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A finiteness condition for verbal conjugacy classes in a group

By JOSE M. MUNOZ-ESCOLANO (Zaragoza) and PAVEL SHUMYATSKY (Brasilia)

Abstract. Given a group G and a word w, we denote by G, the set of all w-values
in G and by w(G) the corresponding verbal subgroup. The main result of the paper is
the following theorem. Let k be a positive integer and let w be either the word 7, or the
word 8. Suppose that G is a group in which (%) is Chernikov for all £ € G. Then
(%)) is Chernikov for all = € G as well.

1. Introduction

Let w be a word in n variables, and let G be a group. The verbal subgroup
w(G) of G determined by w is the subgroup generated by the set G, consisting
of all values w(g1,...,gn), where g1,...,g, are elements of G. A word w is said
to be concise if whenever G, is finite for a group G, it always follows that w(G)
is finite. P. Hall asked whether every word is concise, but it was later proved
that this problem has a negative solution in its general form (see [4], p. 439).
On the other hand, many relevant words are known to be concise. For instance,
TURNER-SMITH [7] showed that the lower central words -, and the derived words
0, are concise; here the words v, and J; are defined by the positions v; = §y = =,
Yi+1 = [Vk,71] and Og4+1 = [0, Ox]. The corresponding verbal subgroups for these
words are the familiar kth term of the lower central series of G denoted by v (G)
and the kth derived group of G' denoted by G(*).
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There are several natural ways to look at Hall’s question from a different
angle. The circle of problems arising in this context can be characterized as
follows.

Given a word w and a group G, assume that certain restrictions are imposed
on the set G,,. How does this influence the properties of the verbal subgroup
w(G)?

If X and Y are non-empty subsets of a group G, we will write XY to denote
the set {y oy | x € X, y € Y}. In [2] groups G with the property that zCw
is finite for all x € G were called FC(w)-groups. Recall that FC-groups are
precisely groups with finite conjugacy classes. The main result of [2] tells us that
if w is a concise word, then a group G is an FC(w)-group if and only if 2*(%)
is finite for all x € G. In particular, it follows that if w is a concise word and G
is an F'C(w)-group, then the verbal subgroup w(G) is F'C. Later it was shown
in [1] that there exists a function f = f(m,w) such that if, under the hypothesis
Gw has at most m elements for all z € G, then z*(%)
has at most f elements for all z € G. In view of these results we would like to

of the above theorem, x

consider the following question.

Given a concise word w and a group G, assume that for all x € G the
subgroup (x%v) satisfies a certain finiteness condition. Is it true that a similar
condition is also satisfied by (2*(%) for all z € G?

Here and throughout the paper (M) denotes the subgroup generated by the
set M. The main result of the present paper is as follows.

Theorem 1.1. Let k be a positive integer and let w be either the word ~y,
or the word Jy,. Suppose that G is a group in which (x%v) is Chernikov for all
x € G. Then (z*(@) is Chernikov for all z € G as well.

Recall that a group G is Chernikov if it has a subgroup of finite index that
is a direct product of finitely many groups of type Cpe for various primes p
(quasicyclic p-groups). By a deep result obtained independently by SHUNKOV [6]
and KEGEL and WEHRFRITZ [3] Chernikov groups are precisely the locally finite
groups satisfying the minimal condition on subgroups, that is, any non-empty set
of subgroups possesses a minimal subgroup. The minimal subgroup of finite index
of a Chernikov group G is called the radicable part of G. In general a group G
is called radicable if the equation ™ = a has a solution in G for every positive
integer n and every a € G. It is well-known that a periodic abelian radicable
group is a direct product of quasicyclic p-subgroups.

A proof of Theorem 1.1 in the case where w = -, can be obtained from
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the case w = 0 by simply replacing everywhere in the proof the term “dy-
commutators” by “yg-commutators”. That is why we do not provide an explicit
proof for the case w = 7y concentrating instead on proving Theorem 1.1 in the
case w = J.

Most of this work was done while the first author was visiting the Depart-
ment of Mathematics of the University of Brasilia. He thanks the Department of
Mathematics for support and hospitality.

2. Preliminary lemmas

We start the section with the following well-known lemma (see for example
[5, Lemma 3.13]).

Lemma 2.1. Suppose that R is a radicable abelian normal subgroup of the
group G and suppose that H is a subgroup of G such that [R,H,...,H| =1 for
some natural number r. If H/H' is periodic, then (R, H] = 1. M

From this we can easily deduce the following useful corollaries.

Corollary 2.2. In a periodic nilpotent group G every radicable abelian
subgroup @ is central.

PROOF. Arguing by induction on the nilpotency class of G we assume that
the image of Q in G/Z(G) is central. Therefore @) is contained in a normal abelian
subgroup of G. In particular (QG> is a normal abelian radicable subgroup and
the result is now immediate from Lemma 2.1. (|

Let G be a group acted on by a group A. As usual, [G, A] denotes the
subgroup generated by all elements of the form 2~ '2®, where x € G, a € A. It is
well-known that [G, A] is a normal subgroup of G. If B is a normal subset of A
such that A = (B), then [G, 4] = ([G,b]; b € B).

Corollary 2.3. Let A be a periodic group acting on a periodic radicable
abelian group G. Then [G, A, A] = [G, A].

PROOF. To show this, we can assume that [G, A, A] = 1. In this case Lem-
ma 2.1 yields at once that [G, A] = 1. O

Lemma 2.4. Let A be a finite group acting on a periodic radicable abelian
group G. Then |G, A] is radicable.
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PROOF. Since [G,A] = [[,c4lG,al, it is sufficient to show that [G,a] is
radicable for every a € A. Let € [G,a] and let n be a positive integer. Then
there exist g € G such that = [g,a] and g; € G such that g} = g. Since G is
abelian, we have [g1,a]™ = [¢7, a]. Hence for every = € [G,a] and every positive
integer n, there exists an element [g1,a] € [G,a] such that x = [g1,a]™; that is,
[G, a] is radicable, as required. O

Lemma 2.5. Let A be a radicable Chernikov group acting on a Chernikov
group B. Then [B, A, A] = 1.

PROOF. Denote by By the radicable part of B. By [5, Theorem 3.29.2],
A/C4(Byp) is finite. Since A is radicable, it follows that A has no subgroups
of finite index and so [By, A] = 1. On the other hand, B/Bj is finite and there-
fore A/C4(B/By) is also finite. Again, since A A has no subgroups of finite index,
it follows that [B, A] < By. Hence [B, A, A] < [By, A] = 1. O

Lemma 2.6. Let G be a group and y an element of G. Suppose that
Z1,...,2, € G are dg-commutators for k > 0. Then [y,x1,...,2zx] is a k-
commutator as well.

ProoF. Note that x1, ...,z can be viewed as §;-commutators for each i < k.
It is clear that [y, z1] is a d;-commutator. Arguing by induction on k assume
that & > 1 and [y,21,...,2Tk—1] iS & Jg—1-commutator. Then [y, x1,...,zx] =
[y, z1,...,Tk_1],2k] is a dp-commutator. O

Throughout the paper, whenever G is a Chernikov group we denote by Gy
the radicable part of G and by G* the subgroup [Gy, G].

Lemma 2.7. Let G be a Chernikov group for which there exists a positive
integer m such that G can be generated by elements of order dividing m. If
G* =1, then G is finite.

PROOF. Since G* = 1, it follows that Gy is central. The Schur Theorem [5,
Theorem 4.12] yields that G’ is finite. Since G can be generated by elements of
order dividing m, we conclude that G has finite exponent. In particular G has no
subgroups of type Cpe. Thus, G must be finite. O

Lemma 2.8. Let G be a group such that (x%) is Chernikov for every = € G.
Then all abelian radicable subgroups of G generate an abelian radicable subgroup.

PROOF. Let T be the subgroup of G generated by all abelian radicable sub-
groups. Let A be an arbitrary abelian radicable subgroup in G and choose = € G.
Then Lemma 2.1 together with Lemma 2.5 shows that the product (z%)¢A is
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abelian. Thus, all subgroups of the form (z%)q lie in the center of 7. Therefore
G/Z(T) is a periodic FC-group. Since T has no subgroups of finite index, it
centralizes every finite normal subgroup and we conclude that the image of T in
G/Z(T) is central. Therefore T is nilpotent of class at most two. Corollary 2.2
now enables us to deduce that T is abelian, as required. (I

We will also require the following lemma.

Lemma 2.9. Let X be a normal set in a locally finite group G. Let a € G
and assume that the set o’ is finite. Then the set a'X) is likewise finite.

PROOF. Let z1,...,z, be elements of X with the property that aX =
{a®,...,a®} and let Y = (zy,...,2,). Since Y is finite, the class a¥ is fi-
nite as well. Let N = (X). We will show that a® = a¥. Choose y € N. Then
y can be written as a product y = y1...¥ym, where y; € X. It is sufficient to

show that a¥ € a¥. If m = 1, then y € X and so @ € {a**,...,a°"} C a*.
Thus, assume that m > 2 and use induction on m. Suppose that a¥* = a™. Set
2 = 1y F for i =2,...,m. Since X is a normal set of G, z; € X. Write

Q¥ = TV Ym — gF1Y2Ym T L1 g F ZmTL

By induction a*>*m € aY. Since z; € Y, it follows that a¥ € a¥. This completes
the proof. (I

3. Proof of Theorem 1.1

Assume the hypothesis of Theorem 1.1 with w = §; and let X denote the set
of all 6;-commutators in G. By the hypothesis (aX) is Chernikov for all a € G.
Set H = G™*). We wish to show that (a'!) is Chernikov for all a € G. First
we will deal with the particular case where a € X. Thus, choose a € X and let
D = (a™). As usual, the normal closure of a subset S C G is the minimal normal
subgroup of G containing S.

Lemma 3.1. With the above notation, the normal closure of D* in G is an
abelian radicable subgroup.

Proor. By Corollary 2.3 D* = [Dg, D, ...,D]. Since a € X, every element
—_———
k
of aX is also a &p-commutator. It follows that D is generated by the normal
set X N D. Therefore the subgroup D* is generated by subgroups of the form
[Do,b1,...,bx], where by,..., by € X N D.
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Let us show that for every choice of by,...,by € X N D the subgroup
[Dg, by, ...,bk] is contained in a normal abelian radicable subgroup of G. Thus,
fix by,...,bp € XND and put K = [Dy, by, ...,bg]. Since Dy is abelian, it is clear
that for every dy,ds € Dy we have

[d1,b1,...,b][d2, b1, ... ,bK] = [dida2, b1, ..., bg].

Now, Lemma 2.6 shows that every element of K is a §x-commutator and Lem-
ma 2.4 yields that K is radicable. Since (g%) is Chernikov for every g € G, it
follows from Lemma 2.5 that [¢%, K, K] = 1. In particular [g, K, K] = 1 and we
conclude that K commutes with K9 for every g € G. Therefore (K%) is abelian.
Since (K@) is generated by radicable subgroups, it follows that (K) is radicable.

Now choose other elements b'y, ..., b, € XND and set Ky = [Dg,b'1,...,0].
Repeating the above argument we conclude that (K{) is abelian and radica-
ble. Thus, the product (K%)(K) is nilpotent of class at most two and Corol-
lary 2.2 tells us that (K%)(K{) is abelian. Thus, all subgroups of the form
([Do,x1,...,2]%), where x1,...,2, € X N D, commute and the lemma fol-
lows. (]

Set R = ({(y*)*; y € X). This notation will be kept throughout the rest of
the paper.

Corollary 3.2. The subgroup R is abelian and radicable.

PROOF. Choose y1,y2 € X. Let R; be the normal closure of (y;*)* and
Ry that of (y2X)*. By Lemma 3.1 both R; and R, are abelian radicable sub-
groups. We conclude that the product R; Rs is nilpotent of class at most two and
Corollary 2.2 shows that Ry Ry is abelian. The result follows. O

In the next lemma we use terminology and some results from the paper [2].
For the reader’s convenience we will briefly explain it. Let w be a word, G a group
and H a subgroup of w(G). We say that H has finite w-index if the elements of
Gy, lie in finitely many right cosets of H in w(G). A group G is an F'C(w)-group
if and only if the subgroup C,)() has finite w-index for every element z of G.

Lemma 3.3. The group G is locally finite.

PROOF. First of all we notice that G is torsion since (y*) is torsion for
every y € G. Since R is abelian (Corollary 3.2), it is sufficient to prove the local
finiteness of G under the assumption that R = 1. Choose y € X. By the above
assumption (yX)* = 1. Since (yX) is generated by conjugates of y, it follows from
Lemma 2.7 that (y~) is finite. This implies that Cg(y) N H has finite §3-index.
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This happens for every choice of y € X. Since every element of H is a product of
finitely many dg-commutators, [2, Lemma 2.1] shows that H is an F'C(dy)-group.
In particular, the main result of [2] tells us that the kth derived group of H is an
FC-group. Now the local finiteness of G is obvious. O

Lemma 3.4. The subgroup (a™) is Chernikov.

PROOF. Recall that a € X and D = (aX). Set E = (aff). We wish to show
that E is Chernikov. Let us show first that ER/R is finite. It suffices to show
this under the additional assumption that R = 1. In this case D* = 1 and so D
is finite by Lemma 2.7. In particular ™ is finite and since G is locally finite, we
use Lemma 2.9 to conclude that F is finite. Thus, indeed ER/R is finite. Set
Ry = ENR. Choose elements eq, ...,e; € X such that every conjugate of a in H
belong to a coset e¢; Ry for some i =1,...,s. We have E = (Ry,e1,...,es). Since
the set eq,...,es generates E and is normal in H modulo R, it follows that

[Rl,E] = [Rl,el] N [Rl,es].

By Lemma 2.4 [Ry,e;] = [R1,e€;,€;] and Lemma 2.6 shows that [Ry,e;] C X.
We conclude that [Ry,e;] = [Ry,ei,e5] < [X,e;] < (e;X) and so the subgroups
[R1,e;] are Chernikov for every ¢ = 1,...,s. Therefore [R;, F] is Chernikov and
we can pass to the quotient H(a)/[Ry, E]. Without loss of generality we assume
that [Ry,E] = 1. In this case, Ry < Z(E) and E/Z(E) is finitely generated.
Lemma 3.3 shows that E/Z(E) is finite. The Schur Theorem now tells us that
the derived group E’ is finite. We see that D is a Chernikov group generated by
elements of the same order and its derived group D’ is finite. It follows that D is
finite. Now Lemma 2.9 enables us to deduce that F is finite. This completes the
proof. (Il

Corollary 3.5. If g € H, then (gf) is Chernikov.

ProOF. This follows directly from Lemma 3.4 and the fact that every ele-
ment of H is a product of finitely many elements from X. O

We are now ready to complete the proof of Theorem 1.1.

PrOOF OF THEOREM 1.1. Combining Corollary 3.5 with Lemma 2.8 we de-
duce that all abelian radicable subgroups of H generate an abelian radicable
subgroup. This will be denoted by T'.

To complete the proof of Theorem 1.1 we need to show that (b7) is Chernikov
for every b € G. Thus, let b € G. Set B = (bX) and C = (b). By the hypothesis,
B is Chernikov. Since T contains all the abelian radicable subgroups of H, the
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image of B in H(b)/T is finite. Therefore Lemma 2.9 shows that also the image
of C'is finite. Let us define

S:<[Tabla"'7bk]|bi €X>

For every choice by,...,b; € X the subgroup [T, by,...,b;] is a radicable sub-
group (Lemma 2.4) contained in X (Lemma 2.6). Thus, S is a normal radicable
subgroup of G. Let {S)}xea be the list of the radicable subgroups contained in
SNX. Then S = (Sy | A € A). Since Sy C X, we have [S),b] < [X,b] < B
for every A and so we deduce that [S,b] < B. In particular, [S,z] is Chernikov
for every x € G. Set Ty = C NT. Now choose in C finitely many conjugates
of b, say c1,...,¢p, such that C = (T4, c1,...,¢,) and the set 1Ty, ...,c, T} is
normal in C/Ty. Then [S,C] = [S,c1]...[S,¢n]. Since every subgroup [S,¢;] is
Chernikov, so is [S,C]. Moreover the subgroup [S,C] is normal in H(b) and so
we can consider the quotient H(b)/[S, C]. Thus, we assume that [S,C] = 1.

Suppose temporarily that S = 1. Then T is contained in the kth term of the
upper central series of H and Lemma 2.1 shows that actually T < Z(H). In this
case By, the radicable part of B, is normal in H(b) and so we can consider the
quotient H(b)/By. The image of B in the quotient is finite. By Lemma 2.9 the
image of C' must be finite as well. This proves the theorem in the particular case
where S = 1.

Let us now drop the assumption that S = 1. The above argument shows
that the image of C' in H(b)/S is Chernikov. Taking into account that [S,C] =1
we deduce that C/Z(C) is Chernikov. Polovickii’s Theorem [5, p. 129] now tells
us that C’, the derived group of C, is Chernikov and we can pass to the quotient
H(b)/C'. Thus, we assume that C’ = 1. Now C is an abelian group generated by
elements of the same order (namely, of order equal to that of b). We deduce that
C has finite exponent. Taking into account that B < C' we observe that B is a
Chernikov group of finite exponent. Hence, B is finite. But then by Lemma 2.9,
C must be finite as well. The proof is now complete. O
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