated by conjugates of y, it follows from

Lemma 2.7 that 〈yX〉 is finite. This implies that CG(y) ∩H has finite δk-index.
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This happens for every choice of y ∈ X. Since every element of H is a product of

finitely many δk-commutators, [2, Lemma 2.1] shows that H is an FC(δk)-group.

In particular, the main result of [2] tells us that the kth derived group of H is an

FC-group. Now the local finiteness of G is obvious. �

Lemma 3.4. The subgroup 〈aH〉 is Chernikov.

Proof. Recall that a ∈ X and D = 〈aX〉. Set E = 〈aH〉. We wish to show

that E is Chernikov. Let us show first that ER/R is finite. It suffices to show

this under the additional assumption that R = 1. In this case D∗ = 1 and so D

is finite by Lemma 2.7. In particular aX is finite and since G is locally finite, we

use Lemma 2.9 to conclude that E is finite. Thus, indeed ER/R is finite. Set

R1 = E ∩R. Choose elements e1, . . . , es ∈ X such that every conjugate of a in H

belong to a coset eiR1 for some i = 1, . . . , s. We have E = 〈R1, e1, . . . , es〉. Since

the set e1, . . . , es generates E and is normal in H modulo R1, it follows that

[R1, E] = [R1, e1] . . . [R1, es].

By Lemma 2.4 [R1, ei] = [R1, ei, ei] and Lemma 2.6 shows that [R1, ei] ⊆ X.

We conclude that [R1, ei] = [R1, ei, ei] ≤ [X, ei] ≤ 〈eiX〉 and so the subgroups

[R1, ei] are Chernikov for every i = 1, . . . , s. Therefore [R1, E] is Chernikov and

we can pass to the quotient H〈a〉/[R1, E]. Without loss of generality we assume

that [R1, E] = 1. In this case, R1 ≤ Z(E) and E/Z(E) is finitely generated.

Lemma 3.3 shows that E/Z(E) is finite. The Schur Theorem now tells us that

the derived group E′ is finite. We see that D is a Chernikov group generated by

elements of the same order and its derived group D′ is finite. It follows that D is

finite. Now Lemma 2.9 enables us to deduce that E is finite. This completes the

proof. �

Corollary 3.5. If g ∈ H, then 〈gH〉 is Chernikov.

Proof. This follows directly from Lemma 3.4 and the fact that every ele-

ment of H is a product of finitely many elements from X. �

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Corollary 3.5 with Lemma 2.8 we de-

duce that all abelian radicable subgroups of H generate an abelian radicable

subgroup. This will be denoted by T .

To complete the proof of Theorem 1.1 we need to show that 〈bH〉 is Chernikov

for every b ∈ G. Thus, let b ∈ G. Set B = 〈bX〉 and C = 〈bH〉. By the hypothesis,

B is Chernikov. Since T contains all the abelian radicable subgroups of H, the
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image of B in H〈b〉/T is finite. Therefore Lemma 2.9 shows that also the image

of C is finite. Let us define

S = 〈[T, b1, . . . , bk] | bi ∈ X〉.

For every choice b1, . . . , bk ∈ X the subgroup [T, b1, . . . , bk] is a radicable sub-

group (Lemma 2.4) contained in X (Lemma 2.6). Thus, S is a normal radicable

subgroup of G. Let {Sλ}λ∈Λ be the list of the radicable subgroups contained in

S ∩ X. Then S = 〈Sλ | λ ∈ Λ〉. Since Sλ ⊆ X, we have [Sλ, b] ≤ [X, b] ≤ B

for every λ and so we deduce that [S, b] ≤ B. In particular, [S, x] is Chernikov

for every x ∈ G. Set T1 = C ∩ T . Now choose in C finitely many conjugates

of b, say c1, . . . , cn, such that C = 〈T1, c1, . . . , cn〉 and the set c1T1, . . . , cnT1 is

normal in C/T1. Then [S,C] = [S, c1] . . . [S, cn]. Since every subgroup [S, ci] is

Chernikov, so is [S,C]. Moreover the subgroup [S,C] is normal in H〈b〉 and so

we can consider the quotient H〈b〉/[S,C]. Thus, we assume that [S,C] = 1.

Suppose temporarily that S = 1. Then T is contained in the kth term of the

upper central series of H and Lemma 2.1 shows that actually T ≤ Z(H). In this

case B0, the radicable part of B, is normal in H〈b〉 and so we can consider the

quotient H〈b〉/B0. The image of B in the quotient is finite. By Lemma 2.9 the

image of C must be finite as well. This proves the theorem in the particular case

where S = 1.

Let us now drop the assumption that S = 1. The above argument shows

that the image of C in H〈b〉/S is Chernikov. Taking into account that [S,C] = 1

we deduce that C/Z(C) is Chernikov. Polovickii’s Theorem [5, p. 129] now tells

us that C ′, the derived group of C, is Chernikov and we can pass to the quotient

H〈b〉/C ′. Thus, we assume that C ′ = 1. Now C is an abelian group generated by

elements of the same order (namely, of order equal to that of b). We deduce that

C has finite exponent. Taking into account that B ≤ C we observe that B is a

Chernikov group of finite exponent. Hence, B is finite. But then by Lemma 2.9,

C must be finite as well. The proof is now complete. �
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