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The closedness of some generalized curvature 2-forms
on a Riemannian manifold II

By CARLO ALBERTO MANTICA (Milano) and YOUNG JIN SUH (Taegu)

Abstract. In this paper we recall the closedness properties of generalized curvat-
ure 2-forms, which are said to be Riemannian, Conformal, Projective, Concircular and
Conharmonic curvature 2-forms, given in [16]. Moreover, we extend the concept of recur-
rent generalized curvature tensor to the associated curvature 2-forms while generalizing
some known results.

In particular, we introduce the recurrence of the Conformal curvature 2-form and
give some interesting theorems. In the final section we focus on the closedness of the
associated 2-forms for curvature-like tensors.

1. Introduction

Let M be a smooth n-dimensional Riemannian manifold endowed with the
operator of covariant differentiation V with respect to the metric gi;. Let R;i™
the Riemann curvature tensor of type (1,3). It satisfies the two Bianchi identities

Rj™ + Ry + Ryj™ =0,
and
viRjklm + Vijilm + VkRijlm =0.

The previous identities are valid in a torsion-free connection [14]. In this paper
we define the Ricci tensor to be Ry = —Ryp™ [28] and the scalar curvature
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R = ¢¥ R;;. It is well known that in a metric connection the Ricci tensor is
symmetric [14]. Contracting the second identity, we get V,,,R;ju™ = ViR; —
VR From this, a Riemannian manifold is said to have a harmonic curvature
tensor if V,, R;i™ = 0 [3], or if the Ricci tensor is of Codazzi type([3], [9]).

Now, in the language of differential forms, there exist a Riemannian cur-
vature 2-form associated to the Riemann curvature tensor, precisely one defines
(13], [14):

Q;n = —%Rjklmdmj A dz". (11)

Moreover, we may define another curvature 2-form associated to the divergence
of the Riemann curvature tensor, that is [15]:

I = V,, R ™dx? A da*. (1.2)

Finally, a Ricci 1-form associated to the Ricci tensor may be defined in the follo-
wing way [22]:
A= Rkldl‘k. (1.3)

Now we consider the class of curvature tensors K;;;™ with the usual symmetries
of the Riemann curvature tensor satisfying the first Bianchi identity. Specifically,
we admit a generalized curvature tensor satisfying the following relations (see [15]
and [23)):

a) K™+ K™ + Kijjp™ =0, K™ =—-Kgi™,
b) ViK™ + ViK™ + ViK™ = Biju™, (1.4)

where B;;;™ is a tensor source in the second Bianchi identity. Moreover, we may
define also a completely covariant (0,4)-type tensor K with the following further
properties [22]:

Kirim = —Kijim = —Kjrmi, Kirim = Kimjr. (1.5)

In this way the contraction Kj; = — K,k defines a symmetric generalized Ricci
tensor [22]. It is worthwhile to see that in this general case the second Bianchi
identity admits a nonzero source tensorial term B. An n-dimensional Riemannian
manifold is said to be K flat if K™ = 0, K-symmetric if VK™ = 0, and
K-harmonic if VK™ = 0 ([15]).
Now the cuvature 2-form associated to this tensor may be defined in the
following manner:
Quiey™ = K ™da? A dz*. (1.6)
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Consequently, the 2-form associated to the divergence of this tensor is defined as:
H(K)l = Vijklmd.%'j A dzF. (1.7)

If we consider the symmetric contraction Ky = —K,,1;"™ a generalized Ricci
1-form may be defined [22] as:

A(K)l = Kkldxk. (].8)

We have note that Conformal, Projective, Concircular, and Conharmonic
curvature tensors given in [16] are built from the Riemann curvature tensor and
the Ricci tensor. Thus, naturally, we may define the associated curvature 2-forms
Qepy™, Q(é)lm, Q(ny™, which are said to be Projective, Concircular, Conformal
and Conharmonic curvature 2-forms respectively, and the corresponding 2-forms
associated to the divergence of such tensors Il py;, H(C‘)zv II(ny;- The closedness of
such forms gives a great geometric importance which of makes specific restrictions
on the Riemann curvature tensor and the Ricci tensor.

On the other hand, in [22] the authors defined a new notion of generalized
curvature tensors K ik, which are said to be curvature like tensors. These are
built from a general curvature tensor K™ and a symmetric tensor Hy;. With
such kind of curvature-like tensors they investigated some geometric conditions
which are equivalent to the second Bianchi identity in terms of the Ricci-like form
and the associated curvature like forms.

In Section 2 the concept of recurrence from generalized curvature tensors can
be extended to their tensor valued forms §2(x);,™ and some general Theorems will
be pointed out.

In Section 3 we study the relation between recurrent Conharmonic, Projective
and Concircular 2-forms while generalizing some results due to [11], [12], [19],
[20], and [26]. In Section 4 recurrent Conformal curvature tensor valued 2-form
Qo™ will be investigated and some known results given in [15] and [21] could
be extended. Finally in Section 5, we focus on the closedness of the associated
2-form for same curvature-like tensors given in [22].

2. Recurrent curvature 2-forms

Recurrent manifolds have been of great interest and were investigated by
many geometers (see for example [12] or [13] for a compendium). In particular,
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WALKER [27] studied manifolds for which the Riemann curvature tensor is recur-
rent, while Concircular recurrent manifolds were studied by M1yazawa [17], Con-
formally recurrent and Projectively recurrent by ADATI and M1yazawa ([1], [2]).

In [15] the notion of K-recurrent manifold was introduced. A Riemannian
manifold with generalized curvature tensor satisfying equation (2.16) in [16] is
said to be K-recurrent (K RM), if it is not K-flat and satisfies

ViK™ = ai Kju™, (2.1)

where «; is a nonzero covector field. Thus (K RM),, manifolds include, as special
cases, those which are Conformally recurrent, Projectively recurrent, Concircular
recurrent, etc, (see [12] and [15]). In this section we extend the notion of K-
recurrence from tensors to associated 2-forms €y ),™. Hereafter we consider n-
dimensional non K-flat Riemannian manifolds.

Definition 2.1. Let M be an n-dimensional Riemannian manifold. The cur-
vature 2-form Qg™ = Kjj™dx? A dz* is said to be recurrent if there exist a
nonzero scalar 1-form « for which:

DQ(K)lm =aAN Q(K)lm7 (22)

being o = a;dx’ the associated 1-form.

It is easy to see that the previous condition is a generalization of the notion
of K-recurrence. In fact if we write equation (2.2) in local components, we have:

(ViK™ — o Kji™)dz® A da? A da® = 0. (2.3)
If a = 0, we recover the closedness of k™. The following theorem gives the
meaning of this recurrence.

Theorem 2.1. Let M be an n-dimensional Riemannian manifold. The cur-
vature 2-form Q™ = Kjr™da? A dz¥satisfies condition (2.2) if and only if

Bijii™ = ViK™ + VK" + Vi Kin™ = o Kj ™ + o Kea ™ +ap K™ (2.4)

From Theorem 2.1 we can assert the following two Corollaries:

Corollary 2.1. Let M be an n-dimensional Riemannian manifold with
closed curvature 2-form Qgy™ i.e. with DQgy™ = 0. Then the 2-form is
recurrent if and only if a; Kjp™ + aj Kpy™ + ap K™ = 0 for some o; # 0.
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Corollary 2.2. Let M be an n-dimensional Riemannian manifold with re-
current curvature 2-form Qgy,™ ie. with DQgy™ = a A Q™. Then the
2-form is closed if and only if o; K™ 4 0 Kiit™ + i K5,™ = 0 including o; = 0.

Obviously if VK™ = o; K™, then condition (2.4) is satisfied. There
are also other differential structures satisfying the same equation. For example
we may consider the following one come from the same tensor K:

ViK™ = 20 K™ + 28:(05" gra — 05" gjt) + B (8™ grt — 0% gir)
+ B (7" gi — 67" gj1) + Bi(87" gri — 01" g5i) + B (9ijgr1 — girgii), (2.5)

where «;, B; are nonzero covectors. This condition was originally proposed by
Ewert-Krzemieniewski for the Riemann curvature tensor (see [10] equation 3). It
is easy to see that for the previous structure equation (2.4) also holds for the
formula (2.5). So the condition (2.4) is a proper generalization of the concept of
a K-recurrent manifold.

When the previous Theorem 2.1 is applied to the Riemann curvature tensor, we
have simply:

Corollary 2.3. Let M be an n-dimensional Riemannian manifold. The
closed tensor valued 2-form Q" = —1R;;™dz’ A da* satisfies condition (2.2) if
and only if

oziRjklm + Oszkilm + OékRijlm =0. (2.6)

We recall that condition (2.6) defines the so called B space studied by
VENZI [25].

Now we focus on the notion of recurrence for the generalized Ricci 1-form
Ay = Kda® where Kj; = —K,,1™. We state the following:

Definition 2.2. Let M be an n-dimensional Riemannian manifold. The gene-
ralized Ricci 1-form A gy = K, wdx® is said to be recurrent if there exist a nonzero
scalar 1-form § for which:

DAy = BN Ay, (2.7)

being 3 = B;dz’ the associated 1-form.

In local components the previous equation may be written in the form:
(ViKkl — BiKkl)dxi AdzF = 0. (2.8)

If 8 = 0, the closedness of the generalized Ricci 1-form is recovered. The following
theorem explains the meaning of this kind of recurrence.
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Theorem 2.2. Let M be an n-dimensional Riemannian manifold. The ge-
neralized Ricci 1-form A(gy = Kyda! satisfies condition (2.7) if and only if

ViKi — Vi Ky = Bi Ky — B K. (2.9)

Remark 2.1. When Kj; becomes a Codazzi tensor [9], then 0 = 8; Ky, — 0, Ky
transvecting with g*' we get 8; K = 'K;. On the other hand, left multiplication
by ¢ gives simply ;3K = Bu3' Ky = BrBiK. Thus for a given Riemannian
manifold with recurrent generalized Ricci one form A(K)l = Kjdz®, if Ky, is of
Codazzi type, then it becomes of rank one.

It is very interesting to write now the previous Theorem 2.2 for the Ricci
1-form A; = Ry;dz*. We obtain the following condition of recurrence:

VimBia™ = ViR — Vi Ry = Bi Ry — BeRar. (2.10)

It is easy to see that if a manifold becomes Ricci recurrent, i.e. if the condition
ViRk = Bi Ry [12] holds, then the previous equation is automatically satisfied. So
the recurrence of the Ricci 1-form includes the concept of Ricci recurrent manifold
as a special case. Moreover it is easy to see that equation (2.10) includes also other
well known differential structures. For example one may consider Weakly Ricci
Symmetric manifolds defined by the condition (see [5] and [15] for a compendium):

ViR = A;Ry + BiRii + DR, (2.11)

with A, B and D are nonzero covector fields. These manifolds were introduced by
TAMAssY and BINH [24], and include relevant Robertson—Walker space times [8]
and the perfect fluid space time [7]. One obtains immediately from the previ-
ous equation that the condition (2.10) is satisfied with 8; = A; — B;. Thus the
recurrence of the Ricci 1-form may be of some interest in General Relativity.

Now it is possible to extend a remarkable result stated in [15] for Weakly
Ricci Symmetric manifolds to the case of the recurrence of the Ricci 1-form. Take
the covariant derivative V; to (2.10), sum over cyclic permutations of indices j, k,
i and use the Lovelock identity and the same equation (2.10). Then the following
result is obtained:

R;i(ViBr — ViBi) + Riu(V;8; — Vip;) + Ru(ViBj — V;Bk)
= —(RimRBRjui™ + RjmBRru™ + RimRiji™). (2.12)

Let us suppose that the Ricci tensor is non-singular: thus there exist a (2, 0)-type
tensor (R~1)*! with the property (R™1)*'R; = 631 if B; is closed, one gets simply
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RimRji™ + RjmRpa™ + RgmRiji™ = 0. On the other hand, if the right hand
side of equation (2) is zero, we may write:

Rj(ViBr — Vi) + Ru(V;Bi — ViB;) + Ru(Vifj — V;Bi) = 0. (2.13)
If the previous result is multiplied by (R~1)*!, one easily obtains:
85(ViBk — Vi) + 03 (VB — Vi) + 67 (Vi — V;Bk) = 0. (2.14)
Now we put s = j and sum getting:
(n —2)(ViBr — ViBi) = 0. (2.15)

Thus if suppose n > 2, we have that f3; is closed; if we recall that the form II; is
closed if and only if Rip, Rjiu™ + RjmBRru™ + RemRiji™ = 0. A generalization of
the similar result in [15] (Theorem 4.4) can be stated as follows:

Theorem 2.3. Let M be an n-dimensional (n > 2) Riemannian manifold
with recurrent Ricci 1-form DA; = B A A;. If the Ricci tensor is non-singular,
then B; is closed if and only if DII; = 0.

Finally we may focus on manifolds with recurrent Ricci 1-form having closed
Weyl form. If (2.14) in [16] and (2.10) are taken in conjunction, one may write:

BrRji — Bj Ry = %1) [(VkR)gjl - (VjR)gkl]~ (2.16)

2(n

Transvecting the previous equation with g gives the BiR — " Rjm = %VjR.

Inserting this into (2.16), we get the following:

BrRj1 — Bi Ry = BrR — ™ Rim)gj1 — (B R — ﬁijm)gkl}- (2.17)

1 [ (
2(n—1)
Now the previous result is multiplied by 8’ to give simply Sr8'R;i = B8 Ry: a
further multiplication by 3’ brings BkBjBlel = BjﬁjBlel that may be written
in the form: .

BrB’ B Ry
B'Ry = =——— = tfy 2.18
55, (2.18)
So we have found that f is an eigenvector of the Ricci tensor with eigenvalue ¢:
this is the same result pointed out in [6]. Now (2.16) in [16] can be written in the
following form:

Bi(R—1t) = %ij. (2.19)
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Now (2.17) is multiplied by 47 and (2.18) is used to give an expression of the
Ricci tensor:

= 55 et ) ol

A manifold whose Ricci tensor is of the form (2.20) is said to be quasi Einstein [4].
We have thus shown that:

Ry (2.20)

Theorem 2.4. Let M be an n-dimensional Riemannian manifold with re-
current Ricci 1-form DAy = S A A;. If the Weyl form is closed, then the manifold
is quasi-FEinstein.

In next Sections 3 and 4, we will point out some applications of Theorem 2.1
to the Conharmonic, Concircular, Projective and Conformal recurrent 2-forms.

3. Recurrent conharmonic, projective and concircular 2-forms

In this section we give a generalization of some results given in [12]. We
take into consideration of the condition (2.2) and its equivalent form (2.4) for the
Conharmonic curvature tensor given in (1.14) in [16]. The Conharmonic curvature
2-form

Q(N)lm = jklmdxj A dz*

is recurrent if and only if
ViNj™+V N +VpNiji™ = i Nji™ + 0 Nt ™ + 0. Nijn™ = By,  (3.1)

where «; is some nonzero covector. We recall that in this case the source term B
takes the form:

1
Biju™ = — |07 (Vill = VieRat) + 67" (ViRji = Vi Ria)
+ 05" (ViR — ViRj) + gu(V; Ry — Vi RY")

+ 9 (VR = ViRE) + (ViR = VR (3.2)
Taking equations (3.1) and (3.2) in conjunction with m = j gives

(n —2)amNea™ + a; Rgi — o Rgal

1
= (n — 3)(V¢Rkl — VkRil) + i(gleiR — gileR). (3.3)
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Now the previous result is transvected with ¢g*' to give after straightforward cal-
culations:
(n—2)o;R=(n—2)V,;R. (3.4)

In the above calculations we have used the contraction N,,x;™ = n—l_:"’Q gr: and the
following identity:
(n — 2)OzmgklNk7;lm = —OéiR. (35)

From the equation (3.4) if n > 2, we easily obtain that o; = VéR and thus that

a; is a closed 1-form. Then we can give a generalization of the result given in [12]
as follows:

Theorem 3.1. Let M be an n(> 3)-dimensional Riemannian manifold with
recurrent Conharmonic curvature 2-form. Then

1) if the scalar curvature is constant, it must vanish,

2) if the scalar curvature is not constant, the 1-form «; is closed.

Hereafter in this section we consider a manifold with recurrent Conharmonic
2-form which is also Ricci recurrent, i.e. satisfying the condition V; Ry = a; Ry
[12] with the same recurrence parameter of the curvature 2-form. In this case we
may note that N;u™ = R + Ujr™and consequently that:

ViNju™ = ViRju™ + a;Uji ™. (3.6)
Now from (3.1) it is easily inferred that:
OziRjklm + ijRkilm + akRijlm =0. (37)

So we have shown that the 2-form Qm:—%Rjklmdxj A dz¥ is recurrent, that is,
D" = aAQ7". By the similar arguments we give a generalization of the results
given in [12]:

Theorem 3.2. Let M be an n-dimensional Ricci recurrent (i.e. V; Ry =
m

a;Ry;) Riemannian manifold. Then we have DQny™ = a A Qny™ if and only

if DQ™ = a A" for the same recurrence parameter.

Now we note that, from the definitions of Conharmonic and Projective cur-
vature tensors in (1.12) and (1.14) in [16] the following relation holds

Niw™ = Pju™ + = 2)n= 1)(5j Ry — 0;"Rj1) + (=2 (R gr1 — Ry g51)

= Pj™ + Viu™. (3.8)
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So if the manifold is Ricci recurrent, we have:

ViNjklm = Vinklm + Oéiijlm. (3.9)

From (3.1) it can be easily inferred that the following is true:
V,»ijl’” + Vjp}m‘lm + VszTl = ainklm + Oéijilm + Oszijlm. (3.10)
So we have shown that the Projective curvature 2-form Qpy,™ = i dad A dx®

is recurrent, i.e. that DQ(py,™ = a A Q(py,™. By the similar arguments we may
state the following Theorem which generalizes a result in [12]:

Theorem 3.3. Let M be an n-dimensional Ricci recurrent (i.e. V;Ry =
m

@;Ry;) Riemannian manifold. Then we have DQny™ = a A Q(ny™ if and only

if DQpy™ = a AQpy™ for the same recurrence parameter.

Now one can write the following expression involving the Concircular and
the Projective curvature tensors holds in (1.12) and (1.13) in [16]:

~ m m R m m m m
Ciu™ = Pj™ + m@j gkl — OF' Gj1) — m(fsj Ry — 61" Rj1)
=Piu™ + Qju™. (3.11)
So if the manifold is Ricci recurrent we have:
Vz‘éjklm = Vz’ijlm + Oéinklm. (3.12)

If the concircular curvature 2-form is recurrent, the following is true:
ViCia™ + ViCra™ + ViCist™ = i Cii™ + ;Crit™ + axCit™. (3.13)
Finally, by the same arguments used above we can state the following:

Theorem 3.4. Let M be an n-dimensional Ricci recurrent (i.e. V;Ry =
a;Ry;) Riemannian manifold. Then we have DQ(é)lm =aA Q(é)lm if and only
if DQpy™ = a A Qpy," for the same recurrence parameter.

4. Recurrent conformal 2-forms

In this section we study some recurrent conformal 2-forms on a Riemannian
manifold. We recall that a manifold is conformally recurrent([1], [21]) when the
conformal curvature tensor (1.9) in [16] satisfies the relation V;Cji™ = a;Cji™
where «; is a nonzero covector. In [21] SUH and KwoON studied Conformally
recurrent semi-Riemannian manifolds with harmonic conformal curvature tensor,
that is, with V,,,Cj™ = 0 (see also BESSE [3]). In the Riemannian case they
stated the following theorem ([21], Remark 3.3):
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Theorem 4.1. Let M be an n(> 4)-dimensional Riemannian manifold with
Riemannian connection V. Assume that M is Conformally recurrent and has the
harmonic Conformal curvature tensor. Then M is Conformally symmetric.

Now if we consider the recurrent Conformal 2-form DQcy™ = a A Q™
on a Riemannian manifold, the general equation (2.4) can be written as:

ViCi™ +V;Cra™ +ViCiji™ = 0;Cii™ + jCrit™ + 0 Cii™ = Bijw™. (4.1)

Obviously, when V,;Cji™ = o;Cji™, the equation (4.1) is satisfied. If we take
i = m in the previous relation, we have:

Vijklm = aijklm. (4.2)

It is well known ([1]) that the source term for the second Bianchi identity for the
Conformal curvature tensor may be written in the following form:

1
ViCit™ + V;iCri™ + Vi Ciji™ = p— 07" VpCrit® + 0" VpCigil”
+5{”V,)ij”+gklvp(}jimp+gilvp0kjmp+gjlvp()ikmp . (4.3)

So we may state the following fundamental Lemma (see [22] Lemma 7.3):

Lemma 4.1. Let M be an n-dimensional non-conformally flat Riemannian
manifold. Then the conformal curvature 2-form Qcy,™ is closed if and only if
Vi Ci™ = 0.

Now if the manifold has harmonic Conformal curvature tensor, we have

DQ(C)lm == 0
and consequently:
OziCjklm + ajCkilm + OékCijlm =0. (4.4)

We show that in such a case a; = 0. Obviously we have also a,,,Cjp,™ = 0.
Tranvecting equation (4.4) with o' gives aiaiCjklm = 0. On the other hand,
jkl

transvecting with C7%,, also gives aiCjkl’”Cjklm = 0. So it becomes a; = 0.

Thus we have obtained the following:

Theorem 4.2. Let M be an n-dimensional non conformally flat Riemann-
ian manifold with recurrent Conformal curvature 2-form cy™ and harmonic
Conformal curvature tensor. Then the Conformal 2-form is closed with a; = 0.
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Considering K-recurrent manifolds in [15], the authors pointed out the fol-
lowing Theorem ([15] Theorem 3.10).

Theorem 4.3. Let M be an n dimensional K recurrent Riemannian mani-
fold i.e. satisfying equation (2.16) in [16] and the relation V; K ™ = o; K™,
with «; closed. Then the following relation holds:

1
RimRj™ + RjmRiit™ + Rem Riji™ = _vaBz’jklm~ (4.5)

In [15] the authors claimed that for the cases K = C, C', P and N from the
previous equation one gets Rim Rjr™ + RjmRra™ + RiemRij™ = 0. This gives
the closedness of the corresponding forms Il ;. Now we will extend this relation
to the case of recurrent Conformal 2-form

DQ(C)lm =aA Q(C)lm

with closed recurrence parameter. Lovelock’s identity (2.14) in [16] is thus written
for the Conformal curvature tensor:

ViV Ci™ + ViV Cra™ + ViV Cii™
n—3
= *m(Riijklm + ijRkilm + kaRijlm)~ (46>
Now we recall that V,,Cju™ = anCin™ and V;Cj™ + V;Cra™+
ViCiyi™ = ;Ci™ + ajCru™ + aCij™. So the left hand side of previous
equation may be written in the form:

(Viam)Ci™ + (Vo) Crit™ + (Vo) Ciji ™
+ (i Cjga™ + jCra™ + axCiji™).  (4.7)
Now the divergence of o;Cju™ + ajCru™ + apCiji™ = Biju™ is taken to
give straightforwardly:
ViBijui™ = (Vi) Ci™ + (Vi) Cra™ + (Vo) Ciii™
+ am(aiCjklm + ajCkilm + akCijlm). (4.8)
If the closedness of the recurrence parameter is taken into account, we can

write finally:

n—3
VnLBijklm = _m(Riijklm + RjnLRkilm + RknLRijlm)- (49)

We have thus proved the following result:
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Theorem 4.4. Let M be an n-dimensional Riemannian manifold with the
recurrent Conformal tensor valued 2-form DQcy™ = a A Qcy™. If the recur-
rence parameter is closed, then (4.9) holds.

Now the following Lemma about the source term of the second Bianchi iden-
tity for the Conformal curvature tensor is stated:

Lemma 4.2. The divergence of the source term in the second Bianchi iden-
tity for the Conformal curvature tensor takes the form:

1

Vo Bij™ = ———
jkl n_2

(RimRjri™ + RimRra™ + RimRiji™). (4.10)

PROOF. We recall that in the case of Conformal curvature tensor the source
term B takes the form:

1
Bijua™ = —— [67 (ViR = ViRa) + 67" (Vi Ryt = V5 Ria)
+ 5;?(VjRil — VZ'R]'I) + gil(VjRZl - ka;n)
+ giu(VR)" = ViR) + (Vi) = ViR |

1 m "
CESCED)] [63' (ViRgr — ViRga) + 6" (ViRgji — Vi Rgri)
+ 01" (V; Rgir — vijol):|' (4.11)

Taking the covariant derivative V,, of the previous equation and recalling that
ViV Rji'™ = 0 (see [14] and [15]), we obtain:

1
vaijklm = —m(vivajklm + Vjvakilm + VkaRijlm). (4.12)

O

Now Lovelock’s identity is used to conclude. If we take into account both
Theorem 4.4 and Lemma 4.2, we have R Rji™ + RjmRri™ + RpmRiji™ =0
and thus may state the following:

Theorem 4.5. Let M be an n-dimensional Riemannian manifold with the
recurrent conformal curvature 2-form i.e. DQcy™ = a A Qcy™. If the recur-
rence parameter Is closed, then DIy = 0.

Now we may consider a Riemannian manifold endowed with the differential
structure (2.5) written simply for the Riemann tensor, that is,
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ViRju™ = 20 Rjia™ + 26i (67" g1 — 6" g51) + B;(6;" gk — 03" gir)
+ Br (67" gir — 67" gj1) + Bi(6]" gri — 0k g5i) + B (9ijgrt — girgsi).  (4.13)
From (2.4) we may infer that oy R;n™ + a; Rpa™ + axR;;i™ = 0 and thus that
DQ" = a A Q. This structure was studied in [10]. In the same reference it
was pointed out that this structure satisfies V;Cjr™ = «;Cjp™ and thus the
conformal curvature 2-form is recurrent. So if the covector «; is closed, we may
infer that:

Theorem 4.6. Let M be an n-dimensional Riemannian manifold endowed
with the differential structure (4.13) with closed c;. Then DII(cy =

5. Curvature 2 forms originating from curvature-like tensors

In Section 2 in [16] we scrutinized the closedness properties of tensor valued
2-forms originating from curvature tensors (Conformal, Projective, Conharmo-
nic, Concircular) derived from the Riemann curvature tensor and satisfying the
equation (2.16) in [16]. In this section we extend such properties to curvature-
like tensors K. sk built from a generalized curvature tensor Kz satisfying the
equation (1.4) with null source term Bjy;"™ (see [22] and [23]). In particular, we
recall that the contraction Ky = — K™ is symmetric. It is possible to write a
Lovelock’s identity also in this case. We state the following:

Lemma 5.1. (Generalized Lovelock’s identity) Let M be an n dimen-
sional Remannian manifold. Then the divergence of any curvature tensor K™
satisfying the second Bianchi identity with zero source term obeys the following
identity:

ViV K™ + ViV K™ + ViV K™

= ~(KimRju"™ + KjmBRea™ + KemRiji™).  (5.1)
Proor. Contracting the second Bianchi identity VK™ + V,;Kpy™ +
ViK™ = 0 we get V, K™ = Vi Kj — VK. Now the covariant deriva-
tive V; is applied to the previous expression, a sum over cyclic permutations of

the indices i, j, k is performed obtaining:

ViV K™ + ViV K™ + ViV K™

=(V,Vi = ViV K+ (V;Vi = ViVj) K + (ViV; — V; Vi) K. (5.2)
Finally, the Ricci and the first Bianchi identities for the Riemann curvature tensor
are used. |
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We consider now a new curvature tensor K ik, named curvature-like tensor,
built from Ki;™ with the remarkable property:

mGjklm = Cvajklm +D [(Vj\I/)bkl - (Vk\I/)bjl] JrE[Vijl - VkHjl] s (5.3)

where C, D, E are constants, U an arbitrary scalar function, by; a symmetric
(0,2)-type Codazzi tensor [9] and Hy; a symmetric (0, 2)-type tensor. In this case
Lovelock’s identity is not more invariant under this change. Nevertheless it is
possible to show that:

Theorem 5.1. Let M be an n-dimensional Riemannian manifold having a
curvature like tensor K ikt originating from a tensor K™ satisfying V; K™ +
V;iKpa™ + Vi K;3™ = 0, and with the property (5.3). Then

ViV K™ + ViV K™ + ViV Ki™ = (EHip — CKim) Rjgt™
+(EHJ — Cij)Rkilm + (EHkm — CKkm)Rijlm. (54)

PROOF. The covariant derivative V; is applied to the equation (5.3), a sum

over cyclic permutations of indices i, j, k is performed to obtain:

ViV K™ 4+ ViV K™ + ViV Kiji ™
=C(ViVi Kju™ + ViV Kiit™ + ViV Kiji™)
+D[(V9)(Vibr = Vibir) + (Vi) (Vbi — Vibji) + (Vi) (Vibir — Vibya)]
+E([(ViVi—=ViVi)Hji + (ViV; = V;Vi)Hp + (V;Vy — ViV;)Hy].  (5.5)
Now the properties of Codazzi tensor are taken into consideration, Ricci identity

and equation (5.1) are then used. O

It is interesting to consider the curvature 2-form associated to the divergence
of Rjklm, that iS,
Mgy = Vo K™ dz? A da®. (5.6)
The generalized Lovelock’s identity allows us to discuss some general conditions
which gives the closedness of the above 2-form. In fact, we may state the following
remarkable:

Theorem 5.2. Let M be an n-dimensional Riemannian manifold having a
curvature like tensor K ikt originating from a tensor K™ satisfying V; K™ +
V;iKpa™+ VK™ =0, and with the property (5.3). Then the curvature 2-form
Oigy = Vm[_(jklmdxj A dx* is closed if and only if

(EHipm — CKim)Rj™ + (EHjpm — CKjp ) Riat™
+ (EHkm — CKkm)Rijlm =0. (57)
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Nevertheless, if we consider that the tensor Hy; is subjected to the condition:
F[vjﬂkl - kajl} - D[(vjxy)bkl - (vkqf)bjl}, (5.8)

being I’ a constant, then the Lovelock’s identity is still unchanged. A symmet-
ric (0,2)-type tensor Hy, satisfying the previous equation is called generalized
Weyl tensor. Moreover, using the covariant derivative V; on (5.8), summing over
cyclic permutations of indices 4, j, k and taking into account of the properties of
Codazzi tensors and of the Ricci identity, we obtain easily:

Hip Rji™ + Hjyp Rt ™ + Hpm Riji™ = 0. (5.9)
In this case the previous Theorem 5.2 takes the follwing

Theorem 5.3. Let M be an n-dimensional Riemannian manifold with a
curvature like-tensor K sk originating from a tensor K™ satisfying V; K™ +
ViKpa™ + Vi K;3™ = 0, and with the property (5.3). If Hy; is a generalized
Weyl tensor, then H(F{)l = Vm[_(jklmdxj Adz¥ is closed if and only if:

KimRiju™ + KjmRia™ + KimRiji™ = 0. (5.10)

In reference [22], [23] the authors studied a new curvature-like tensor built
exactly in this way. We define it as follows:

74 m m 1 m m m m
Ko™ = Kju™ + m(éj Hyy — 0y Hj + Hj" gr1 — Hy" g51)
H

T D=2 % 9m g, (5.11)

where K ;™ is a generalized curvature tensor satisfying(1.4), Hy; a symmet-
ric (0,2) tensor with the property V™ Hg,, = %VkH where H = g Hy,; being a
sort of curvature scalar. The authors called it Conformal curvature-like tensor.
Then it can be easily checked that (5.3) holds for such a curvature-like tensor as

follows:

_ n—3
Kieyim™ = VK™ + ——————— | (V;H)gr — (Vi H)g,
Vi K(cyjm ViK™ + 2 —1)(n—2) |:(VJ )9kt — (VieH)gji
1
+ — | Vit - kaji] (5.12)

It is now easy to see that if Hy; is the Weyl tensor in [23] which satisfies the
condition:

V;Hy — Vi Hj = ViHgr — ViHgji|. (5.13)

el
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Then the 2-form associated to the divergence of the Conformal curvature like
tensor is closed if and only if K Rjn™ + KjmRra™ + KimRiji"™ = 0. This
condition does not depend on the tensor Hy;.

The same procedure may be pursued for other curvature-like tensors defined
in [22]. This gives the same algebraic closedness conditions for the form I zy;.
The Conharmonic curvature-like tensor is defined as [22]:

74 m m 1 m m m m
Knyju™ = K™ + m(éj Hyy — 0y Hj + Hj"gr1 — Hi"gj1)- (5.14)
The property (5.3) can be checked as follows:

Vi K(nyje™ = Vi K™ + ViH)gr — (ka)gjl:|

1 [ (
2(n —2)
1
+ — | Vit - V). (5.15)
Again it is now easy to see that if Hy; is the Weyl tensor [23], then the 2-form
associated to the divergence of the Conharmonic curvature-like tensor is closed if

and only if Kiijklm + ijRk“m + Kka,'jlm =0.
The Projective curvature-like tensor is defined as [22]:

= 1
K(P)jklm = Kju™ + m(é}”Hkl - 5lTHjl)' (5.16)
Also in this case one easily gets:
= 1
Vo K (pyjt™ = Vo K™ + 1 ViHy — VkHji] (5.17)

Again it is now easy to see that if Hy; is the Weyl tensor [23], then the 2-form
associated to the divergence of the Projective curvature-like tensor is closed if and
only if KimRju™ + KjmRra™ + KgmRiji™ = 0.

Finally the Concircular curvature-like tensor is defined as [22]:

_ m . H . .
Keyjm™ = K™ + m@- gkl — 01" gj1)- (5.18)
This case is particular, because one has simply:
_ m m 1
VK @yjp" = VmKju™ + nin—1) [Vngkl - Vngjz] (5.19)

Thus the Concircular curvature-like tensor is closed if and only if Ky, Rju™ +
KimRiy™ + KpmRiji™ = 0. Thus the class of curvature-like tensors, having Hy,
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as Weyl tensor, becomes a simple and general closedness condition for the 2-form
associated to the divergence of each tensor.

Before completing this section, it is worthwhile to mention an example in
which the equation (5.10) is satisfied.

In order to do this, let us consider a manifold whose curvature-like tensor

K™ is recurrent, that is:
ViK™ = NKju™, (5.20)

where we suppose that the covector )\; is closed. In general the second Bianchi
identity for the curvature like tensor K™ will have a source term Bjjx™

ViK™ + ViK™ + ViK™ = Biju™. (5.21)
Now noting that V,, K™ = A\ K™, then the left side of (5.1) takes the form:

(Vidi) K e+ (Vi Am) Kt ™+ (VA ) Kijt ™+ A N K i ™ N Kt "+ A Kt ™).
(5.22)
Now the divergence of (5.21) written in the form A\ K™ + A K™ + M Kiji™ =

Bijr™ is taken to give:
Vi Bijt™ = (Vi X)) Kjia™ + (Vi M) Kt ™ + (Vi Ae) Kii™
+ A N K™ 4+ N K™ + MK ™). (5.23)

If the closedness of the recurrence parameter is considered, that is, V; Ay = Vi g,
then the left side of (5.1) becomes VmBijklm. From this we assert the following.

Theorem 5.4. Let M be an n-dimensional Riemannian manifold having a
recurrent curvature like tensor Vikjklm = )\Z—K'jklm, with the property (5.3). If
the covector)\; is closed, then

(EHipm — CKim)Rjii™ + (EHjpm — CKjp) Riat™
4 (EHpm — CKp) Rijt™ = Vo Byi™.  (5.24)

In [22] the authors pointed out that if the tensor Hy; becomes the Weyl
tensor, the Conformal curvature like tensor f((c)jklm in (5.11) satisfies the se-
cond Bianchi identity with vanishing source term Bijklm. Thus by Theorem
5.4 and Theorem 5.2 (see (5.7)) we conclude that the curvature 2-form Il z), =
VmK ™ dzd A dz* (associated to the divergence of such tensor) is closed. Then
this gives an example in which the equation (5.10) is satisfied.
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