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Finsler connection properties generated by the two-vector angle
developed on the indicatrix-inhomogeneous level

By G. S. ASANOV (Moscow)

Abstract. The Finsler spaces in which the tangent Riemannian spaces are con-

formally flat prove to be characterized by the condition that the indicatrix is a space of

constant curvature. In such spaces the Finslerian two-vector angle can be obtained from

the respective two-vector angle of the associated Riemannian space. This observation

entails the problem to obtain the angle-preserving connection on general indicatrix-

inhomogeneous level, that is, when the indicatrix curvature value CInd. is permitted to

be an arbitrary smooth function of the indicatrix position point x. The problem has

been completely solved by means of the proposed method to determine the coefficients

of nonlinear connection from the separable equation of preservation of the normalized

angle. The obtained connection is metrical with the deflection part which is propor-

tional to the gradient of the function H(x) entering the equality CInd. ≡ H2, and is

uniquely determined up to the torsion tensor of the associated Riemannian space. Also,

the involved deformation of space is covariant-constant. Important tensorial informa-

tion is obtainable by the help of the coincidence-limit method applied to geodesics of

the indicatrix space. When the transitivity of covariant derivative is used, from the

commutators of covariant derivatives the associated curvature tensor can be found. The

developed theory is applied to the Finsleroid space.

Motivation and introduction

A Finsler space is given by the pair (M,F ), where M is a differentiable

manifold and F = F (x, y) is a Finsler metric function introduced on the tangent

bundle TM of M . The function F = F (x, y) depends on the points x ∈M and on

the tangent vectors y ∈ TxM , where TxM ⊂ TM is the tangent space supported
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by the x. The notion of connection in Finsler space can be studied departing

from various convenient sets of axioms (see [1]–[9] and references therein).

The embedded position of the indicatrix Ix ⊂ TxM in the tangent Riemann-

ian space R{x} = {TxM, g{x}(y)} (where g{x}(y) denotes the Finslerian metric

tensor with x considered fixed and y used as being the variable) induces the Rie-

mannian metric on the indicatrix through the well-known method and in this

sense makes the indicatrix a Riemannian space. Therefore, the geodesics can be

introduced on the indicatrix by applying the conventional Riemannian methods.

In any (sufficiently smooth) Finsler space the two-vector angle α{x}(y1, y2)

can locally be determined with the help of the indicatrix geodesic arc, which

motivates the important question whether the Finsler geometry can be profoundly

settled down by developing and applying the connection which preserves the angle.

In general, the angle α{x}(y1, y2) is complicated and cannot be determined

in an explicit tensorial form, except for rare Finsler metric functions. The lucky

example is given by the Finsler space FN which is characterized by the condition

that at each p. x the indicatrix Ix ⊂ TxM is a space of constant curvature.

Considering arbitrary dimension N ≥ 3, it is possible to prove that the tangent

Riemannian space R{x} is conformally flat if and only if the indicatrix Ix is a

space of constant curvature (see Proposition 2.1). Therefore, the Finsler space FN
can alternatively be characterized by the condition that the tangent Riemannian

spaces R{x} are of the conformally flat nature.

Our consideration will be local in both the base manifold and the tangent

space. The indices i, j, . . . will refer to local admissible coordinates {xi} on the

base manifold M . From any given Finsler metric function F = F (x, y) we can con-

struct the covariant tangent vector ŷ = {yi} and the Finslerian metric tensor {gij}
in the conventional way: yi = (1/2)∂F 2/∂yi and gij = ∂yi/∂y

j . The contravariant

tensor {gij} is defined by the reciprocity conditions gijg
jk = δki , where δ stands

for the Kronecker symbol. We shall also use the tensor Cijk = (1/2)∂gij/∂y
k.

By l we shall denote the unit vectors, namely, l = y/F (x, y), such that F (x, l) = 1.

In addition to the Finsler metric tensor gmn, it is convenient to use the tensor

hmn = gmn − lmln having the property hmny
n = 0. We shall raise and lower

the indices i, j, . . . of tensorial objects by means of the tensors gij and gjk, for

example, Cijk = ginCnjk.

Because of the conformal flatness of the spaces R{x}, the Finsler space FN
produces on the same base manifold M the associated Riemannian space, to be

denoted by RN = (M,S), where S =
√
amn(x)ymyn is the Riemannian metric

function constructed from a positive-definite Riemannian metric tensor amn(x).

The respective transformation ȳ = ȳ(x, y) which makes the Finsler space
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FN a Riemannian space is positively homogeneous with respect to the varia-

ble y. We denote the degree of homogeneity by H(x). The remarkable equality

CInd. ≡ H2 is fulfilled (which was established in [10-12]), where CInd. = CInd.(x)

denotes the value of the curvature of the indicatrix Ix ⊂ TxM . The relevant

conformal multiplier p2 is constructed from the Finsler metric function F accord-

ing to p = (F (x, y))1−H(x)/H(x). The metric tensor aij relates to the Finslerian

metric tensor gij of the space FN according to the formulas (2.10)–(2.15) which

determine the transformation. We can induce the angle αRiem
{x} conventionally de-

fined in the Riemannian space RN into the Finsler space FN , which yields simply

α{x}(y1, y2) =
(
1/H(x)

)
αRiem
{x} (ȳ1, ȳ2).

To explicate the coefficients Nm
n of nonlinear connection from the Finsler

angle α = α{x}(y1, y2), we should successfully propose the preservation equation.

The nearest possibility is to formulate the equation diα = 0 in accordance with the

formulas (1.10) and (1.13), applying the separable operator di indicated in (1.9).

This possibility has been realized in the preceding work [10], [11]. Namely,

in that work the separable preservation equation diα = 0 has been solved in

the Finsler space FN under the assumption that CInd. = const, which implies

H = const. The coefficients Nm
n, and also the connection, have been obtained.

In the present paper, we overcome the restriction CInd. = const, permitting

the indicatrix curvature value CInd. to depend on the points x ∈M which support

the indicatrix. We call the space FN indicatrix-homogeneous, if the value is a

constant, whence H = const. If the dependence CInd. = CInd.(x) does hold, we

say that the space FN is indicatrix-inhomogeneous, in which case Hi 6= 0, where

Hi = ∂H/∂xi. The representations obtained in the previous work [10], [11] are

the (Hi → 0)-limits of their generalized counterparts developed in the present

study.

It appears that in general the angle preservation equation formulated in the

separable way does not permit any solution for the coefficients Nm
n.

This conclusion can be drawn from the implications which are derivable by

the help of the coincidence-limit method [13] which extracts the tensorial infor-

mation from behavior of Riemannian geodesics. To this end we should use the

distance function E = E(x, y1, y2) in the indicatrix space with E = (1/2)α2, kee-

ping in mind that the angle α measures the length of the indicatrix geodesic arc

(in accordance with (1.1)) and, therefore, establishes the geodesic distance in the

indicatrix treated as a Riemannian space. Evaluating various partial derivatives

of the function E with respect to y1 and y2 and finding the coincidence limits

when y2 → y1, we can obtain a valuable information on the derivatives of the

Finsler metric tensor of Finsler space. Performing the required evaluations on
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the level of the second-order partial derivatives ∂2/∂ym1 ∂y
n
2 , and, then, applying

the operation y2 → y1 to the resultant expressions, it is possible to arrive at the

following general conclusion: In any Finsler space the assumption diα = 0 of the

separable type entails the equality Dihmn = (2/F )hmndiF .

If we additionally postulate diF = 0, we obtain Dihmn = 0 and, therefore,

the metricity Digmn = 0 which is formulated with the covariant derivative D
arisen from the deflectionless connection. We can apply the derivative ∂2/∂yl∂yh

to the equality Digmn = 0, which leads after simple evaluations to the equality

DiSnkjm = 0. Here, the Sn
k
jm is the tensor which describes the curvature of

indicatrix (the tensor can be found in Section 5.8 in [1]).

Clearly, the condition DiSnkjm = 0 is fulfilled in but rare cases of Fins-

ler space. They include the indicatrix-homogeneous case of the space FN . The

indicatrix-inhomogeneous space FN is not complied with the condition.

Therefore, accounting for the dependence H = H(x) in the angle-generated

connection coefficients of the Finsler space FN is neither a straightforward task

nor a trivial problem.

These important (and rather unexpected?) implications enforce us to look for

more capable ideas to formulate the preservation of angle. The attractive idea is to

substitute the normalized angle α
{H(x)}
{x} (y1, y2) = H(x)α{x}(y1, y2) (see (1.26))

with the initial angle α{x}(y1, y2) in the separable preservation law, according

to (1.27). The law obtained is of the recurrent-type (1.28), namely

diα + (1/H)Hiα = 0. It appears that this preservation complies with the in-

dicatrix-inhomogeneous Finsler space FN . The reason thereto is the following

assertion obtainable by the help of the coincidence-limit method: In any Fins-

ler space the assumption diα + (1/H)Hiα = 0 entails the equality Dihmn =

(2/F )hmndiF − (2/H)Hihmn. When diF = 0, the equality reduces to Digmn =

−(2/H)Hihmn, which in turn entails the extension of the previous vanishing

DiSnkjm = 0 such that the right-hand part of this extension (written in (1.32))

is just the expression which is obtained when the characteristic representation

Sn
k
jm = C(x)(hnmh

k
j −hnjhkm) of the tensor Sn

k
jm of the space FN under study

is inserted under the action of the covariant derivative Di.
Thus, we are entitled to use the recurrent-type equation diα+(1/H)Hiα = 0.

Solving the equation with respect to the coefficients Nm
n(x, y) results in the

explicit representation (2.31). The Nm
n(x, y) obtainable in this way can naturally

be interpreted as the coefficients of the non-linear connection produced by the angle

in the space FN studied on the general indicatrix-inhomogeneous level.
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With the knowledge of the coefficients Nm
i(x, y), we can evaluate the deriv-

ative coefficients Nm
ij = ∂Nm

i/∂y
j and express the Finslerian connection coeffi-

cients Tmij through the Riemannian connection coefficients Lmij = Lmij(x) and

the function H = H(x) (by the help of the formulas (1.34) and (2.32)).

In this way, the metrical non-linear Finsler connection FN = {Nm
i, T

m
ij}

is induced in the indicatrix-inhomogeneous space FN from the metrical linear

connection RL = {Lmj , Lmij} evidenced in the Riemannian space RN , where

Lmj = −Lmjiyi. The involved function H = H(x) may depend on x in arbitrary

smooth way.

The deflection tensor ∆k
im = −Nk

im − T kim is non-vanishing as far as

Hi 6= 0, for ∆k
im = (1/H)Hih

k
m. So, in distinction from the connection developed

in the indicatrix-homogeneous case, in the indicatrix-inhomogeneous space the

connection FN is no more deflectionless. Nevertheless, the connection is metrical

and the equality Nm
j = −Tmjiyi holds. The connection coefficients Tmji are

not symmetric with respect to the subscripts j, i.

The connection FN gives rise to the covariant derivative T whose remarkable

properties are listed in (1.38)–(1.41).

We say that the transformation y = y(x, ȳ) performs the deformation C of

the space FN . The formulas (2.16)–(2.20) describe the basic properties of the

deformation C.

The indicatrix-inhomogeneous space FN under study arises from the Rie-

mannian space RN as a result of such a deformation: FN = C · RN . The same

interpretation refers also to the connections, namely FN = C · RL. The defor-

mation is T -covariant constant: T ·C = 0. Also, the covariant derivative T is the

manifestation of the transitivity of the connection under this transformation, in

short, T = C ·∇, where ∇ is the covariant derivative applicable in the Riemannian

space RN (these properties of the introduced deformation have been established

in Section II.4 of [12]).

In the Riemannian geometry we have merely H = 1. In the Finsler space

FN , the H(x) plays the role of the input function which changes the indicatrix

curvature value.

The present study of the FN -space was essentially influenced by the recent

publications [3] and [6].

Developing the attractive idea to measure the angle by means of the area,

Tamássy proved the theorem in [6] which states that a diffeomorphism between

two Finsler spaces is an isometry iff it keeps the angle. The obvious importance

of the theorem motivates the desire to go farther and find a particular Finsler
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space in which the connection is obtainable from the angle in terms of clear and

handy representations. The Finsler space FN suits well the purpose.

In [3], Kozma and Tamássy attracted the attention to the circumstance

that in the Riemannian geometry we can use naturally the metrical and linear

connection on the tangent bundle of the variables x, y. Like to the constructions

developed in the preceding work [10,11] dealt with the indicatrix-homogeneous

case, in the present indicatrix-inhomogeneous study of the space FN the export

of this connection by the help of the deformation C generates the required Finsler

connection.

The deformation FN = C · RN is a conformal isometry, namely the space

F̆N = {M, ğij} with ğij = gij/p
2 is isometric to the Riemannian space RN =

(M,aij), where p2 is the conformal multiplier displayed in (2.10) and (2.15).

Indeed, from the formulas (2.17) and (2.18) it follows that ğmn = aij ȳ
i
mȳ

j
n.

In Section 1, the key representations necessary for using the indicatrix-

inhomogeneous FN -space have been exposed.

In Section 2 we extend Proposition 2.1 of the preceding work [10], [11] in

the following essential aspect. In [10], [11], the assumption was made that the

respective conformal multiplier is of the power dependence on the Finsler metric

function. Instead, we shall show by means of an attentive analysis that the power

dependence is a direct consequence of the property that the tangent Riemannian

spaces R{x} are of the conformally flat nature (see Propositions 2.1 and 2.2). We

also describe the basic properties of the deformation C and explain how the angle

representation α{x}(y1, y2) = 1/H(x)αRiem
{x} (ȳ1, ȳ2) can be established. After that,

we solve the preservation equation of the normalized angle with respect to the

coefficients Nm
n. The outcome is given by the formula (2.31) which indicates the

representation of the coefficients Nm
n which is valid for an arbitrary Finsler space

of the type FN . The representation involves the vector field U i which determines

the key transformation y = C(x, ȳ). Given a particular Finsler space of the type

FN , the formula (2.31) yields the coefficients Nm
n in a completely explicit way

when the field U i is known explicitly.

The Finsleroid case to which Section 3 is devoted provides us with such

an example, for the required field U i is explicitly given by means of the rep-

resentation (3.6) (which was earlier found in Section 6 of [7]). Therefore, we

can straightforwardly apply the developed theory of the FN -space to the metric

function of the Finsleroid type. The expansion (1.42) for the respective Fins-

leroid coefficients Nm
n has been evaluated. The explicit representation of the

entailed derivative coefficients Nk
im is also indicated. The respective validity of

the representations (1.29) and (1.30) of the tensors Dihmn and Nk
imn on the
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indicatrix-inhomogeneous level of study of the Finsleroid space has been verified

by direct evaluations presented in detail in [12]. Thus we have got prepared the

connection FN in the Finsleroid space at our disposal with an arbitrary input

smooth function CInd.(x).

In the last Section 4 the significance of the connection problem solved in the

present paper has been emphasized. Also, the converse method of derivation of

the connection in the space FN under study, namely the method which is directly

based on the deformation of the Riemannian connection, has been proposed. The

method is qualitative rather than evaluative.

Below we are interested in spaces of the dimension N ≥ 3. The two-

dimensional case has been studied in the work [8], [9].

The present work was preceded by the arXiv-publication [12] in which various

required methods of evaluations have been developed.

1. Basic representations

Let Ux be a simply connected and geodesically complete region on the indi-

catrix Ix supported by a point x ∈M . Any point pair u1, u2 ∈ Ux can be joined

by the respective arc A{x}(l1, l2) ⊂ Ix of the Riemannian geodesic line drawn on

Ux. By identifying the length of the arc with the angle notion we arrive at the

geodesic-arc angle α{x}(y1, y2), where y1, y2 ∈ TxM are the two vectors whose

direction rays 0y1 and 0y2 intersect the indicatrix at the points u1 and u2. We

obtain

α{x}(y1, y2) = ‖A{x}(l1, l2)‖. (1.1)

The coefficients Nk
i = Nk

i(x, y) are required to construct the operator

di =
∂

∂xi
+Nk

i
∂

∂yk
. (1.2)

These coefficients are assumed naturally to be positively homogeneous of degree 1

with respect to the vector argument y.

The derivative coefficients

Nk
nm =

∂Nk
n

∂ym
, Nk

nmj =
∂Nk

nm

∂yj
(1.3)

fulfill the identities Nk
nmy

m = Nk
n, Nk

nmjy
m = Nk

nmjy
j = 0, and Nk

nmj =

Nk
njm. The coefficients are used to construct the covariant derivatives

DkF = dkF, Dklm = dkl
m −Nm

knl
n, Dklm = dklm +Nh

kmlh, (1.4)
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and

Dkgmn = dkgmn +Nh
kmghn +Nh

kngmh. (1.5)

The identities

∂DkF
∂ym

= Dklm,
∂Dklm
∂yn

= Dkgmn + lhN
h
kmn (1.6)

are obviously valid, together with

∂Digmn
∂yj

= 2DiCmnj +N t
imjgtn +N t

injgmt, (1.7)

where

DiCmnj = diCmnj +N t
ijCmnt +N t

imCtnj +N t
inCmtj . (1.8)

The covariant derivative of the tensor hmn = gmn− lmln will be constructed

in the manner similar to (1.5), namely Dkhmn = dkhmn +Nh
kmhhn +Nh

knhmh.

To deal with the two-vector angle α = α{x}(y1, y2), we merely extend the

operator di in the separable way, namely

di =
∂

∂xi
+Nk

i(x, y1)
∂

∂yk1
+Nk

i(x, y2)
∂

∂yk2
, y1, y2 ∈ TxM, (1.9)

and introduce the covariant derivative Diα according to

Diα = diα. (1.10)

In the associated Riemannian space RN we have the separable operator

dRiem
i =

∂

∂xi
+ Lki(x, y1)

∂

∂yk1
+ Lki(x, y2)

∂

∂yk2
, y1, y2 ∈ TxM, (1.11)

with the linear coefficients Lki(x, y1) = −Lkij(x)yj1 and Lki(x, y2) = −Lkij(x)yj2
in which

Lmij = amij + Smij , (1.12)

where amij = amij(x) stands for the Christoffel symbols constructed from the

Riemannian metric tensor aij(x) of the space RN , and Smij = Smij(x) is the

torsion tensor of the Riemannian connection of the space RN , such that Smij =

−Smji. When applied to the Riemannian two-vector angle αRiem
{x} (y1, y2) =

arccos(amn(x)ym1 y
n
2 /S1S2), where S1 =

√
amn(x)ym1 y

n
1 and S2 =

√
amn(x)ym2 y

n
2 ,

the operator reveals the fundamental property of angle preservation

dRiem
i αRiem

{x} (y1, y2) = 0, y1, y2 ∈ TxM.
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By analogy, one may assume that the Finsler coefficients Nk
i fulfill the se-

parable angle-preservation equation

Diα = 0 (1.13)

to try developing the theory in which the properties

DkF = 0, Dklm = 0, Dklm = 0, (1.14)

together with the metricity

Dkgmn = 0 (1.15)

hold fine. This metricity, taken in conjunction with the identities indicated

in (1.6), just entails that

lhN
h
kmn = 0. (1.16)

The following valuable implication can be deduced from angle by applying

the coincidence-limit method: In any Finsler space the assumption diα = 0 of

the separable type entails the equality

Dihmn =
2

F
hmndiF (1.17)

(take below the formula (1.29), keeping H = const). If we additionally postulate

diF = 0, we obtain Dihmn = 0 and, therefore, Digmn = 0.

Thus, the separable angle-preservation equation entails the following remar-

kable implication:

Preservation of angle and length =⇒ metricity, (1.18)

that is, the two conditions diα = 0 and diF = 0 entail Digmn = 0.

When Digmn = 0, from the identity (1.7) it follows that

2DiCmnj +N t
imjgtn +N t

injgmt = 0, (1.19)

which in turn entails that, because the tensor Cmnj is totally symmetric, the

tensorNnimj = N t
imjgtn must be totally symmetric with respect to the subscripts

n, m, j: Nnimj = Nminj = Njimn = Nnijm, whence

Nk
imn = −DiCkmn, (1.20)

where DiCkmn = diC
k
mn −Nk

itC
t
mn +N t

imC
k
tn +N t

inC
k
mt.
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Thus, in any Finsler space the two conditions diα = 0 and diF = 0 entail

the representation (1.20) for the coefficients Nk
imn.

The formula (1.20) tells us also that (1.16) can be regarded as a direct imp-

lication of the identity ykCknj = 0 shown by the tensor Cknj .

Because of the identity

∂Ckmn
∂yj

− ∂Ckjn
∂ym

= −2
(
ChnmC

k
hj − ChnjCkhm

)
, (1.21)

the components

R̃n
m
ij =

∂Cmni
∂yj

− ∂Cmnj
∂yi

+ ChniC
m
hj − ChnjCmhi (1.22)

of the curvature tensor R̂{x} = {R̂nmij(x, y)} arisen in the tangent Riemannian

space R{x} reduce to

R̂n
m
ij =

1

F 2
Sn

m
ij with Sn

m
ij =

(
ChnjC

m
hi − ChniCmhj

)
F 2. (1.23)

By differentiating the coefficients (1.20) with respect to yj and making the

interchange of the indices m, j, it is easy to conclude after a short evaluation that

owing to the vanishing ∂Nk
imn/∂y

j − ∂Nk
ijn/∂y

m = 0 and the above identity

(1.21), the representation (1.20) entails the vanishing

DiSnkjm = 0, (1.24)

where DiSnkjm = diSn
k
jm−Nk

ihSn
h
jm+N t

inSt
k
jm+N t

ijSn
k
tm+N t

imSn
k
jt.

Thus the following assertion is valid.

Proposition 1.1. In an arbitrary Finsler space of any dimension N ≥ 3, the

possibility of determination of the coefficients Nm
n from the separable equation

diα = 0 supplemented by the condition diF = 0 implies DiSnkjm = 0.

In the indicatrix-homogeneous case of the space FN under study, we have

the representation Snmij = const(hnjhmi − hnihmj), which complies with the

necessary condition DiSnkjm = 0 because of the property Dihjm = 0.

On the indicatrix-inhomogeneous level of study of the space FN the cha-

racteristic representation reads Snmij = C(hnjhmi − hnihmj) with C = C(x),

whence from DiSnkjm = 0 it would follow that Ci = 0, where Ci = ∂C/∂xi. In

turn, since CInd. = 1 − C (such an equality can be found in Section 5.8 of [1])
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and CInd. = H2, the conclusion Ci = 0 implies Hi = 0, which returns us to the

indicatrix-homogeneous case.

Hence, to lift the connection from the indicatrix-homogeneous grounds to

the indicatrix-inhomogeneous level, we are compelled to propose an extended

preservation law which does not require DiSnkjm = 0. In this connection, the

use of the normalized angle seems to be the most natural proposal. To this end

we introduce a characteristic indicatrix scale factor R(x) in each tangent space

to normalize the angle. If the volume VIx of the Finslerian indicatrix Ix ⊂ TxM
is finite, it is attractive to obtain the scale by the help of the equality

VIx = C1(R(x))N−1, C1 = const . (1.25)

The scale factor R(x) appeared in this way has the clear geometrical meaning of

the radius of the indicatrix supported by p. x.

In this respect, there is the deep qualitative distinction of the Finsler geo-

metry from the Riemannian geometry. Namely, in the latter geometry we have

simply VIx = const, whence R = const. In the Finsler geometry, the value of VIx
may vary from point to point of the background manifold M , in which case the

R may be a function of x.

Accordingly, we replace the above angle α{x}(y1, y2) by the normalized angle

α
{H(x)}
{x} (y1, y2) = H(x)α{x}(y1, y2), y1, y2 ∈ TxM, (1.26)

where we have introduced the function H(x) = 1/R(x), to use the preservation

law

diα
{H(x)}
{x} (y1, y2) = 0 (1.27)

instead of diα{x}(y1, y2) = 0 formulated in (1.13). The law (1.27) can be written

in the recurrent form

diα+
1

H
Hiα = 0. (1.28)

The di is the operator (1.9) and Hi = ∂H/∂xi.

Since the angle α{x}(y1, y2) is measured by the indicatrix arc length, it seems

quite natural to normalize the angle by means of the characteristic scale factor of

indicatrix, according to (1.26), before placing the angle under the action of the

separable operator di.

To deduce the tensorial implications of the recurrent preservation law (1.28),

it proves being of great help to apply the coincidence-limit method [13] of studying
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geodesics. Namely, for the function E = (1/2)α2 from (1.28) we obtain the

following E-equation

∂E

∂xi
+Nk

1i
∂E

∂yk1
+Nk

2i
∂E

∂yk2
= − 2

H
HiE,

where Nk
1i = Nk

i(x, y1) and Nk
2i = Nk

i(x, y2). By differentiating this E-

equation with respect to y1 and y2 and, then, applying the coincidence limit

operation y2 → y1 to the resultant expressions, it is possible to arrive at the follo-

wing general conclusion: In any Finsler space the assumption diα+(1/H)Hiα = 0

entails the equality

Dihmn =
2

F
hmndiF −

2

H
Hihmn. (1.29)

This equality has been derived in Appendix E of [12] in all detail by performing

long substitutions (see (E.37) in Appendix E in [12]).

By differentiating the equality (1.29) with respect to yj , it is possible to

obtain the coefficients Nk
imn. In this way, when diF = 0 is valid, simple direct

evaluations yield the representation

Nk
imn =

2

H
Hi

1

F
lkhmn −DiCkmn, (1.30)

which extends the previous (1.20). The symmetry property for these coefficients

reads now

N t
imjgtn −

2

H
Hi

1

F
hmj ln = N t

imngtj −
2

H
Hi

1

F
hmnlj .

Instead of (1.16) we obtain

FNk
inmlk =

2

H
Hihmn. (1.31)

The condition DiSnkjm = 0 indicated in (1.24) is now extended, namely the above

representation (1.30) entails

DiSnkjm = − 2

H
Hi

(
hkjhmn − hkmhjn

)
. (1.32)

From (1.29) it follows that whenever diF = 0 we have

Digmn = − 2

H
Hihmn. (1.33)
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The equality (1.33) suggests us to introduce the total connection coefficients

T kim = −Nk
im −

1

H
Hih

k
m, (1.34)

so that the deflection tensor

∆k
im

def
= −Nk

im − T kim (1.35)

is non-vanishing as far as Hi 6= 0, namely

∆k
im =

1

H
Hih

k
m. (1.36)

It follows that

T kimy
m = −Nk

imy
m ≡ −Nk

i, lkT
k
im = −lkNk

im. (1.37)

There arises the total covariant derivative T showing the properties

TiF = 0, Tilm = 0, Tilm = 0, (1.38)

and the metricity

Tignm = 0, (1.39)

where

TiF
def
= diF, Tilm

def
= dilm − Thimlh, Tilm

def
= dil

m + Tmihl
h, (1.40)

and

Tignm
def
= dignm − Thimghn − Thinghm. (1.41)

In all the previous formulas started with (1.26), the H(x) was an arbitrary

smooth function not related anyhow to the indicatrix curvature, and the constancy

of the indicatrix curvature was not implied.

If the indicatrix Ix ⊂ TxM of a Finsler space is a space of constant curvature

at any supporting point x ∈ M , we say that the Finsler space is the FN -space,

where N ≥ 3 is the dimension of the space. In such spaces we can take the positive

function H(x) from the equality CInd.(x) ≡ (H(x))2, where CInd.(x) is the value

of the curvature of the indicatrix Ix. At any point x ∈ M of the space FN this

function H = H(x) naturally introduces the scale factor R(x) = 1/H(x) in the

tangent Riemannian space R{x} supported by the point. It is the function H(x)

that we use in the normalized angle (1.26) when treating the space FN , that is,

the angle is normalized by the help of the square root of the indicatrix curvature.
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When we use the recurrent preservation law supplemented by the condition

DiF = 0, from (1.29) we have Dihmn = −(2/H)Hihmn. Applying the covariant

derivative Di to the tensor Sn
k
ij = C(hnjh

k
i −hnihkj ) and noting that C = 1−H2,

after short evaluations we obtain the derivative DiSnkjm which is just equivalent

to the derivative indicated in (1.32).

Thus, the following proposition is valid.

Proposition 1.2. The recurrent-type preservation (1.28) of the angle, that

is, diα+(1/H)Hiα = 0, complies with the indicatrix-inhomogeneous Finsler space

FN at any smooth H = H(x) obtainable from the identification CInd. = H2.

The observations motivate us to go to the preservation law (1.27) which is not

separable from the standpoint of the indicatrix-arc angle α{x}(y1, y2), whenever

H 6= const.

The coefficients Nm
n shown in (2.31) don’t involve explicitly the gradients

Hn. If, however, we expand the partial derivatives ∂/∂xn which enter the right-

hand part of (2.31), the coefficients will break down into two parts:

Nm
n = N Im

n + N̆m
n, N̆m

n = N̆mHn. (1.42)

Here, the first part N Im
n are the coefficients of the indicatrix-homogeneous case

(given by the formula (2.30) in [10], and by the formula (2.36) in [11]) in which

the constant H has been merely replaced by arbitrary H(x), and the vector field

N̆m does not involve any gradient of H(x). We may say that the coefficients Nm
n

are of the linear dependence on the gradient Hn.

The entailed coefficients Nk
mn are given by the representation (2.34) which is

applicable to any indicatrix-inhomogeneous Finsler space FN . It is also possible to

evaluate explicitly the derivative coefficients Nk
mni = ∂Nk

mn/∂y
i. The required

evaluations (which have been presented in detail in [12]) lead to the validity of the

representation (1.30) in the FN -space with an arbitrary smooth function H(x),

provided that dnF = 0 is assumed.

Having evaluated the coefficients Nk
mn, we obtain from (1.34) the total

connection coefficients T kim thereby solving the problem of finding the connection

in the FN -space at the indicatrix-inhomogeneous level.

2. Indicatrix of constant curvature

When N ≥ 4, to elucidate the conformal properties of the tangent Riemann-

ian space R{x} we should use the formula (1.22), which proposes us a convenient
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and simple representation for the respective curvature tensor {R̂nmij(x, y)}, and

construct the Weyl tensor Wijmn in the space R{x}, so that

F 2Wijmn = Sijmn −
1

N − 2
(Simgjn + Sjngim − Singjm − Sjmgin)

+
1

(N − 1)(N − 2)
S̆(gimgjn − gingjm), (2.1)

where Sijmn = gjhSi
j
mn, Sim = gjnSijmn, and S̆ = gimSim. Contracting the

tensor two times by the unit vector ln yields directly (N − 2)F 2Wijmnl
nlj =

−Sim + (1/(N − 1))S̆him, where him = gim − lilm. Therefore, in any dimension

N ≥ 4 the vanishing Wijmn = 0 is tantamount to the representation

Snmij = C(hnjhmi − hnihmj). (2.2)

It is known (see Section 5.8 in [1]) that the indicatrix is a space of constant curvat-

ure if and only if the tensor Snmij fulfills the representation (2.2), in which case

C = C(x) (that is, the factor C is independent of y). The respective indicatrix

curvature value CInd. is given by

CInd. = 1− C. (2.3)

Next, in the dimension N = 3 the tensor Wijmn vanishes identically and,

therefore, the equality

Sijmn = L(himhjn − hinhjm) with L =
1

2
S̆ (2.4)

holds, where Lmay depend on y. In terms of the tensor Cim= (Sim−(S̆/4)gim)/F 2

of the Cotton–York type, the tangent Riemannian space R{x} of a three-dimen-

sional Finsler space is conformally flat if and only if the vanishing

SnCim − SmCin = 0 (2.5)

holds, where S denotes the Riemannian covariant derivative operative in the space

R{x}. Noting that (2.4) entails Sim = Lhim, denoting Ln = ∂L/∂yn, and taking

into account the property Sngim = 0, we obtain the equality

SnCim − SmCin =
1

F 2

(
Ln

(
him −

1

2
gim

)
− Lm

(
hin −

1

2
gin

))
, (2.6)

whence (2.5) holds iff Ln = 0, that is when L = L(x) (more detail can be found

in Appendix B in [12]).

These observations are summed up in
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Proposition 2.1. In an arbitrary Finsler space of any dimension N ≥ 3 the

tangent Riemannian space R{x} is conformally flat if and only if the indicatrix

Ix is a space of constant curvature.

The question arises: What is the form of the conformal multiplier in the

space R{x} under study? To deduce the required conclusions we can start with

the tensor uij = z(x, y)(c1(x))−2F−2a(x)gij , where z is a smooth positive function

to be tested relative to dependence on y and {c1(x), a(x)} are positive functions;

the inequality 1 > a(x) > 0 is implied.

Denoting uijk = ∂uij/∂y
k, we construct the coefficients Zijk = (ukji+uiki−

uijk)/2 and, then, the respective Christoffel symbols Zmij = umhZijh, where the

components umh are reciprocal to the umh, namely umh = (1/z)F 2agmh(c1)2. In

this way we obtain merely

Zmij =

(
− a
F
li +

1

2z
zi

)
δmj +

(
− a
F
lj +

1

2z
zj

)
δmi

−
(
− a
F
lm +

1

2z
gmkzk

)
gij + Cmij , (2.7)

where zi = ∂z/∂yi. With these coefficients, we are able to evaluate the respective

curvature tensor

R̃n
m
ij =

∂Zmni
∂yj

− ∂Zmnj
∂yi

+ ZhniZ
m
hj − ZhnjZmhi. (2.8)

This tensor vanishes iff the scalar p2 with p =
[
z(x, y)(c1(x))−2F−2a(x)

]−1/2
is in-

deed the conformal multiplier. From R̃n
m
ij = 0 we can obtain some expression for

the tensor Snmij . Assuming the zero-degree homogeneity of the function z(x, y)

with respect to the argument y, which entails the identity zil
i = 0, and consider-

ing the implications of the identity Snmij l
mlj = 0, we arrive at the conclusion

that R̃n
m
ij = 0 is equivalent to the representation

Snmij = a(2− a)(hnjhmi − hnihmj) + F 2 1

2z2
(
zhg

hszs
)
(hnjhmi − hnihmj)

+
a− 1

2z

(
zn(lihmj − ljhmi)− zm(lihnj − ljhni)

+ ln(zihmj − zjhmi)− lm(zihjn − zjhin)
)
F (2.9)

(all the involved evaluations have been explicitly presented in Appendix C in [12]).

In Finsler geometry the tensor Snmij possesses the property Snmij l
i = 0.

The above representation (2.9) shows that we meet the property iff we fulfill the
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equation (a − 1)(znhmj − zmhnj) = 0. Noting a 6= 1, we obtain zn = 0, which

means that the function z is independent of y. Without any loss of generality we

can take z = 1.

Thus we have proved the following proposition.

Proposition 2.2. If the tangent Riemannian space R{x} is conformally flat,

then the dependence of the conformal multiplier on the variable y is presented by

the power of the Finsler metric function F , such that

g{x}(y) = p2u{x}(y), p = c1(x) (F (x, y))
a(x)

, c1(x) > 0, (2.10)

with a curvatureless tensor u{x}(y), where the positive zeroth degree homogeneity

of the conformal multiplier on the variable y and the inequality 1 > a(x) > 0 were

preassigned.

Since the curvature tensor R̃n
m
ij constructed from the tensor u{x}(y) =

{umn(x, y)} in accordance with the rule (2.8) vanishes identically, there must

exist the transformation represented locally by means of the functions

ȳi = yi(x, y) (2.11)

upon which the tensor umn becomes a Euclidean metric tensor in each tangent

Riemannian space R{x}. That is, the equality

umn = aij ȳ
i
mȳ

j
n (2.12)

must be valid, where ȳin = ∂ȳi/∂yn and amn = amn(x).

It is natural to assume that the functions (2.11) are positively homogeneous

with respect to the argument y. From (2.10) it follows that the tensor ukh is

homogeneous of the degree (−2a) with respect to y. Therefore, the homogeneity

degree H of the transformation (2.11) must be given by H = 1− a. Thus,

ȳi(x, ky) = kH ȳi(x, y), k > 0. (2.13)

With z = 1 the above representation (2.9) reduces to

Snmij = a(2 − a)(hnjhmi − hnihmj). Recollecting (2.3), we just obtain CInd. =

1− a(2− a) ≡ (1− a)2. Since the difference 1− a is equal to H, the identification

CInd. = H2 is valid.

Making the choice c1 = 1/H, from (2.10) we obtain the equality

S(x, ȳ) = (F (x, y))
H(x)

(2.14)
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which complies with the correspondence of the indicatrix to the Euclidean sphere

under the transformation (2.11); S(x, ȳ) =
√
amn(x)ȳmȳn. Then, from (2.10) we

may conclude that the conformal multiplier p2 is constructed from the Finsler

metric function F according to

p =
1

H(x)
(F (x, y))

1−H(x)
. (2.15)

We take 1 > H > 0 for definiteness, the extension of the approach to other values

of H being a straightforward task.

The transformation (2.11) gives rise to the deformation

y = C(x, ȳ), y, ȳ ∈ TxM. (2.16)

Introducing also the deformation tensor

Cim = pȳim, (2.17)

we can conclude that the following important property is valid:

FN = C · RN : gmn = CimC
j
naij (2.18)

(use the transformation (2.12) together with the equality gmn = p2umn ensued

from (2.10)). The zero-degree homogeneity

Cim(x, ky) = Cim(x, y), k > 0, (2.19)

holds (for any admissible y), together with the identity Cim(x, y)ym =

(F (x, y))1−H ȳi. The deformation is unholonomic:

∂Cim
∂yn

− ∂Cin
∂ym

6= 0. (2.20)

The vanishing appears if only the factor p = F 1−H/H is independent of the

vectors y, that is, when H = 1 (which is the proper Riemannian case).

The converse transformation

ȳ = C−1(x, y) : ti = ti(x, y), tn ≡ ȳn, (2.21)

is (1/H)-homogeneous, so that yi(x, kt) = k1/Hyi(x, t) with k > 0 (for any ad-

missible t). The identity yint
n = (1/H)yi holds, where yin = ∂yi/∂tn. We obtain
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the reciprocal deformation tensor C̃nm = (1/p)ynm, so that C̃ni C
i
m = δnm, with Cim

introduced in (2.17).

The respective two-vector angle α{x}(y1, y2) proves to be obtainable from the

angle αRiem
{x} (y1, y2) operative in the associated Riemannian space RN = (M,S),

namely the simple equality

α{x}(y1, y2) =
1

H(x)
αRiem
{x} (ȳ1, ȳ2) (2.22)

(see (II.2.51)–(II.2.52) in [12], or (2.27)–(2.28) in [11]) is valid. To give reasons

for this equality, let us denote by li = yi/F (x, y) and Li = ti/S(x, t) the com-

ponents of the Finslerian and Riemannian unit vectors l = {li} and L = {Li},
which respectively possess the properties F (x, l) = 1 and S(x, L) = 1. Since in

virtue of the equality (2.14) the indicatrices of the spaces FN = (M,F ) andRN =

(M,S) are in correspondence under the deformation C, we may apply the trans-

formation (2.16) to the unit vectors: l = C ·L : li = yi(x, L). On the other hand,

from (2.10) and (2.12) it follows that gmn(x, l) = (1/H(x))2aij(x)tim(x, l)tjn(x, l).

Therefore, under the transformation l = C · L we have gmn(x, l)dlmdln =

(1/H(x))2aij(x)dLidLj . No support vector enters the right-hand part of the last

equality, whence (2.22) is valid.

The definition

U i
def
=

1

S
ȳi ≡ 1

FH
ȳi (2.23)

introduces the normalized vector, which is obviously unit: UiU
i = 1, and Ui =

aijU
j . The zero-degree homogeneity U i(x, ky) = U i(x, y) with k > 0 holds (for

any admissible t), entailing the identity U iny
n = 0 with

U in =
∂U i

∂yn
=

1

FH
tin −

1

F
HU iln, (2.24)

where tin = ∂ti/∂yn. It follows that

FHUhs y
k
h = hks , FHU iky

k
t = δit − U iUt, UiU

i
n = 0. (2.25)

The identity

Ui

(
∂U i

∂xn
+ LiknU

k

)
= 0 (2.26)

is obviously valid, where Link are the Riemannian connection coefficients (1.12).

The representation (2.22) of the angle takes on the simple form

α{x}(y1, y2) =
1

H(x)
arccosλ, with λ = amn(x)Um1 U

n
2 , (2.27)
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where Um1 = Um(x, y1) and Um2 = Um(x, y2).

When the recurrent preservation diα+ (1/H)Hiα = 0 proposed by (1.28) is

applied to the angle shown in (2.27), we obtain simply

diλ = 0, (2.28)

where di is the separable operator (1.9). That is, the recurrent preservation law

formulated for the Finsler FN -space angle α{x} given by (2.27) is tantamount

to the preservation law for the Euclidean angle αRiem
{x} = arccosλ, whence to the

separable preservation law (2.28).

The right-hand part in the formula λ = amn(x)Um1 U
n
2 is such that the law

diλ = 0 gets valid provided we impose the condition

DnU i = 0 (2.29)

on field U i = U i(x, y), where we introduced the covariant derivative

DnU i = dnU
i + LinkU

k. (2.30)

Since dnU
i = ∂U i/∂xn +Nk

nU
i
k, we can arrive at the conclusion that in the

FN -space the coefficients Nm
n can unambiguously be found from the equation

dn
(
H(x)α{x}(y1, y2)

)
= 0 to be explicitly given by the representation

Nm
n = −ymi FH

(
H

F
U i

∂F

∂xn
+
∂U i

∂xn
+
(
aink + Sink

)
Uk
)

+ lmdnF (2.31)

(we refer to (II.3.12) in [12]). Here, the equality Lmij = amij +Smij indicated in

(1.12) has been used.

Whenever dnF = 0, the representation (2.31) takes on the form

Nm
n = −lm ∂F

∂xn
− ymi FH

(
∂U i

∂xn
+
(
aink + Sink

)
Uk
)
, (2.32)

where the identity yint
n = (1/H)yi indicated below (2.21) has been taken into

account. These coefficients Nm
n present the general solution to the equations

dn
(
H(x)α{x}(y1, y2)

)
= 0 and dnF = 0, so that no problem of uniqueness of

connection coefficients may be questioned. The torsion tensor Sikn is the only

freedom in the right-hand part of (2.32).

The evaluations performed in Section II.3 of [12] have led us also to the

representation

Nm
n = dRiem

n ym(x, t) +
1

H
Hny

m lnF (2.33)
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(this is the formula (II.3.29) in [12]) which is alternative to (2.32); here, ym =

ym(x, t) are the functions (2.16).

The representations (2.31)–(2.33) involve the gradient Hn and are applicable

to any indicatrix-inhomogeneous Finsler space FN .

The coefficients Nk
mn can be evaluated from (2.32) to explcitly read

Nk
mn = − 1

F
hkn

∂F

∂xm
− lk ∂ln

∂xm
− CknsNs

m +
1

F

(
lnh

k
s − (1−H)lkhns

)
Ns

m

− ykhFH
(
∂Uhn
∂xm

+ LhmsU
s
n

)
(2.34)

(this was the content of Proposition II.3.4 in [12]). With these coefficients, the

validity of the representation (1.30) for the entailed coefficients Nk
imn can be

verified (we address the reader to Proposition II.3.5 in [12]).

3. Application to Finsleroid space

Among possible metric functions F (x, y) of the Finsler space FN there is

the remarkable example, to be denoted by K(x, y), which reveals the following

important properties: the indicatrix is closed and axially symmetric, and Finsler

metric tensor is positive-definite.

Below, we make the notation change H(x)→ h(x).

The scalar g(x) obtained through

h(x) =

√
1− g2(x)

4
, with − 2 < g(x) < 2, (3.1)

plays the role of the characteristic parameter. It follows that gi = −(4/h)ghi,

where gi = ∂g/∂xi and hi = ∂h/∂xi.

The Finsleroid space (M,K) is constructed starting with a Riemannian space

(M,S), where S =
√
aij(x)yiyj is the Riemannian metric function and aij(x)

is a positive-definite Riemannian metric tensor. Namely, we assume that in

addition to a Riemannian metric
√
aij(x)yiyj the manifold M admits a non-

vanishing 1-form b = bi(x)yi of the unit length: aij(x)bi(x)bj(x) = 1, where

bi(x) = aij(x)bj(x). The tensor aij(x) is reciprocal to aij(x), so that aija
jn = δni ,

where δni stands for the Kronecker symbol. We need also the quadratic form

B = b2 + gbq + q2 ≡
(
b+

1

2
gq

)2

+ h2q2, (3.2)
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where q =
√
rmnymyn with rmn = amn − bmbn, so that aij(x)yiyj = b2 + q2.

We shall also use the scalar

χ =
1

h

(
− arctan

G

2
+ arctan

L

hb

)
, if b ≥ 0;

χ =
1

h

(
π − arctan

G

2
+ arctan

L

hb

)
, if b ≤ 0, (3.3)

with the function L = q + (g/2)b fulfilling the identity L2 + h2b2 = B.

The definition range 0 ≤ χ ≤ π/h is sufficient to describe all the tangent

space. The normalization in (3.3) is such that χ|y=b = 0. The quantity (3.3) can

conveniently be written as χ=f/h with the function f= arccos(A(x, y)/
√
B(x, y)),

where A = b+ (1/2)gq, ranging as follows: 0 ≤ f ≤ π. The Finsleroid-axis vector

bi relates to the value f = 0, and the opposed vector −bi relates to the value

f = π:

f = 0 ∼ y = b; f = π ∼ y = −b. (3.4)

With these ingredients, we construct the Finsler metric function

K =
√
B J, where J = e−

1
2 gχ . (3.5)

The normalization is such that K(x, b(x)) = 1 (notice that q = 0 at yi = bi). The

positive (not absolute) homogeneity holds: K(x, γy) = γK(x, y) for any γ > 0

and all admissible (x, y).

The entailed components yi = (1/2)∂K2/∂yi of the covariant tangent vector

ŷ = {yi} can be found in the simple form yi =
(
aijy

j + gqbi
)
J2.

The determinant of the respective Finslerian metric tensor gij = ∂yi/∂y
j

is given by the formula det(gij) = J2N det(aij) and, therefore, is everywhere

positive.

The remarkable property AiAi = N2g2/4 is valid, where Ai = KCi
j
j , so

that the contraction AiAi is independent of vectors y ∈ TxM .

Within any tangent space TxM , the indicatrix IFPDg;{x} = {y ∈ FFPDg;{x} :

y ∈ TxM,K(x, y) = 1} bounds the convex body FFPDg; {x} = {y ∈ FFPDg; {x} :

y ∈ TxM,K(x, y) ≤ 1} around the origin 0 ∈ TxM . This body extends the

Riemannian notion of unit ball. We call the body the Finsleroid. The direction

of the vector bi(x) in the tangent space TxM has the clear geometrical meaning

of the axis of the Finsleroid FFPDg; {x} ⊂ TxM . The Finsleroid can be regarded as

rotund around this direction. The Finsleroid is not symmetric under reflection

through the origin 0 ∈ TxM , for we have K(x,−y) 6= K(x, y) in general.
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We call K(x, y) the FFPDg -Finsleroid metric function, obtaining the FFPDg -

Finsler space FFPDg = {M ; aij(x); bi(x); g(x); K(x, y)} which we call the Fins-

leroid space for short. The upperscript “PD” means “positive-definite”.

On the punctured tangent bundle TM \ 0, the metric function K is smooth

globally of the class C2 regarding the y-dependence and the Finsleroid metric

tensor gij is positive definite. Because of the identity rmnb
n = 0, the function

is not of the class C3. Indeed, the scalar q =
√
rmnymyn is zero when y = b

or y = −b, that is, in the directions of the north pole or the south pole of the

Finsleroid. The third derivatives of the function K(x, y) with respect to y involve

the fraction 1/q which gives rise to the pole singularities when q = 0.

On the b-slit tangent bundle TbM = TM \ 0 \ b \ −b (obtained by deleting

out in TM \0 all the directions which point along, or oppose, the directions given

rise to by the 1-form b), the function K is smooth of the class C∞ regarding the

y-dependence.

The metric function K has been first appeared in the paper [14] in which a

broad class of Finsler metrics whose indicatrices are spaces of constant curvature

has been found. The consideration in the paper was referred to a fixed tangent

space. In [15], the metric function K was used to geometrize the tangent bundle

of a smooth manifold in a positive-definite way. The terminology “Finsleroid” has

been introduced in the work [16], in which the two-vector angle has been found

in process of investigation of appropriate geodesics. In [16] the angle was given

by the representation which completely agrees with the representation

αFinsleroid
{x} (y1, y2) =

1

h(x)
αRiem
{x} (ȳ1, ȳ2)

coming from the formula (2.22) derived in the present paper.

Now, we are able to elucidate the structure of the coefficients Nk
m in the

proper Finsleroid case. According to the formula (6.26) of [7], the quantity U i =

(1/Kh)ȳi which enters the representation (2.32) of the coefficients can explicitly

be given by

U i =

[
hvi +

(
b+

1

2
gq

)
bi
]

1√
B
, (3.6)

where vi = yi−bbi. With the deformation tensor Cim evaluated by the help of this

field U i, the validity of the deformation property (2.18) can readily be verified.

From (3.6) we have

∂U i

∂g
= − g

4h
vi

1√
B

+
1

2
qbi

1√
B
− 1

2B
U iqb,
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or
∂U i

∂g
= − g

4h2
U i +

g

4h2
(b+

1

2
gq)bi

1√
B

+
1

2
qbi

1√
B
− 1

2B
U iqb.

Since Khymi U
i = (1/h)ym (a consequence of the homogeneity involved) and

Khymi b
i =

[
bm +

1

B

(
1

h

(
b+

1

2
gq

)
− b− gq

)
ym

]
√
B

(this is the formula (D.12) of [7]), we can evaluate the contraction

Khymi
∂U i

∂g
= − g

4h2
1

h
ym − 1

2B

1

h
qbym +

g

4h2

(
b+

1

2
gq

)
bm

+
g

4h2
1

B

1

h

(
b+

1

2
gq

)2

ym − g

4h2
1

B

(
b+

1

2
gq

)
(b+ gq)ym

+
1

2
q

[
bm +

1

B

(
1

h

(
b+

1

2
gq

)
− b− gq

)
ym

]
.

Using the equality (3.2) together with the representation

Am =
N

2
g

1

qK

[
q2bm − (b+ gq)vm

]
≡ KCmnn

(indicated by (A.27) in [7]), we come to

Khymi
∂U i

∂g
=

1

h2
q

B

(
q +

1

2
gb

)
K

Ng
Am. (3.7)

Therefore, in the Finsleroid case the object {Nk
i} proposed by (2.32) is the

sum

Nk
i = N Ik

i + N̆k
i, N̆k

i = N̆kgi, (3.8)

where

N̆k = − 1

h2
q

B

(
q +

1

2
gb

)
K

Ng
Ak − 1

2
M̄yk (3.9)

with M̄ coming from ∂K2/∂g = M̄K2. The torsion tensor Skij = Skij(x) has

been neglected. The N Ik
i are the coefficients (6.53) of [7] (they can also be found

in [10], [11]), namely,

N Ik
i =

[(
b− 1

h

(
b+

1

2
gq

))
ηkj

+

(
1

q2
vk
(
b− 1

h
(b+ gq)

)
+

(
1

h
−1

)
bk
)
yj

]
∇ibj − akijyj , (3.10)
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where ηkn = akn−bkbn−(1/q2)vkvn, so that ykη
kn = bkη

kn = 0. The designation

∇i stands for the Riemannian covariant derivative constructed with the help of

the Riemannian Christoffel symbols akij = akij(x) appeared in the background

Riemannian space (M,S), so that∇ibj = ∂bj/∂x
i−akijbk. The coefficients (3.10)

don’t involve the gradient gi.

The N Ik
i are the coefficients Nk

i obtained when the condition h = const

which specifies the indicatrix-homogeneous case is postulated.

The coefficients N Ik
im = ∂N Ik

i/∂y
m are known from [7], namely

N Ik
im = −

(
(1− h)bm +

g

2q
vm

) 1

h
akj∇ibj −

g

2qh
ηkmy

j∇ibj

−
(
g

2q
vk − (1− h)bk

)
1

h
∇ibm − aknm (3.11)

(see (6.49) in [7]). For the coefficients N̆k
im = ∂N̆k

i/∂y
m the representation

N̆k
im =

1

h2
gi
q2

2B

(
1 +

1

2
g
b

q
− 2h2

)
2

Ng
Aml

k +
1

h2
gi
q2

2B

(
1 +

1

2
g
b

q

)(
b

q
+ g

)
hkm

+
1

h2
gi
q2

2B

(
b

q
+

1

2
g

)
2

Ng

2

Ng
AmA

k − 1

2
giM̄hkm +

1

K
lmN̆

k
i (3.12)

is obtained (which was shown in Appendix A in [12]).

Thus the full coefficients Nk
im = N Ik

im+N̆k
im are completely and explicitly

known.

Using (3.12) we find straightforwardly that

yk
∂2N̆k

i

∂ym∂yn
=

2

h
hihmn. (3.13)

For the coefficients N̆k
imn = ∂N̆k

im/∂y
n the representation

N̆k
imn = − g

2h2
gi

1

K
hmnl

k − 1

gh2
gi

1

K
Akmn (3.14)

can explicitly be derived, where Akmn = KCkmn. After that, it is possible to

evaluate the sum Nk
imn = N Ik

imn + N̆k
imn, where N Ik

imn = ∂N Ik
im/∂y

n. The

result reads simply

Nk
imn =

2

h
hi

1

K
lkhmn −

1

K
DiAkmn (3.15)

(we address the reader to Appendix A in [12]). This method establishes the

validity of the representation (1.30) in the proper Finsleroid case.
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4. Conclusions: Problem solved

It is possible to meet the opinion that, in contrast to the Riemannian case, in

the Finsler geometry there is no canonical connection, so various Finsler connec-

tions should be developed on the axiomatic tensorial level. At the same time, in

the Riemannian geometry the canonical connection, called ordinarily the Levi Ci-

vita connection, is a straightforward implication from the angle, so the following

problem deserves the attentive consideration.

Connection Problem. Generate the Finsler connection from the two-

vector angle.

The definition of the two-vector angle α{x}(y1, y2) by the help of the length

of the geodesic arc on the indicatrix seems to be the most natural Finslerian

generalization of the angle introduced in Riemannian spaces by the help of the

Euclidean notion of angular measure. Like to Riemannian case, in Finsler space

this length, whence the angle α{x}(y1, y2), is free of any vector of support. Ac-

tually, the refined definition for this angle has been formulated in the beginning

of the section “7. Definitions of Angle” of the book [1]. However, applications

of such an angle to Finsler spaces have not been developed. The main difficulty

is due to the loss of possibility to have a tensorial representation for the angle.

“A finite angle will be obtained by integrating the expression (7.2) over a finite

arc” (p. 31 of [1]), where (7.2) was the representation of the infinitesimal piece

of the angle. One should deal with an integral measure of the angle. Whence, in

the respect of applications to various wide classes of Finsler spaces, such an angle

is complicated and implicit object. In Riemannian space, the integration can

readily be performed, yielding simply αRiem
{x} (y1, y2) = amn(x)ym1 y

n
2 /S1S2, where

S1 =
√
amn(x)ym1 y

n
1 and S2 =

√
amn(x)ym2 y

n
2 .

The essential simplicity can be met at in particular Finsler spaces. In the

FN -space the angle is expressible in the simple tensorial form α{x}(y1, y2) =(
1/H(x)

)
αRiem
{x} (ȳ1, ȳ2). This observation has permitted us to obtain a complete

solution of the above Connection Problem in the FN -space of an arbitrary di-

mension N ≥ 3, assuming that the indicatrix curvature value CInd. belongs to the

range (0, 1). The treatment was local in both the base manifold and the tangent

space. The smoothness of the class C2 in the base manifold and of the class C5

in the tangent space was implied. The obtained representations (2.32) and (1.34)

for the coefficients Nm
n and T kim completely determine the connection FN and

then the total covariant derivative T . The length preservation TiF = 0 and the

metricity Tigmn = 0 are keeping fine. The connection is uniquely determined up

to the torsion tensor of the associated Riemannian space.



Finsler connection properties generated by the two-vector angle developed. . . 151

Can the obtained connection FN be regarded as being canonical for the

Finsler space FN?

In Section 2 the connection FN was obtained by means of solving the se-

parable preservation law of the normalized angle. It is instructive to follow the

converse method, basing on the stipulation that the sought Finslerian connection

be the deformation of the Riemannian linear connection. The method involves

several important steps.

First of all, it is intuitively obvious that due to the conformally flat nature of

the tangent Riemannian spaces R{x}, the space FN induces a Riemannian metric

tensor aij(x) on the background manifold M , which in turns should induce the

angle from the Riemannian space (M,aij(x)) in the space FN . There arises the

idea that the connection FN comes in the FN -space by following the same path.

What is the Riemannian image of the connection FN in the space (M,aij(x))?

Maybe the metrical linear Riemannian connection RL of the space (M,aij(x)),

namely, RL = {Lmj , Lmij} where Lmj = −Lmjiyi and Lmij = Lmij(x) are

the coefficients which are shown in (1.12)? Let us adopt the last possibility to

proceed.

We have seen in Section 2 that the Finsler space FN under study is obtained

from the Riemannian space RN by means of the deformation y = C(x, ȳ), which

properties were listed in (2.17)–(2.20). The Finsler angle α can be regarded as

the result of this deformation, namely α = C · αRiem, where α means the angle

α{x}(y1, y2) = (1/H(x))αRiem
{x} (ȳ1, ȳ2).

Let us assume that the sought connection FN = {Nm
i, T

m
ij} for the space

FN is also produced by such a deformation, namely FN = C · RL. Denoting by

T the covariant derivative which is constructed with the help of the connection

coefficients Nm
i and Tmij , we can set forth the natural requirement that the

C-deformation be T -covariant constant, that is, T ·C = 0.

In terms of local coordinates the last condition reads

TnCmk = 0, (4.1)

where

TnCmk = dnC
m
k − ThnkCmh + LmnlC

l
k. (4.2)

Here, Cmk is the deformation tensor introduced in (2.17).

As long as this condition is valid, from the relation gmn = CimC
j
naij (indicated

in (2.18)) it ensues that the metricity Tngij = 0 holds in the space FN because

of the Riemannian metricity

∂aij
∂xn

− Lhinahj − Lhjnahi = 0.
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With the help of the tensor C̃nm = (1/p)ynm introduced below (2.21) we can

solve the above equation (4.1) with respect to the coefficients Thnk, obtaining

Thnk = C̃hj

(
dnC

j
k + LjnlC

l
k

)
. (4.3)

Here, dn is the operator (1.2). Finally, we set forth the natural assumption that

T y = 0 (this reads Nh
k + Thnky

k = 0 with respect to local coordinates) and

contract (4.3) by yk. The result is simple dn
(
F 1−H ȳj

)
+F 1−HLjnlȳ

l = 0, where

the identity Cim(x, y)ym = (F (x, y))
1−H

ȳi indicated below (2.19) has been taken

into account. The two nullifications T y = 0 and Tngij = 0 obviously entail

dnF = 0. Whence we have

dnȳ
j + Ljnlȳ

l = Hnȳ
j lnF. (4.4)

Using here (2.23) together with the first member of (2.25) we are led to the

conclusion that the equality (4.4) is equivalent to the representation (2.32) for

the coefficients Nm
n. If we differentiate (4.4) with respect to yk to obtain the

object dnȳ
j
k and, then, insert the object in (4.3), we just find the representation

(1.34) for the connection coefficients T kim. So the metrical Finsler connection

FN has been completely determined in the space FN . On inserting the obtained

coefficients Nm
n in the separable equation (1.27) of preservation of the normalized

angle, it is easy to observe that the equation is fulfilled. Thus the converse method

works fine!

If we apply the developed theory to the Finsleroid space, we obtain the

metric connection of the smoothness class C∞ regarding the y-dependence on all

the b-slit tangent bundle TbM = TM \ 0 \ b \ −b.
It is possible to extend the content of Section 4 of the previous indicatrix-

homogeneous study [10], [11] to make it possible to perform the comparison bet-

ween the commutators of the Finsler covariant derivative T arisen in the space

FN and the commutators of the Riemannian covariant derivative ∇ introduced in

the associated Riemannian space, not assuming H = const, such that H(x) can

be an arbitrary smooth function of x. In this way, the associated curvature tensor

ρk
n
ij can be derived. The respective evaluations have been presented in detail in

Section II.5 in [12], where various important properties of the tensor have been

elucidated.
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