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Lagrangian submanifolds in complex space forms satisfying
an improved equality involving 4(2, 2)

By BANG-YEN CHEN (East Lansing), ALICIA PRIETO-MARTIN (Sevilla)
and XIANFENG WANG (Tianjin)

Abstract. It was proved in [8], [9] that every Lagrangian submanifold M of a
complex space form M?® (4c) of constant holomorphic sectional curvature 4c satisfies the
following optimal inequality:

8(2,2) < 24—51{2 + 8¢, (A)

where H? is the squared mean curvature and 0(2,2) is a d-invariant on M introduced by
the first author. This optimal inequality improves a special case of an earlier inequality
obtained in [B.-Y. CHEN, Japan. J. Math. 26 (2000), 105-127].

The main purpose of this paper is to classify Lagrangian submanifolds of M5(4c)
satisfying the equality case of the improved inequality (A).

1. Introduction

Let M™ be a K&hler n-manifold with the complex structure .J, a Kihler
metric ¢ and the Kéhler 2-form w. An isometric immersion ¢ : M — M™ of a
Riemannian n-manifold M into M™ is called Lagrangian if ¢*w = 0.
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Let M"(4c) denote a Kihler n-manifold with constant holomorphic sectional
curvature 4c, called a complez space form. A complete simply-connected complex
space form M "(4c) is holomorphically isometric to the complex Euclidean n-plane
C", the complex projective n-space CP™(4c), or a complex hyperbolic n-space
CH™(4¢) according to ¢ =0, ¢ > 0 or ¢ < 0, respectively.

B.-Y. CHEN introduced in 1990s new Riemannian invariants §(nq,...,ng).
For any n-dimensional submanifold M in a real space form R™(c) of constant
curvature ¢, he proved the following sharp general inequality (see [5], [7] for de-
tails):

n*(n+k—1-3n;) ~
o) £ S H2+ = ( z:: —1) (1.1)

For Lagrangian submanifolds in a complex space form M (4c¢), we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a com-
plex space form M™(4c) of constant holomorphic sectional curvature 4c. Then
inequality (1.1) holds for each k-tuple (ny,...,ng) € S(n).

The following result from [6] extends a result in [10] on §(2).

Theorem B. Every Lagrangian submanifold of a complex space form M "(4c)
is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8], [9] to the following inequality.

Theorem C. Let M be an n-dimensional Lagrangian submanifold of M"(4c).
Then, for an (nq,...,n) € S(n) with Z _,n; < n, we have

nz{(n — Zle n; + 3k — 1) — 62?21(2 +”i)_1}H2
2{(n— % ni+3k+2) -6 1(2+ni )~}

+1{ no 1) an n; }c. (1.2)

The equality sign holds at a point p € M if and only if there is an orthonormal

o(ny,...,ng) <

basis {e1,...,e,} at p such that the second fundamental form h satisfies

30,8
h(ea;;ep;) Zha g, J€y; + +’Z’_ Aen4ti, Z h)w, =
(2

a;=1

h(eai7€(¥j) = Oa 1 7é .]7 h(eaweN-‘rl) = 7_‘]6&1’ h(eaweu) = 07
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h(eN+17€N+1):3)\JeN+1; h(eNJrheu):)\Jeu, N:n1+--~+nk,

h(ey,ey) = ANupJent1, 4,5=1,...,k; w,v=N-+2,...,n (1.3)

For simplicity, we call a Lagrangian submanifold of a complex space form
d(nq,...,nk)-ideal (resp., improved §(ni,...,ng)-ideal) if it satisfies the equality
case of (1.1) (resp., the equality case of (1.2)) identically.

For k = 2 and n; = ng = 2, Theorem C reduces to the following.

Theorem D. Let M be a Lagrangian submanifold in a complex space form
M?5(4c) of constant holomorphic sectional curvature 4c. Then we have

2
§(2,2) < Z‘F’H2 + 8c. (1.4)
If the equality sign of (1.4) holds identically, then with respect some suitable
orthonormal frame {ey,...,e5} the second fundamental form h satisfies
h(ei,e1) = aJey + BJes + puJes, h(e,ez) = BJe; — ades,

h(es,eq) = —aJey — BJes + pJes,

h(eg,eg) = ")/J63 + 5J€4 + }LJ65, h(eg, 64) = 5]63 - ’7J64,
h(eq,eq) = —yJes — 6Jeq + pdes, h(es,es) = 4dudes,
h(ei,es) = ude;, i € A; h(e;,e;) =0, otherwise, (1.5)

for some functions «, f3, 7y, 0, u, where A = {1,2,3,4}.

The classification of §(2, 2)-ideal Lagrangian submanifolds in complex space
forms M®(4c) is done in [13]. In this paper we classify improved d§(2,2)-ideal
Lagrangian submanifolds in M> (4c¢). The main results of this paper are stated as
Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let M "(4c) denote a complete simply-connected Kéhler
n-manifold with constant holomorphic sectional curvature 4c. Then M™(4c) is
holomorphically isometric to the complex Euclidean n-plane C", the complex pro-
jective n-space C'P™(4c), or a complex hyperbolic n-space CH™(—4c) according
toc=0,c>0o0rc<0.
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Let M be a Lagrangian submanifold of M "(4c). We denote the Levi-Civita
connections of M and M™(4c) by V and V, respectively. The formulas of Gauss
and Weingarten are given respectively by (cf. [7])

VxY =VxY +h(X,Y), Vx&=—AX + Dxé, (2.1)
for tangent vector fields X and Y and normal vector fields &, where h is the second

fundamental form, A is the shape operator and D is the normal connection.
The second fundamental form and the shape operator are related by

(h(X,Y),§) = (AeX,Y).
The mean curvature vector ﬁ of M is defined by ﬁ = % trace h and the squared
mean curvature is given by H? = <ﬁ, ﬁ>

For Lagrangian submanifolds, we have (cf. [7], [12])

DxJY = JVyxY, (2.2)
A;xY = —Jh(X,Y) = Ay X. (2.3)

Formula (2.3) implies that (h(X,Y), JZ) is totally symmetric.
The equations of Gauss and Codazzi are given respectively by

(RX,Y)Z,W) = (Any,2) X, W) — (Apx,2)Y, W)
+C(<X,W><Y,Z>—<X,Z><Y,W>), (2'4)

(Vxh)(Y, Z) = (Vyh)(X, 2), (2.5)
where R is the curvature tensor of M and Vh is defined by
(Vxh)(Y.Z) = Dxh(Y,Z) = h(VxY,Z) — h(Y,Vx Z). (2.6)
For an orthonormal basis {e1,...,e,} of T,M, we put
;k = (h(ej,ex), Jei), 1,5,k=1,...,n.

It follows from (2.3) that h;k = th = hfj
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2.2. é-invariants. Let M be a Riemannian n-manifold. Denote by K (7) the
sectional curvature of a plane section # C T,M, p € M. For any orthonormal
basis e, ..., e, of T, M, the scalar curvature 7 at p is 7(p) = ZKJ. K(e; Nej).

Let L be a r-subspace of T, M with r > 2 and {eq,...,e,} an orthonormal
basis of L. The scalar curvature 7(L) of L is defined by

7(L) = Z K(eaNeg), 1<a, B< (2.7)
a<lf

For given integers n > 3, k > 1, we denote by S(n, k) the finite set consisting

of k-tuples (nq,...,ny) of integers satisfying 2 < ny,...,ng <n and Zlei <n.
Put S(n) = Ug>18(n, k). For each k-tuple (ng,...,nx) € S(n), the first
author introduced in 1990s the Riemannian invariant (nq,...,ng) by

6(na, ..., m)(p) = 7(p) —inf{7(L1) +--- +7(Lx)}, peM, (28

where Ly, ..., L run over all £ mutually orthogonal subspaces of T, M such that
dimL; =nj, j=1,...,k (cf. [7] for details).

2.3. Horizontal lift of Lagrangian submanifolds. The following link be-
tween Legendrian submanifolds and Lagrangian submanifolds is due to [16] (see
also [7, pp. 247-248]).

Case (i): CP™(4). Consider Hopf’s fibration 7 : $?"*1 — CP™(4). For a given
point u € S?"T1(1), the horizontal space at u is the orthogonal complement of
1, 1 = /—1, with respect to the metric on S?"*! induced from the metric on
C"l Let ¢ : N — CP"(4) be a Lagrangian isometric immersion. Then there is
a covering map T : N — N and a horizontal immersion i : N — $2"+1 such that
to1 = moi. Thus each Lagrangian immersion can be lifted locally (or globally
if N is simply-connected) to a Legendrian immersion of the same Riemannian
manifold. In particular, a minimal Lagrangian submanifold of C P™(4) is lifted to
a minimal Legendrian submanifold of the Sasakian S*"1(1).

Conversely, suppose that f : N — §27F! is a Legendrian isometric immer-
sion. Then t =7wo f: N — CP"(4) is again a Lagrangian isometric immersion.
Under this correspondence the second fundamental forms h/ and h* of f and ¢
satisfy m,h/ = h*. Moreover, h/ is horizontal with respect to .

Case (ii): CH"(—4). We consider the complex number space CJ' equipped
with the pseudo-Euclidean metric: g = —dz1dz; + 27:21 dz;dz;.

Consider H"*1(—1) = {z € C"*!' : (2,2) = —1} with the canonical
Sasakian structure, where ( , ) is the induced inner product.
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Put T/ = {u € C"*!: (u,z) = 0}, H} = {\ € C: A\ = 1}. Then there is an
Hl-action on H?""'(—1), z — Az and at each point z € H:""'(~1), the vector
& = —1z is tangent to the flow of the action. Since the metric gy is Hermitian,
we have (£,€) = —1. The quotient space H2""!(—1)/ ~, under the identification
induced from the action, is the complex hyperbolic space C H"(—4) with constant
holomorphic sectional curvature —4 whose complex structure J is induced from
the complex structure J on C} ! via Hopf’s fibration 7 : H2" (1) — CH™(4c).

Just like case (i), suppose that « : N — CH™(—4) is a Lagrangian immersion,
then there is an isometric covering map 7 : N — N and a Legendrian immersion
f: N — H>™1(-1) such that to7 = 7o f. Thus every Lagrangian immer-
sion into CH™(—4) an be lifted locally (or globally if N is simply-connected)
to a Legendrian immersion into Hf”"'l(—l). In particular, Lagrangian mini-
mal submanifolds of CH™(—4) are lifted to Legendrian minimal submanifolds of
H?"F1(~1). Conversely, if f : N — H?""!(~1) is a Legendrian immersion, then
t=mof: N — CH"(—4) is a Lagrangian immersion. Under this correspondence
the second fundamental forms hf and h* are related by m,hf = h*. Also, h' is
horizontal with respect to 7.

Let & be the second fundamental form of M in S?*+1(1) (or in HZ"t1(-1)).
Since S?"*1(1) and H;"*!(—1) are totally umbilical with one as its mean curva-
ture in C™"*! and in C?H, respectively, we have

VxY =VxY +h(X,Y)—¢L, (2.9)

where € = 1 if the ambient space is C"*!; and e = —1 if it is C?'H.

3. H-umbilical Lagrangian submanifolds and complex extensors

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kéahler
n-manifold is called H-umbilical if its second fundamental form satisfies

h(ej, ej) = pJen, h(ej,en) = pdej, j=1,....,n—1,
h(en,en) = pJen, h(ej,er) =0, 1<j#k<n-1, (3.1)
for some functions p, ¢ with respect to an orthonormal frame {ey, ..., e,}. If the

ratio of ¢ : p is a constant r, the H-umbilical submanifold is said to be of ratio r.
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If G : N»~! — E" is a hypersurface of a Euclidean n-space E® and v : I — C*
is a unit speed curve in C* = C — {0}, then we may extend G : N*~! — E" to
an immersion I x N"™1 - C" by y® G : I x N*7! - C®E" = C", where
(y® G)(s,p) = F(s) ® G(p) for s € I, p € N"~1. This extension of G via tensor
product ® is called the complezr extensor of G via the generating curve ~.

H-umbilical Lagrangian submanifolds in complex space forms were classified
in a series of papers by the first author (cf. [2], [3], [4]). In particular, the following
two results were proved in [2].

Theorem E. Let ¢ : S"~' C E" be the unit hypersphere in E" centered at
the origin. Then every complex extensor of v via a unit speed curve vy : I — C*
is an H-umbilical Lagrangian submanifold of C™ unless 7y is contained in a line
through the origin (which gives a totally geodesic Lagrangian submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of C™ with
n > 3. Then M is either a flat space or congruent to an open part of a complex
extensor of 1 : S"~1 C E" via a curve v : [ — C*.

3.2. Legendre curves. A unit speed curve z : [ — S3(1) € C? (resp., 2 : I —
H}(—1) c C?) is called Legendre if (/,iz) = 0. It was proved in [3] that a unit
speed curve z in S3(1) (resp., in H7(—1)) is Legendre if and only if it satisfies

!

2" =iX — 2z (resp., 2 =i\ +2) (3.2)

for a real-valued function A. It is known in [3] that A is the curvature function of
z in S3(1) (resp., in H{(—1)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a general
method to construct H-umbilical Lagrangian submanifolds with any given ratio
in CP"(4) via curves in S?(3) (resp., in CH"(—4) via curves in H?(—1)).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian
submanifolds of ratio r in CP"™(4) and in CH™(—4).

PROOF. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r # 2,
H-umbilical Lagrangian submanifolds of ratio r can be constructed as follows:

Case (a): CP"(4). Let 5?(3) = {x € E% (x,x) = ;}. The Hopf fibration
7 from $3(1) onto S%(1) = CP'(4) is given by (cf. [1])

’/T(Zl,ZQ) = (2’122, %(|Zl|2 — ZQ|2)> s (21,22) c 53(1) C Cz. (33)
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For a Legendre curve z in S$3(1), the projection v, = 7o 2 is a curve in 52(%).
Conversely, each curve 7 in S?(1) gives rise to a horizontal lift 5 in S*(1) via m
which is unique up to a factor €%, € R. Notice that each horizontal lift of v is
a Legendre curve in S3(1). Moreover, since the Hopf fibration is a Riemannian
submersion, each unit speed Legendre curve z in S3(1) is projected to a unit speed
curve v, in S2 (%) with the same curvature.

It was known in [3, Lemma 7.2] that, for a given H-umbilical Lagrangian

submanifold of ratio r # 2 in M"(4c), the function y in (3.1) satisfies

" = (:—g> w2+ (r=2)p*((r = p* +¢) = 0. (3.4)

If 1 is a non-trivial solution of (3.4) with ¢ = 1, then there is a unit speed
curve vy in Sz(%) whose curvature equals to ru. Let z be a horizontal lift of v in
S$3(1). Then z is a unit speed Legendre curve satisfying 2 (x) = iruz’(z) — z(z)
(cf. [3, Theorem 4.1] or [1, Lemma 3.1]).

Consider the map v : M® — S (1) C CS defined by

5
Yz, Y1, ys) = (21(2), 22(2)y1y - ooy - ooy 22(2)Y5), ny =1 (3.5)
j=1

It follows from [3, Theorem 4.1 and Lemma 7.2] that 7 o ¢ is a H-umbilical
Lagrangian submanifold of ratio r in C'P™(4) such that

h(ej,e;) = pJes, hej,en) = Je;,
h(en,en) =ruden, hiej,er) =0, 1<j#k<n-1, (3.6)
with respect to suitable orthonormal frame {eq,...,e5}.

Case (b): CH™(—4). For a non-trivial solution of (3.4) with ¢ = —1, we
can construct an H-umbilical Lagrangian submanifold of CH™(—4) via the Hopf

fibration 7 : H}(—1) — CH'(—4) = H?*(— 1) in a similar way as case (a), where

1
(21, 22) = (21227 §(|Zl|2 + |Z2|2)) ., (21,22) € H{(—1) C CF, (3.7)

and H?(— %) = {(z1,22,23) € E} : 2 — 23 — 2} = 1, 21 > 3} is the model of

the real projective plane of curvature —4. O
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3.4. Classification of H-umbilical submanifolds of ratio 4. The equation
of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of ratio r # 4
in complex space forms contain no open subsets of constant sectional curvature.
Hence we conclude from [3, Theorems 4.1 and 7.1] and §3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in
CP>(4) is congruent to an open portion of 7 o1, where 7 : S1*(1) — CP5(4) is
Hopf’s fibration, v : M — S(1) ¢ CS is given by

Yt y1,..ys) = (21(1), 2(D)y), {y €E°: (y,y) =1}, (3.8)

and z = (z1,22) : I — S83(1) C C? is a unit speed Legendre curve satisfying
" =4ipz’ — z, and p is a nonzero solution of 2uu” — p'* + 4p®(3u® + 1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH®(—4) satisfying
(3.1). We may assume that u is defined on an open interval I 3 0. Since H-
umbilical submanifolds of ratio 4 in C'H5(—4) contain no open subsets of constant
curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the following
classification of H-umbilical submanifolds of ratio 4 in C H?(—4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in
CHS5(—4) is congruent to an open part of w o, where 7 : Hi'(—1) — CH?®(—4)
is Hopf’s fibration and ¢ : M — H{}'(—1) C C$ is either one of

Dty pa) = (2(1), 22(0)y), {y €E°: (y,y) =1}, (3.9)
1/)(75,&/1, s 5y4) - (Zl(t)YVZZ(t))a {y € Ei} : <Y7y> = 71}7 (310)

where z is a unit speed Legendre curve in H(—1) satisfying 2" = 4iuz’ + z and
w is a non-trivial solution of 2uu’ — u'? + 4p?(3u? — 1) = 0; or 1 is

1 1 1
Yt ug, ... ug) = Melfou(t)dt<1+22u?—it+2#—

s
(o) - 255 (;

where z = (21, 22) : I — H$(—1) C C? is a unit speed Legendre curve and p is a

j=1

. 1
ZU —|—2'u/—2u(0)> Ul,...7U4>, (311)

Jj=1

non-trivial solution of '? = 4p?(1 — p?).
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Ezxample. It is easy to verify that u = sech2t is a non-trivial solution of
w'? = 4p%(1 — p?). Using pu = sech 2t, (3.11) reduces to

itan~!(tanht) 1 1 4 h 2t
e _ 5 COS

Ly, ... Uy) = ——— 771t+72 us + ,
P(t,w a) oot (2 2447 2

i i< icosh 2t
Z 2
t_7+72] 1U]+2,U/1,.7u4> (312)

It is direct to verify that (3.12) satisfies (¢0,%) = —1 and the composition 7 o 9
gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in C H(—4).

4. Some lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved 6(2,2)-ideal Lagrangian submanifold

of M5 (4c). Then with respect to some orthonormal frame {ey, ..., es} we have
h(e1,e1) = ade; + pJes, h(e1,ez) = —ades,
h(es,ex) = —adey + pJes, h(es,e3) = bJes + uJes,
h(es,eq) = —bJey, h(eq,eq) = —bJes + uJes,
h(ei,es) = pde;, i € A, h(es,es) = 4dudes,
h(e;,e;) =0, otherwise. (4.1)

PROOF. Under the hypothesis, we have (1.5) with respect to an orthonormal
frame {ej,...,e5}. Thus, after applying [6, Lemma 1] to V = Span{e;, ea} and

V = Span{es, e4}, we obtain (4.1). O
Let us put
5 .
Vxei=» 0/(X)ej, i=1,....,5, X e TM°, (4.2)
j=1

Then ¢} = =0, i,j =1,...,5.
If 4 = 0, then M is a minimal Lagrangian submanifold according (4.1). Such
submanifolds in complex space forms M?(4c) have been classified in [13].
Ifa=b=0and p # 0, then M is an H-umbilical Lagrangian submanifold
with ratio 4. Therefore, from now on we assume that a, u # 0.
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Lemma 4.2. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,b, u # 0. Then we have

€aa €20 e1a

Ve e1 = g €2 T Vs Ve, e2 = 3. Ve,e1 = T35
e1a eqb esb
Ve,e2 = g €1 T Vs Vese3 = 35 64 T Ves Veseq = 3 o
€3b €3b .
Ve, €3 = —564, Ve, 04 = Eeg — ves, Ve,e5 =ve;, © € A,
Ve.e; =0, otherwise 4.3
k-] b 9

with v = %e5(ln p) = —es(Ina) = —e5(Inbd), where A = {1,2,3,4}. Moreover, we
have

ejp=0,j €A, eb=ed=e3a=eqa=0. (4.4)

PROOF. This lemma is obtained from Codazzi’s equations via Lemma 4.1

and (4.2) and long computations. O

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) Ty is a totally geodesic distribution, i.e. Ty is integrable whose leaves are
totally geodesic submanifolds;

(b) To @ Ty and Ty ® T» are totally geodesic distributions;

(¢) Ty and T» are spherical distributions, i.e. Ty, Ty are integrable distributions
whose leaves are totally umbilical submanifolds with parallel mean curvature
vector,

where Ty = Span{es}, T1 = Span{e;, ez} and Ty = Span{es, eq}.

PROOF. Since the distribution T} is of rank one, it is integrable. Moreover,
since V¢ e5 = 0 by Lemma 4.2, the integral curves of e5 are geodesics in M. Thus
we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that [e1,es] € Th and [es, eq4] € Th
follow from (4.3). Thus T3, T5 are integrable. Also, it follows from (4.3) that the
second fundamental form h; of a leaf £ of T} in M is given by

hi(X,Y) = —vgi(X1,Y1)es, X1,Y1 €TLy, (4.5)
where g7 is the metric of £1. From (4.3) we obtain V., e5 = ve;, i = 1,2. Thus

Déle5 = D;z es = 0, where D! is the normal connection of £; in M. It follows
from Gauss’ equation and Lemma 4.1 that the curvature tensor R satisfies

<R(61,€2)€1,€j> = O7 j = 3,4,5. (46)

Thus (4.6) and Lemma 4.2 imply that 0 = R(e1,e2)e1 = (eav)es (mod T7). Hence
eov = 0. Similarly, by considering R(ez,e1)es, we also have eya = 0. After
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combining these with D'es = 0, we conclude that £, has parallel mean curvature
vector in M. Hence T} is a spherical distribution. Similarly, 75 is also a spherical
distribution. Consequently, we obtain statement (c). O

Lemma 4.4. Under the hypothesis of Lemma 4.2, M is locally a warped
product I X, M? X o (£) M3, where t is function such that es = 0, (i.e., e5 = %),
p1 and ps are two positive functions in t and M#, M3 are Riemannian 2-manifolds.

PRrROOF. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see
also [7, Theorem 4.4, p. 90]). O

Lemma 3.3 and (4.4) imply that p depends only on t. Thus p = u(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,b, i # 0. Then we have ¢ = —v? —p? < 0.
Thus p satisfies pi/ (t)? = —4u?(t)(c + p(t)).

ProOOF. Under the hypothesis, it follows from Gauss’ equation and Lem-
ma 4.1 that (R(e1,e3)es,e1) = ¢+ p?. On the other hand, the definition of
curvature tensor and Lemma 4.2 imply that (R(eq,e3)es, e;) = —v2. Thus ¢ =

—12 — 1?2 < 0. By combining this with the definition of v, we obtain the lemma.
O

5. More lemmas

Next, we consider the case a,p # 0 and b =0

Lemma 5.1. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,p # 0 and b = 0. Then we have

e esa 1Q
Ve,e1 = ——ex + ——e3 + 764 ves,
3a a 3a
e
V61€2 = _gel — 3@1(63) €3 — 3@?(64)64,
esa
V61€3 = _761 + 3@1(63)62 + (33(61)647
€4a 4
Ve,eq = ——eat 307 (es)ea — 3 (e1)es,
e1a
Ve,e1 = 3 2 + 397 (e3)es + 07 (e2)ea,
e1a €3a 1Q
Ve,e2 = —e1 + ——e3 + 764 — ves,
3a a
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esa
Ve,e3 = *3(25%(63)61 - %62 + ¢§(62)64,
eqa
Ve,eq = —07(e2)er — - 2 3 (e2)es,
Ve,e1 = 01(e3)es, Ve,eo = —061(e3)er,
Vese3 = 03(e3)es — ves, Vegeqs = —03(e3)es,
Ve,e1 = 0 (ea)ez, Ve, e2 = =07 (es)en,
V..e3 = 03(eq)ea, Ve,e4 = —05(eq)es — ves,
Vese3 = 03(es5)eq, Veses = —03(es)es,
Ve, €5 =ve;, 1 € A, Vo€ =0, otherwise. (5.1)
with v = Les(Inp) = —es(Ina). Moreover, we have
en=0, jeA=1{1,2341} (5.2)
ProOF. Follows from Codazzi’s equations via Lemma 4.1 and (4.2). O

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have
(i) Ty is a totally geodesic distribution;
(ii) T3 is a spherical distribution,
where Ty = Span{es} and T3 = Span{ey, ea, e3,e4}.

Proor. Clearly, T is integrable. Moreover, since V¢ es = 0 by Lemma 5.1,
integral curves of es are geodesics in M®. Thus statement (i) follows. To prove
statement (ii), we observe that the integrability of T3 follows from (5.1). Also,
(5.1) implies that the second fundamental form h of a leaf £ of T3 in M? is given
by h(X,Y) = —v§(X,Y)es for X,Y € TL, where § is the metric of £. Since
lej,eslp =0 by (5.1) and eju = 0, for j € A, we find e;e5pu — ese;pu = 2e3v = 0.
Therefore T3 is a spherical distribution. (Il

Lemma 5.3. Under the hypothesis of Lemma 5.1, M is locally a warped
product I X ) N*, where t is function such that e; = % and p is a positive
function in t and N* is a Riemannian 4-manifold.

PRrROOF. Follows from Lemma 5.2 and Hiepko’s theorem. ([l

It follows from (5.2) and the definition of v that p = u(t) and v = v(t).
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Lemma 5.4. Under the hypothesis of Lemma 5.1, we have

dv 9 9 dp
—_— = — — — —_— = 2 . .
o 3u® — v’ —g, pr uv (5.3)

PROOF. From Gauss’ equation and (5.1) we find (R(e1, es5)es, e1) = 3u® + c.
On the other hand, (5.1) of Lemma 5.1 yields (R(ey1, e5)es, e1) = —esv —v2. Thus

we find the first equation of (5.3). The second one follows immediately from the
definition of v given in Lemma 5.1. O

6. Improved §(2, 2)-ideal Lagrangian submanifolds of (o}

Theorem 6.1. Let M be an improved §(2, 2)-ideal Lagrangian submanifold
in C®. Then it is one of the following Lagrangian submanifolds:

(a) a d(2,2)-ideal Lagrangian minimal submanifold;
(b) an H-umbilical Lagrangian submanifold of ratio 4;

(¢) a Lagrangian submanifold defined by

6%1 tan™1 \/u3/(c2—pu3)

Lp,ug,...,uy) = o(ug, ..., un), (6.1)

where ¢ is a positive real number and ¢(us,...,u,) is a horizontal lift of a
non-totally geodesic §(2)-ideal Lagrangian minimal immersion in C'P*(4).

PROOF. Assume that M is an improved §(2, 2)-ideal Lagrangian submanifold
in C°. Then there exists an orthonormal frame {ey, ..., e5} such that (4.1) holds.
If w = 0, then M is a minimal 6(2,2)-ideal Lagrangian submanifold. Thus, we
obtain case (a). If 4 # 0 and a = b = 0, we obtain case (b).

Now, let us assume a, u # 0. Then Lemma 4.5 implies b = 0. So, by Lem-
mas 5.1 we have (5.1) and e;u = 0, j € A. Further, by Lemma 5.3, M is locally
a warped product I X, N 4 with e5 = 9;. Moreover, 4.1 shows that the second
fundamental form satisfies

h(e1,e1) = aJe + pJes, h(ey,ez) = —ades,

€9, € —aJer + pJes,

(
(e3,e3) = h(eq,eq) = pJes,

)
)
)
)

hiei,es) = pde;, i € A,
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h(es,e5) = duJes, h(ei,e;) =0, otherwise. (6.2)

From Lemma 5.4 we have the following differential system:

dv

pri —3u? — 1%, A 2uv. (6.3)

Let ¢(t) be a function satisfying ‘;—f = —4u. Consider the map

¢ = e'¥es. (6.4)

Then (¢, ¢) = 1. It follows from V. es = 0, 42 = —4y1 and (6.2) that V. ¢ = 0,
where V is the Levi-Civita connection of C. Thus ¢ is independent of ¢.
Let L denote the Lagrangian immersion of M in C°. Then (6.4) yields

=L =e %h(uy,. .., ug), (6.5)

where uy,...,u4 are local coordinates of N*. For each j € A, we obtain from
V,e5s = ve; of Lemma 5.1 and the first equation of (6.3) that

bule;) = Ve, 0 = €9V, e5 = €2 (1 + ip)e;. (6.6)
Thus
Ve, (6u(es)) = €9 (v + i) Ve, . (6.7)

In view of V. e5 = ve; and (6.2), we may put

<Z Fk + lhk )ek - (1/ - iu)dije5, 1,] € A, (68)

for some functions I'};. Now, it follows from (6.4), (6.6), (6.7), and (6.8) that

n

Ve, (¢:(e:)) = Z (T + 1hy;) duler) — (W2 +v°)i50

=2

Z (T + ihi))du(er) — (Da(ei), du(e)) 0. (6.9)

Since M is a Lagrangian submanifold in C%, (6.4) and (6.6) show that i¢
is perpendicular to each tangent space of M. Hence ¢ is a horizontal immersion
in the unit hypersphere S%(1) C C5. Moreover, it follows from (6.9) that the
second fundamental form of ¢ is the original second fundamental form of M
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respect to to the second factor N4 of the warped product I X p(t) N*. Hence, ¢
is a minimal horizontal immersion in S°(1). Therefore, ¢ is a horizontal lift of a
minimal Lagrangian immersion in C'P*(4). Now, it follows from (6.2) that ¢ is a
horizontal lift of a §(2)-ideal minimal Lagrangian submanifold of C'P*(4).

By direct computation we find

@GQ(L— el ):o, a=1,...,5. (6.10)
v+ 1u

Thus, by (6.4), up to translations the Lagrangian immersion L is

L= V+iu¢(u17...,u4), (6.11)

where ¢ is a horizontal minimal immersion in $°(1) and v, o, u satisfy

dv 9 5 dp du
o t -, — poo oy =200 (6.12)
From (6.12) we find
d 3
AR (6.13)

dp ' 2 2w

After solving (6.13) we get v = £4/c2u~! — p? for some real number ¢ > 0.

Replacing e5 by —es if necessary, we have

v=+/cut — 2. (6.14)

It follows from (6.12) an (6.14) that ¢'(u) = —2/4/c2p~1 — p?. By solving the
last equation we find ¢ = —3itan™' \/u3/(c? — p3) + ¢o for some constant cq.
Therefore, we have the theorem after applying a suitable translation in p. O

Remark 6.2. Minimal §(2, 2)-ideal Lagrangian submanifolds in complex space
forms C%, CP® and C H® are classified in [13]. Also §(2)-ideal minimal Lagrangian
submanifolds in CP* and CH* have been classified recently in [14].

Let v(t) be a unit speed curve in C*. We put
Y(t) =rt)e?®, A (t) =W, (6.15)

The following result gives H-umbilical submanifolds of C® with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C® of
ratio 4, then M is an open part of a complex extensor y® ¢ of the unit hypersphere
¢ : S%(1) C S via a generating curve vy : I — C* whose curvature satisfies k = 46’
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PROOF. If M is an H-umbilical Lagrangian submanifold of C® with ratio 4,
then the second fundamental form satisfies

hiej,e;) = pJes, hiej,es) = pJej, jE€A,
h(€5, e5) = 4/1/J657 h(ej7 ek) =0, 1 S] 7é k< 47

for a nonzero function g. Thus Gauss’ equation yields K (e; Aes) = 3u?. Hence M
is non-flat. Therefore, according to Theorem F, M is an open part of a complex
extensor of ¢ : S"~1(1) C E" via a generating curve v : I — C*. It follows from [2]
that the functions ¢ and p in (4.1) are related with the two angle functions ¢ and
by ¢ = ('(t) = k and p = €'(t). Thus whenever ~ is a unit speed curve satisfying
K = 46’ the complex extensor ¥ ®¢ is an H-umbilical Lagrangian submanifold of
ratio 4. Conversely, every H-umbilical Lagrangian submanifold of ratio 4 in C™
can be obtained in such way. |

7. Improved §(2, 2)-ideal Lagrangian submanifolds of C P5

Theorem 7.1. Let M be an improved 6(2, 2)-ideal Lagrangian submanifold
in CP%(4). Then it is one of the following Lagrangian submanifolds:

(1) a d(2,2)-ideal Lagrangian minimal submanifold;
(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(M)”Qa s ,U4) = %(\/ﬁeia¢ae3ie( \% c? — /1/3 - IM%))? (71)

where c is a positive real number, ¢ : N* — S9(1) C C5 is a horizontal lift of
a non-totally geodesic §(2)-ideal Lagrangian minimal immersion in C'P*(4),
and 6(u) satisfies

de 1
— = . (7.2)
dp  2\/p T —p2—1

PROOF. Under the hypothesis there is an orthonormal frame {e;,...,e5}

such that (4.1) holds. If p = 0, then M is a §(2,2)-ideal Lagrangian minimal
submanifold. Thus we obtain case (1). If 4 # 0 and a,b = 0, then M is an
H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a,p # 0. Then Lemma 4.5 implies b = 0. So, by Lem-
mas 5.1 we obtain (5.1) and (5.2). Also, in this case M is locally a warped product
I X N* with e5 = 8; according to Lemma 5.3. From Lemma 4.1, we find

h(ei,e1) = aJey + pJes, h(e1,ez) = —ades,
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h(es,e2) = —aJey + uJes,
h(es,e3) = h(es,es) = pJes, h(es,e5) = 4utes,
h(ei,es) = pde;, i € A, h(e;,e;) =0, otherwise. (7.3)

By Lemma 5.4 we have the following ODE system:

dv dp
— =—1-02-3u% —= =2uw. A4
; ve —3u°, n v (7.4)

Let 6(t) be a function on M satisfying

o' (t) = p. (7.5)

Let L denote the horizontal lift in S'1(1) C C° of the Lagrangian immersion
of M in C'P?(4) via Hopf ’s fibration. Consider the maps:

e 0(es — (v+ip)L) e L+ (v —ip)es) 76
Y vy Eu BV v ru B

Then (¢,§) = (¢,¢) = 1. From V. e5 = ve;, j € A, and (7.4), we find @ejf =0.
Moreover, it follows from Lemma 5.1 and (7.3) that V., es = 4iues — L. Thus we

also have @esg = 0. Hence ¢ is a constant unit vector in C%. Similarly, we also
have V¢ ¢ = 0. So ¢ is independent of t. Therefore, by combining (7.6) we find

_ =M i

/1+M2+V2

Since ¢ is orthogonal to &, i€, after choosing ¢ = (0,...,0,1) € C® we obtain

L

(7.7)

L= ——L (%, e¥(u - ip)) (78)

V14 p? 402
It follows from (7.4) and (7.5) that

d 1+v2+3u%  d 1
v __M’ = (7.9)

@ N 2uv du  2v

Solving the first differential equation in (7.9) gives

v=+cRpl—p2 -1, ceR™ . (7.10)
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By replacing e5 by —es5 if necessary, we have v = \/c2u~—1 — u2 — 1. Consequently,

1 4 .
L=- (\/ﬁeledn et (\/c2 —pP - iﬂg)) ; (7.11)
c
It follows from (5.1), (7.3) and the second formula in (7.6) that

R 06710

v€j¢ = \/ﬁ
Thus after applying (6.11) and (7.12) we derive that

e, jEA. (7.12)

VeyVead = Y (T + 1hl)ou(er) = (0u(er). dule;))o, ij €A (7.13)
=2

Hence ¢ is a horizontal immersion in S%(1). Moreover, it follows from (7.13)
that the second fundamental form of ¢ is a scalar multiple of the original second
fundamental form of M restricted to the second factor of the warped product
I x, N. Consequently, ¢ is a minimal horizontal immersion in S%(1) of a non-
totally geodesic §(2)-ideal Lagrangian minimal submanifold of C'P*(4).

The converse is easy to verify. (I

8. Improved §(2, 2)-ideal Lagrangian submanifolds of C H®

Theorem 8.1. Let M be an improved §(2, 2)-ideal Lagrangian submanifold
in CH®(—4). Then M is one of the following Lagrangian submanifolds:

(i) a d(2,2)-ideal Lagrangian minimal submanifold;
(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(p,uy,y ..., uq) = % (\/ﬁei9¢(u2,...7U4),e_i9 (VN — 3 —c2— i,u%)) , (8.1)

where c is a positive number, ¢ : N* — H)(—1) C C3 is a horizontal lift of a
non-totally geodesic §(2)-ideal minimal Lagrangian immersion in CH*(—4),
and 6(t) satisfies % =1/1—p2—cut;

(iv) a Lagrangian submanifold defined by

L(p,ug, ... ug) = % (e_ie (\/,u — 3+ — iu%) ,\/ﬁew(b(ug, ... ,u4)) , (8.2)

where c is a positive number, ¢ : N* — S%(1) C C® is a horizontal lift of
a non-totally geodesic §(2)-ideal minimal Lagrangian immersion in C'P*(4),

and 0(t) satisfies % =1/1—p2+cu;
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(v) a Lagrangian submanifold defined by

1
L(t e = — (2t i h 2t — - =
(b ua) cosht — isinht ( —|—w—|—1(cos (¥, 9) 4)’
1
UV, 2t +w+ i (costh — (W, ) + 4)) , (8.3)
where 1 (uy,...,us) is a non-totally geodesic §(2)-ideal Lagrangian minimal
immersion in C* and up to a constant w(ui,...,us) is the unique solution

of the PDE system: wy; = 2(1y;,iv), j = 1,2,3,4;
(vi) a Lagrangian submanifold defined by

L(t,ui,...,uy) = <2t+w+i(cosh2t—<w,w>—1),

cosht —isinht 4

1,0, 2t +w + 1 (cosh2t (W, ) + i)) , (8.4)

where b = (11,19) Is the direct product immersion of two non-totally ge-

odesic Lagrangian minimal immersions 1, : N2 — C2? a = 1,2, and
up to a constant w(uy,...,us) is the unique solution of the PDE system:
Way = 2ty 10), § = 1,2,3,4.

PROOF. Under the hypothesis there exists an orthonormal frame {eq, ..., e5}

such that (4.1) holds.
Case (1) u = 0. In this case, we obtain case (i) of the theorem.

Case (2): p # 0 and a,b = 0. In this case M is an H-umbilical Lagrangian
submanifold with ratio 4, which gives case (ii).

Case (3): p # 0 and at least one of a, b is nonzero. Without loss of generality,
we may assume a # 0 and p > 0. We divide this into two cases.

Case (3.a): a,pu # 0 and b = 0. By Lemmas 5.1 we obtain (5.1) and (5.2).
Also, M is locally a warped product I X, N* with es = 0, according to Lemma
5.3. From Lemma 4.1 we find

h(ei,e1) = aJey + uJes, h(e1,ez) = —ades,

h(es,ex) = —adey + pJes,

h(es,e3) = h(es,eq) = pJes, h(es,es) = 4udes,

h(ei,es) = pde;, i € A, h(e;,e;) =0, otherwise. (8.5)
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Let L be a horizontal immersion of M in H{l(—1) C C{ of the Lagrangian
immersion of M in CH®(—4) via Hopf ’s fibration and 6(¢) a function satisfying

do
From Lemma 5.4 we obtain the following ODE system:

dv du
— =1-3u> 1%, — =2u. .
7 3u” — v, 7 1% (8.7)

It follows from (8.6) and (8.7) that

d 1-3u?2—-v? df 1
wo_ poy o w_ (8.8)
du 2uv du  2v

Solving the first differential equation in (8.8) gives v = £+/1 — p2 — ku~1 for
some real number k. By replacing e5 by —es if necessary, we find

v=+/1-—p2—kp1, ﬁ: L . (8.9)
dp 231 —p2 — kp—t

It follows from (8.7) that 4 (1 — p? — %) = —2u(1 — p? — v?). Since this
equation for y(t) = 1 — u? —v? = ku~! has a unique solution for each given initial

condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): p? +v? < 1. In this case, (8.9) implies & > 0. Thus we may
put k = c%, ¢ > 0. Consider the maps:

e Mes — (v +ip)) e (v — ip)es — L)
K 1— 2 =12 ’ T—p2—12

Then (n,n) =1 and (¢, #) = —1. From V. e5 = ve;, j € A, and (8.5), we obtain
@ejf = 0, where V is the Levi-Civita connection of C¢. Lemma 5.1 and (8.5)
give 66565 = 4ipes + L. Thus we find 6655 = 0. So n is a constant unit vector.
Also, we find @esgb = 0. Hence ¢ is independent of ¢. From (8.10) we get

¢ =

(8.10)

o+ e (v —ip)n
/1—p2 =12 ’
Since ¢ is orthogonal to 7, in and 7 is a constant unit space-like vector, we

conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by applying
the same method of the proof of Theorem 7.1, we conclude that ¢ is a horizontal

L=

(8.11)
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immersion in H}(—1) whose second fundamental form is a scalar multiple of
the original second fundamental form restricted to the second factor of I x,
N. Consequently, ¢ is a minimal horizontal immersion in H{(—1) of a non-
totally geodesic §(2)-ideal Lagrangian minimal submanifold of C'H*(—4). This
gives case (iii).

Case (3.a.2): p? +v? > 1. In this case (8.8) implies k¥ < 0. Thus we may put

k= —c?, ¢ > 0. Now, we consider the maps:
7’ — 673i9(e5 - (V + i/‘l’)L) d) — efie((y - i/”’)es - L) (8 12)
w242 -1 ’ ViR —1

instead. Then (¢,¢) = —(n,n) = 1. By applying similar arguments as case
(3.a.1), we know that 7 is a constant time-like vector and ¢ is independent of ¢
and orthogonal to 7,in. Moreover, we may prove that ¢ is a minimal Legendre
immersion in S%(1). Therefore we have case (iv) after choosing n = (1,0,...,0).
Case (3.a.3): p?+v% = 1. In this case system (8.7) gives % = 2(v? — 1) and

1= +v1— 2. Solving these and applying a suitable translations in ¢, we find
u=sech2t, v =—tanh?2t. (8.13)

It follows from V. es = 0, (8.5) and (8.13) that the horizontal lift L of the
Lagrangian immersion of M in CH®(—4) C C§ satisfies

Ltt - 4i(S€Ch Qt)Lt —L=0. (814)

Solving this second order differential equation gives

¢(U1,...7U4) +B(U1,,U4)(2t+ icosh2t)

L= cosht — isinht ’ (8.15)
where ¢(u1,...,us) and B(us,...,us) are C§-valued functions.
On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that
Ly, = (isech2t —tanh 2t)L,,, j € A. (8.16)
Substituting (8.15) into (8.16) shows that B is a constant vector ¢. Thus
Ll ) = d(ur, ..., uq) (2t + icosh 2t) c (8.17)

cosht —isinht cosht —isinht

Since (L, L) = —1, (8.17) implies

—cosh 2t = (¢, @) + (¢, (4t + 2i cosh 2¢)¢) + (4t + cosh?(2))((,¢).  (8.18)
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Since ¢; = 0, by differentiating (8.18) with respect t we find
— sinh 2t = 2t(¢, ¢) + 2sinh 2¢t(¢, i¢) + (4t + sinh 4¢)(¢, (). (8.19)
We find from (8.19) at ¢ = 0 that (¢, () = 0. Thus (8.19) gives
0 = sinh 2¢(1 + (¢, i()) + (4t + sinh 4¢) (¢, ¢). (8.20)

Differentiating (8.20) gives (¢,i¢) = —5 —2((,¢). Thus (8.17) yields (¢,i¢) = —3
and (¢,¢) = 0. Now, we find from (8.18) that (¢, ») = 0. Consequently we have

1
(@,0) =((,C) = (0, () =0, (¢,i() = 5 (8:21)
Since ( is a constant light-like vector, we may put
C:(l,(),...,(),l), ¢=(a1—|—ib1,...,a6—|—ib6). (822)

It follows from (8.21) and (8.22) that ag = a1 and bs = by + &. Therefore

1
(b:<a1+ib1,a2—|—ib2,...,a1—|—i<b1—|—2)>. (823)

Now, by using {¢,®) = 0 and (8.23), we find ¥ = (ag + ibs,...,a5 + ibs) and
by = —1 — (¢,). Combining these with (8.23) yields

6= (w=itw.9) - gvw—ite.)+ 1) (324

with w = a;. It follows from (8.22) and (8.24) that (¢u,, () = (¢u;,i¢) = 0. Thus,
by applying (L.,,iL) =0, j € A, we find from (8.17) that (¢,,,ip) = 0.
On the other hand, (8.24) implies that

(bu,,10) = —%wuj b (b, i) (8.25)

with w,; = g—x. Therefore w satisfies the PDE system: w,, = 2(¢,;, i9)).
Now, we derive from (8.17), (8.22) and (8.23) that

1

i 1
L= cosh? — isinht <2t+w+1 ((:05h2t—<¢7¢>_4>7

P, 2t +w+i <cosh2t — (W, ¥) + le)) . (8.26)
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It follows from (8.26) that

Luy = — e (w10 0y g, — i(00),). (820)

cosht —isinht
Thus we find (1, Yu, ) = cosh 26(Ly;, Ly, ) which implies that ¢ is an immersion
in C*. Also, we find from (8.27) and (Ly,,iLy,) = 0 that (1, ,it,,) = 0. Thus
1 is a Lagrangian immersion. Now, by applying an argument similar to the last
part of the proof of [11, Theorem 6.1], we conclude that

4

i=1

Therefore, according to (8.5), ¥ is a §(2)-ideal minimal Lagrangian immersion
in C*. Consequently, we obtain case (v) of the theorem.

Case (3.b): a,b,u # 0. We obtain case (vi) of the theorem by applying the
same argument as case (3.a.3). O
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