
Publ. Math. Debrecen

82/1 (2013), 183–192

DOI: 10.5486/PMD.2013.5396

Isometries on positive operators of unit norm

By GERGŐ NAGY (Debrecen)

Abstract. Let p > 1 be a real number. We describe the structure of surjective

isometries of the space of all positive operators in the unit sphere of the von Neumann–

Schatten p-class. In the finite dimensional case we extend the obtained result for ‘a

priori’ nonsurjective transformations.

1. Introduction and statement of the results

The problem of describing the morphisms of a given structure appears in

many parts of mathematics and plays a crucial role in most of the cases. The

natural morphisms of metric spaces are the isometries, they have a vast literature.

Concerning results on linear isometries of normed spaces we refer to the two vol-

ume set [2], [3]. In the case when a linear structure is not present, the problem of

isometries becomes much more difficult. Such spaces are investigated in numer-

ous areas of mathematics. In the Hilbert space formalism of quantum mechanics

several nonlinear structures appear. Among them one of the most important is

the set of density operators. On this set several metrics are studied, e.g. the Bu-

res metric and those coming from the trace norm or the Hilbert-Schmidt norm

which are special cases of the p-norms. In [7] the authors have determined the

structure of surjective isometries of the space of density operators with respect

to the metric induced by the 1-norm. The corresponding result can be found also

in [5] as Theorem 2.4.4. Motivated by that result, in this paper we describe the
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general form of the isometries of the space of all positive operators in the unit

sphere of the von Neumann–Schatten p-class under the assumption p > 1.

In what follows, we fix the basic notation and definitions used throughout the

paper. The symbol H stands for a complex Hilbert space and B(H) signifies the

space of bounded linear operators on H. Moreover, we denote by |A| the absolute

value of the operator A ∈ B(H). Let p ≥ 1 be a real number. The symbol Cp(H)

signifies the set of those elements A of B(H) which have the property that for

each orthonormal basis {ϕi}i∈I in H the series
∑

i∈I〈|A|pϕi, ϕi〉 is convergent.

We define the p-norm of an operator A ∈ Cp(H) by the formula

‖A‖p = (tr |A|p)
1
p ,

where tr denotes the trace functional. The pair (Cp(H), ‖.‖p) is actually a normed

space, usually called the von Neumann–Schatten p-class (see, e.g. [9]). We denote

by dp the metric induced by the p-norm and Cp(H)+1 stands for the set of those

positive operators in Cp(H) which have unit p-norm. The elements of C1(H)+1
are called density operators.

As we have already mentioned, the surjective isometries of C1(H)+1 have

been investigated in [7]. As for the case when the surjectivity of transformations

is not assumed, in [6] the general form of the isometries of C1(H)+1 endowed

with dp is given for any p ≥ 1 under the condition dimH < ∞. Since the p-

norm corresponds to the space Cp(H) rather than C1(H) it is a natural problem

to describe the structure of the isometries of the space Cp(H)+1 equipped with

dp (p > 1). Turning to our results, let p be a real number greater than 1. We

remark that using the strict convexity of Cp(H) (c.f. [4, Theorem 2.4.]) it can be

shown that any isometry of the space of all positive operators in Cp(H) is affine.

However, concerning isometries of Cp(H)+1 we cannot formulate such assertion

since this set is not convex. It is an important feature of the p-norms that they

are unitarily invariant meaning that for any A ∈ Cp(H) and unitary operators

U, V on H the operator UAV belongs to Cp(H) and ‖UAV ‖p = ‖A‖p (p ≥ 1).

Similar assertion holds for antiunitary operators. We deduce that for any unitary

or antiunitary operator U on H the transformation A 7→ UAU∗ (A ∈ Cp(H)+1 )

is a surjective isometry with respect to dp (p ≥ 1). The following result tells

that if p > 1 then the reverse statement is also true: all surjective isometries are

necesseraly of that form.

Theorem 1. Let p > 1 be a real number and suppose that φ : Cp(H)+1 →
Cp(H)+1 is a surjective isometry with respect to dp. Then we have either a unitary

or an antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ Cp(H)+1 ). (1)



Isometries on positive operators of unit norm 185

Referring to Theorem 1 and [5, Theorem 2.4.4.], we obtain that for any p ≥ 1

the surjective isometries of (Cp(H)+1 , dp) can be written in the form (1). In the

finite dimensional case, we can extend the previous statement for the isometries

of Cp(H)+1 which are not assumed to be surjective.

Theorem 2. Suppose that dimH < ∞ and let p > 1 be a real number. If

φ : Cp(H)+1 → Cp(H)+1 is an isometry with respect to dp, then we have either a

unitary or an antiunitary operator U on H such that φ is of the form (1).

Theorem 2 and the case p = 1 of [6, Theorem 1] tell us that if H is finite

dimensional, then for any p ≥ 1 the isometries of (Cp(H)+1 , dp) have the form (1).

2. Proofs

Throughout this section we shall use the following notation. The collection of

rank-1 projections on H is denoted by P1(H). In the case when n = dimH <∞
for any self-adjoint operator (or equivalently n×n complex Hermitian matrix) T :

H → H the symbol (λi(T ))ni=1 signifies the increasing sequence of the eigenvalues

of T (counted according to their multiplicities). We say that the self-adjoint

operators A,B ∈ B(H) are orthogonal if AB = 0, which is equivalent to the

property that they have mutually orthogonal ranges.

In what follows, we collect some assertions which will be needed in this

section. It is a straightforward consequence of the definition of p-classes that any

finite rank operator in B(H) belongs to Cp(H) and that any element of Cp(H) is

compact (p ≥ 1). We recall a formula concerning p-norms. Namely, if p ≥ 1 and

A ∈ Cp(H) is self-adjoint, then

‖A‖p =

(∑
i∈I
|λi|p

) 1
p

,

where (λi)i∈I is a sequence consisting of the nonzero eigenvalues of A (counted

according to multiplicities). The simple observation below can be proved by the

Cauchy–Schwarz inequality.

(∗) Suppose that dimH < ∞ and let A ∈ B(H) be a positive operator. Then

for any unit vector x ∈ H we have 〈Ax, x〉 ≤ λn(A) and equality holds if and

only if x is an eigenvector of A corresponding to λn(A).

Our arguments are based on a so-called identification lemma which reads as fol-

lows.
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Lemma. Suppose that dimH < ∞ and let p, γ ≥ 1 be fixed real numbers.

If A,B ∈ Cp(H)+1 are such that the equality

dp(A, γP ) = dp(B, γP )

holds for any P ∈ P1(H), then A = B.

Proof. In the following argument we suppose that n = dimH > 1. Let

T ∈ Cp(H)+1 and define the function fT : P1(H)→ R by

fT (P ) = dp(T, γP )p (P ∈ P1(H)).

Moreover denote byMT the eigensubspace of T corresponding to λn(T ). We are

going to show that fT uniquely determines λn(T ) andMT . To do this, we assert

that

min fT (P1(H)) = (γ − λn(T ))p + 1− λn(T )p

and fT attains its minimum exactly for those rank-1 projections on H which

project intoMT . For the proof, first observe that since ‖T‖pp =
∑n

i=1 λi(T )p = 1,

we have

fT (P ) = (γ − λn(T ))p + 1− λn(T )p (2)

for any P ∈ P1(H) whose range is included in MT .

We have to prove that (γ − λn(T ))p + 1 − λn(T )p is a lower bound of the

range of fT . To this end, let P ∈ P1(H). We learn from [1, Theorem 9.7] that if

‖.‖ is a unitarily invariant norm on the space of n×n complex matrices and R,S

are Hermitian matrices, then

‖ diag(λn(R), . . . , λ1(R))− diag(λn(S), . . . , λ1(S))‖ ≤ ‖R− S‖,

where diag(.) denotes the diagonal matrix whose diagonal is the given sequence.

We have seen in the introduction that the p-norm is unitarily invariant, thus the

previous inequality yields

(γ − λn(T ))p + 1− λn(T )p =

n∑
i=1

|λi(T )− λi(γP )|p ≤ ‖T − γP‖pp = fT (P ).

This together with equality (2) implies that

min fT (P1(H)) = (γ − λn(T ))p + 1− λn(T )p (3)

and fT attains its minimum for any element of P1(H) which projects into MT .
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In what follows let P be a rank-1 projection on H which minimizes fT . We

have to show that P projects into MT . To do this, first we give a lower bound

for fT (P ). According to [4, Lemma 2.2.], for any linear operator K on H and

orthonormal basis {ϕi}ni=1 in H we have
∑n

i=1 |〈Kϕi, ϕi〉|p ≤ ‖K‖pp. Let x be a

unit vector in rngP , where rng denotes the range of operators. Moreover choose

an orthonormal basis {ϕi}ni=1 in H such that ϕ1 = x. Apply the preceding

assertion for this basis and for the operator K = T − γP in order to get

(γ − λn(T ))p + 1− λn(T )p = fT (P ) = ‖T − γP‖pp ≥

|〈Tx, x〉 − γ|p +

n∑
i=2

〈Tϕi, ϕi〉p.
(4)

Since T is positive, by (∗) one has 〈Tx, x〉 ≤ λn(T ) ≤ 1 ≤ γ. Referring to

inequality (4), we thus get

n∑
i=2

〈Tϕi, ϕi〉p ≤ 1− λn(T )p. (5)

We emphasize that this relation is valid for all orthonormal bases {ϕi}ni=2 in

(rngP )⊥, where ⊥ denotes the orthogonal complement of subspaces in H.

Now define Q = I − P and L = rngQ. It is clear that

n∑
i=2

〈Tϕi, ϕi〉p =

n∑
i=2

〈QTQϕi, ϕi〉p

for all orthonormal bases {ϕi}ni=2 ⊂ L. It is obvious that there is an orthonor-

mal basis in L consisting of eigenvectors of (QTQ)|L. Inserting such a basis in

inequality (5) and using the last displayed equality we obtain

1− λn(T )p ≥ tr ((QTQ)|L)
p
. (6)

It is clear that (QTQ)p is 0 on L⊥. Therefore, using the fact that the p-norm is

invariant under taking adjoints (see [4, Theorem 1.3.]), we get that

tr ((QTQ)|L)
p

= tr(QTQ)p|L = tr(QTQ)p =
∥∥√TQ∥∥2p

2p

=
∥∥Q√T ∥∥2p

2p
= tr

(√
TQ
√
T
)p

= tr
(
T −
√
TP
√
T
)p

=
∥∥T −√TP√T ∥∥p

p
. (7)

Let N =
√
TP
√
T . By [1, Theorem 9.7], equation (7) and inequality (6), we infer

n∑
i=1

|λi(T )− λi(N)|p ≤ ‖T −N‖pp ≤ 1− λn(T )p. (8)
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Observe that N is an element of P1(H) multiplied by a scalar which is easily seen

to be trN . Hence

λn(N) = trN = 〈Tx, x〉

and by (8) it follows that

|λn(T )− 〈Tx, x〉|p + 1− λn(T )p ≤ 1− λn(T )p.

Now we deduce 〈Tx, x〉 = λn(T ). Using (∗), we conclude that x is an eigenvector

of T corresponding to λn(T ), which means that P projects into MT .

To sum up, we obtain that fT attains its minimum exactly for those elements

of P1(H) which project intoMT . This implies that fT uniquely determinesMT .

We assert that from fT the number λn(T ) can also be recovered. Indeed, it is

clear that the function λ 7→ (γ−λ)p + 1−λp (λ ∈ ]0, 1]) is strictly decreasing and

thus injective. Hence, from the value (γ − λn(T ))p + 1 − λn(T )p we can recover

λn(T ) and then by (3) it follows that fT uniquely determines also λn(T ).

To complete the proof we use induction on dimH. It is obvious that Lemma

holds for 1-dimensional complex Hilbert spaces. Suppose now that it is valid for

any space of dimension at most n− 1 and that A,B are operators satisfying the

conditions of Lemma. By what we have proved so far, we see that the maximal

eigenvalues of A and B are the same and this holds also for the corresponding

eigensubspaces MA,MB . This yields that A|MA
= B|MA

. If MA = MB = H

or λn(A) = λn(B) = 1, then both of A and B is 0 on M̃ =M⊥A, therefore A = B.

Otherwise, we easily infer

dp (A|M̃, γP |M̃) = dp (B|M̃, γP |M̃) (P ∈ P1(H), rngP ⊂ M̃).

It is obvious that 0 < ‖A|M̃‖p = ‖B|M̃‖p ≤ 1, and the last displayed equality

implies that for every P ∈ P1(H) projecting into M̃ we have

dp

(
1

‖A|M̃‖p
A|M̃,

γ

‖A|M̃‖p
P |M̃

)
= dp

(
1

‖A|M̃‖p
B|M̃,

γ

‖A|M̃‖p
P |M̃

)
.

Clearly, γ/‖A|M̃‖p ≥ 1, and

1

‖A|M̃‖p
A|M̃,

1

‖A|M̃‖p
B|M̃ ∈ Cp(M̃)+1 .

Moreover, it is trivial that when P runs through the set of all rank-1 projections

on H projecting into M̃, then P |M̃ runs through the set P1(M̃). Thus, by the

inductive hypothesis it follows that (1/‖A|M̃‖p)A|M̃ = (1/‖A|M̃‖p)B|M̃ and this

together with the previous argument yields A = B. The proof of Lemma is

complete. �
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We remark that in the case when p = γ = 1, Lemma has a nice geometrical

content. To see this, we recall the well-known fact that the set of density operators

acting on H is convex and its extreme points are the elements of P1(H). Having

this assertion in mind, the mentioned case of Lemma can be interpreted as follows.

Considering C1(H)+1 as a metric space equipped with d1, each density operator

on H is uniquely determined by its distances to the extreme points of C1(H)+1 .

We now turn to the proof of our first result.

Proof of Theorem 1. We begin this part with a characterization of or-

thogonality of operators in terms of their distance. Namely, let A,B ∈ Cp(H)+1 .

Then we have

AB = 0 ⇐⇒ dp(A,B) = 21/p. (9)

In the proof of [6, Theorem 1] a similar equivalence has been verified. It is easy to

see that most parts of the corresponding argument are valid in the present case

as well. Namely, if dp(A,B) = 21/p, then there is an orthonormal basis {ei}i∈I
in H whose members are common eigenvectors of A and B, and |λi − µi|p =

max{λpi , µ
p
i }, where λi = 〈Aei, ei〉, respectively µi = 〈Bei, ei〉 is the eigenvalue

of A, respectively B corresponding to ei (i ∈ I). It follows that for any i ∈ I at

least one of the numbers λi and µi is 0 and hence AB = 0. Conversely, if the latter

equality holds, then it is easy to check that dp(A,B) = 21/p. Now we conclude

that φ preserves orthogonality in both directions, i.e. for any A,B ∈ Cp(H)+1 we

have

AB = 0 ⇐⇒ φ(A)φ(B) = 0.

It is clear that φ is bijective. In the proof of [8, Theorem 4], using only the

bijectivity and the orthogonality preserving property of a certain transformation

on C1(H)+1 , the author showed that it preserves the elements of P1(H) in both

directions. It is easy to check that the corresponding argument in [8] is valid in this

case as well, thus we get that for any A ∈ Cp(H)+1 one has A ∈ P1(H) if and only

if φ(A) ∈ P1(H). It follows that φ|P1(H) : P1(H)→ P1(H) is bijective. The proof

of [6, Theorem 1] contains a formula for the distance between rank-1 projections

on a finite dimensional complex Hilbert space. The argument which the authors

used to derive that formula does not in fact require finite dimensionality, therefore

it holds for any Hilbert space. Namely, we have

dp(P,Q) = 2
1
p

√
1− trPQ (P,Q ∈ P1(H)). (10)

We infer that

trφ(P )φ(Q) = trPQ (P,Q ∈ P1(H)).
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In the mathematical foundations of quantum mechanics the trace of the product

of rank-1 projections is usually called transition probability, so the latter equality

means that φ|P1(H) preserves this quantity. A well-known theorem of Wigner

describes the structure of those bijective transformations on the set of rank-1

projections on a Hilbert space which preserve transition probability. Applying

this statement (c.f. p. 12 in [5]) we get that there exists either a unitary or an

antiunitary operator U on H such that

φ(P ) = UPU∗ (P ∈ P1(H)).

Let A ∈ Cp(H)+1 be an operator of finite rank. Referring to the preceding

paragraph, we deduce that for any P ∈ P1(H) the equality dp(φ(A), UPU∗) =

dp(A,P ) holds true. Since the p-norm is unitarily invariant, it follows that one

has dp(U∗φ(A)U,P ) = dp(A,P ) for each P ∈ P1(H). Using the equivalence (9),

this yields that a rank-1 projection on H is orthogonal to ψ(A) = U∗φ(A)U if

and only if it is orthogonal to A. We infer that rngψ(A) = rngA. It is clear

that when P runs through the set of those elements in P1(H) which project into

rngA, the operator P |rngA runs through P1(rngA). The previous observations

imply that for any P ∈ P1(rngA) the equality dp (ψ(A)|rngA, P ) = dp (A|rngA, P )

holds. Then Lemma applies and we obtain that ψ(A)|rngA = A|rngA and hence

φ(A) = UAU∗.

To complete the proof let A ∈ Cp(H)+1 . By [4, Lemma 5.2.], the collection

of finite rank operators of B(H) is dense in Cp(H), which easily yields that the

finite rank elements of Cp(H)+1 are dense in that space. Since φ is continuous, it

follows by the preceding paragraph that φ(A) = UAU∗ and then we are done. �

We now present the proof of our second statement.

Proof of Theorem 2. First, observe that by (9) the transformation φ pre-

serves orthogonality in both directions. Let n = dimH. Elementary consider-

ations show that for any A ∈ Cp(H)+1 we have A ∈ P1(H) exactly when A is

contained in a collection of n pairwise orthogonal operators in Cp(H)+1 . We con-

clude that φ maps the set P1(H) into itself. Referring to (10), we obtain that

φ|P1(H) : P1(H)→ P1(H) preserves the transition probability. There is a nonsur-

jective version of Wigner’s theorem, c.f. [5, Theorem 2.1.4.]. In the present case

it yields that we have a unitary or an antiunitary operator U on H such that

φ(P ) = UPU∗ (P ∈ P1(H)).

Now let A ∈ Cp(H)+1 . Just as in the previous proof, we deduce that

dp(U∗φ(A)U,P ) = dp(A,P ) holds for any P ∈ P1(H). Then Lemma applies and

we get that U∗φ(A)U = A and this completes the proof of Theorem 2. �
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3. Remarks

We have seen that in the finite dimensional case the conclusion of Theorem 1

holds for any isometry. As for infinite dimensional spaces, concerning arbitrary

isometries we cannot expect such a regular form like (1). To see this, consider

the following example. Assume that dimH = ∞. Then one can construct two

subspaces H1, H2 in H such that the direct sum of them is H and 1 ≤ dimH2 <

∞. Denote by P the projection of H onto H1. It is clear that the Hilbert

dimensions of H and H1 are the same, therefore there is a unitary transformation

V which maps H onto H1. Now for a given p ≥ 1 define φ : Cp(H)+1 → B(H) by

φ(A) = V AV ∗P , i.e. φ(A) is the operator which equals V AV ∗ on H1 and 0 on

H2 (A ∈ Cp(H)+1 ). By the unitary invariance of p-norms, V AV ∗ ∈ Cp(H1) and

‖V AV ∗‖p = ‖A‖p (A ∈ Cp(H)), therefore it is easy to see that φ maps Cp(H)+1
into itself and it is an isometry with respect to dp. Observe that the range of

φ does not contain any rank-1 projection P on H which projects into H2. This

shows that φ is not surjective and hence it cannot be written in the form (1).

We conclude the paper with an application of the argument in the proof of

Theorem 2. The notion of p-norms is usually extended also for the case p = ∞
by defining ‖A‖∞ to be the operator norm of A ∈ B(H). Observe that for

any unitary-antiunitary operator U on H the transformation A 7→ UAU∗ (A ∈
C1(H)+1 ) is an isometry of C1(H)+1 equipped with the metric which comes from

the operator norm. As we have already mentioned, in [6] the authors described

the structure of the isometries of C1(H)+1 with respect to dp (p ≥ 1) under the

assumption dimH < ∞. Using an argument similar to the one in the proof of

Theorem 2 it can be shown that the conclusion of [6, Theorem 1] holds also in

the remaining case, p = ∞. Namely, we have the following assertion. Suppose

that dimH < ∞ and let φ : C1(H)+1 7→ C1(H)+1 be an isometry with respect to

the metric induced by the operator norm. Then

φ(A) = UAU∗ (A ∈ C1(H)+1 ),

where U is a unitary-antiunitary operator on H. We omit the details of the

corresponding proof.
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