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1. Introduction and results

Elementary counting functions appear in several areas of mathematics. The

study of their arithmetical properties has a long history. In this paper, we are

interested in studying the Diophantine equations which arise when two such count-

ing functions are set to equal each other. The combinatorial background to this

question is quite obvious. The counting functions that we are studying are the

following:

nk – Perfect powers: giving the number of maps from a set with k elements to a

set of n elements, or the number of integer points in a k-dimensional cube

with side length n and having one of its corners at the origin and the sides

parallel to the coordinate axes;(
n
k

)
– Binomial coefficients: giving the number of subsets with k elements of a

set of n elements;

Snk – Stirling numbers of the second kind: giving the number of partitions in k

nonempty disjoint subsets of a set of n elements;

snk – Stirling numbers of the first kind: giving the number of permutations with

k disjoint cycles of a set with n elements.

For the proofs of our main results, we will use a variety of methods from

modern number theory, ranging from effective tools provided by Baker’s theory

of lower bounds for nonzero linear forms in logarithms in algebraic numbers, to

ineffective methods such as the recent applications of the subspace theorem à

la Corvaja and Zannier, as well as the finiteness theorem on separated variables

equations from [8], see Theorem (BT) in Section 2.

We mention that in the course of applying Theorem (BT) the question arose

whether one can get a more precise result on the structure of the solution set of

such equations with separate variables in case that infinitely many solutions exist.

This was the point when the first author joined in this project and contributed

this general theoretical statement. A complete treatment, even in the more ge-

neral case of rational solutions with bounded denominator, is given in Section 2

below. Using this new result, which is Theorem 4, one can rule out several cases

immediately making the treatment of our equations via the Theorem (BT) much

simpler. Clearly, this statement will be useful also for future concrete applications

of this method.

Many arithmetical properties of the counting functions introduced above are

well-known and we shall make use of some of these properties. All these numbers

satisfy recurrence relations. For example, if we set S0
0 = 1 and Sn0 = 0 for all
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n ≥ 1, then the recurrence Sn+1
k = Snk−1+kSnk holds for all n, k ≥ 0. Furthermore,

if we set s0
0 = 1 and sn0 = 0 for all n ≥ 1, then the recurrence sn+1

k = snk−1 − nsnk
holds for all n, k ≥ 0.

We also have

Sna =
1

a!

{
an −

(
a

1

)
(a− 1)n + . . .+ (−1)a−1

(
a

a− 1

)
1n
}
, (1)

and

Snn−a =

(
n

a+ 1

)
S̃a+1

1 + . . .+

(
n

2a

)
S̃2a
a , (2)

where S̃nk are the associated Stirling numbers of the second kind. These associa-

ted Stirling numbers also have a combinatorial meaning, namely, S̃nk counts the

number of partitions of a set with n elements into k disjoint parts each having

at least 2 elements. While we also have a similar representation as (2) for the

analogous Stirling numbers of the first kind, namely

snn−a =

(
n

a+ 1

)
s̃a+1

1 + . . .+

(
n

2a

)
s̃2a
a , (3)

where s̃nk are certain associated Stirling numbers of the first kind, there is no

known formula analogous to (1) in the literature for Stirling numbers of the

first kind. From the above identities, we see that for varying n and fixed a the

function Sna is an exponential polynomial, or the nth term of a linearly recurrent

sequence whose roots are all simple and given by {1, . . . , a}, whereas the functions

Snn−a, s
n
n−a are polynomials of degree 2a in n.

In this paper, we study the Diophantine equations resulting from when two

such counting functions are set to equal each other. Some of the resulting Di-

ophantine equations are easy, such as xa = yb for given positive integers a and

b where the unknowns are integers x and y. Other equations of this type have

already been studied in the literature such as(
x

a

)
= yb, or

(
x

a

)
=

(
y

b

)
,

again for given integers a > 1 and b > 1 with integer solutions (x, y). For

the first equation, the complete list of solutions, even with variable a > 1 and

b > 1, appears in [21], which is based on results from [3] and [15]. Assuming

that x ≥ 2a, all solutions have a = b = 2 except for (x, a, b, y) = (50, 3, 2, 140).

For fixed a > b > 1, the second equation has only finitely many positive integer



222 Yuri F. Bilu, Clemens Fuchs, Florian Luca and Ákos Pintér

solutions (x, y) (see [5]). For a list of solutions of the second equation for various

small values of the parameters a and b, see [11], [30] and [31].

In a similar vein, effective upper bounds for the maximum of positive integers

x, y and z > 1 in the equations

Sxx−a = byz, or sxx−a = byz,

where a and b are given positive integers, appear in [10]. All such equations

have only finitely many solutions except when z = 2 and a ∈ {1, 3}; in these

exceptional cases the equations lead to Pell equations which may have infinitely

many solutions. In the same paper [10], it was shown that the equation

Sxa = byz

with fixed integers a ≥ 2 and b ≥ 1, where x, y, z > 1 are positive integer

variables, implies that z is bounded by an effective constant depending only on a

and b. The fact that there are only finitely many possibilities for x and y as well

was shown in [22].

In [25], it was proved that if positive integers x and y are such that

Sxa = Syb (4)

for some fixed positive integers a and b, then the maximum of x and y is bounded

by an effective constant depending on a and b. It is conjectured in [17] that all

the non-trivial solutions of equation (4) (here, by non-trivial we mean x ≥ a > 1

and y ≥ b > 1) are

S6
5 = S5

2 = 15 and S91
90 = S15

2 = 4095.

This conjecture is known to be true for max{a, b} ≤ 100.

Here, we look at several of the remaining cases and we prove finiteness state-

ments. For small values of the parameters, we give effective results. However, our

general statements are ineffective. The case of snn−k falls somewhat outside of our

treatment because we could not deduce the desired finiteness result for this count-

ing function out of the arithmetical information available to us on these numbers.

The motivation for such equations is quite obvious. Observe, for example, that

the equation Sx2 =
(
y
2

)
can be rewritten as 2x+2 = (2y−1)2+7, which we recognize

as the famous and well-studied Ramanujan-Nagell equation.

The first combinations of equations we are interested in are those in which Sna
is involved. Our proof here uses a method introduced by Corvaja and Zannier

in [13] which relies on the Schmidt subspace theorem [28]. This method was

already used in [22].
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Theorem 1. Let a ≥ 2, b ≥ 2, c 6= 0 and d ≥ 1 be integers. Then the

Diophantine equations

Sxa = cyb, Sxa =

(
y

b

)
, Sxa = Syy−d, Sxa = syy−d (5)

each have only finitely many positive integer solutions (x, y).

The next finiteness result deals with the remaining combinations of our clas-

sical counting functions. Here, the proofs rely on the already mentioned finiteness

theorem from [8] (in the refined form stated as Theorem 4 below), whose proof

in turn rests on results by Fried, Schinzel, and a classical result by Siegel.

Theorem 2. Let a and b be positive integers. Then the Diophantine equa-

tions

Sxx−a = Syy−b, (a > b > 1),

Sxx−a = syy−b, (a > 1, b > 1),

sxx−a = syy−b, (a > b > 1),

Sxx−a =

(
y

b

)
, (a > 1, b > 2),

sxx−a =

(
y

b

)
, (a > 1, b > 2)

each have only finitely positive integer solutions (x, y).

For small values of parameters, we present an effective result whose proof

relies on an effective theorem due to Baker [2] based itself on linear forms in

logarithms.

Theorem 3. For fixed a ≥ 2, the Diophantine equation

Sxx−a = Syy−1 = syy−1 =

(
y

2

)
has only finitely many integer solutions (x, y). Furthermore, they are all effectively

computable.

We could not prove the same result as Theorem 3 for the similar equations

involving sxx−a instead of Sxx−a. We leave this as an open problem for the reader.

Remark. Using Runge’s method (see, for example, [23], [26] and [33]), it is

easy to solve the equations Sxx−2 =
(
y
2

)
and sxx−2 =

(
y
2

)
in integers x ≥ 3 and
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y ≥ 2. We detail this approach for the first equation only, because for the second

equation the entire argument can be repeated. It is known that

Sxx−2 =
1

24
x(x− 1)(x− 2)(3x− 5),

and by the transformation u := 3x and v := 9(2y− 1), the first equation leads to

the quartic Diophantine equation

u(u− 3)(u− 5)(u− 6) + 81 = u4 − 14u3 + 63a2 − 90a+ 81 = v2.

The polynomial on the left-hand side of the last equation above is monic and of

even degree, so Runge’s method applies. In fact, some straightforward calcula-

tions yield that for u ≥ 24 we have

(u2 − 7u+ 7)2 < u4 − 14u3 + 63a2 − 90a+ 81 = v2 < (u2 − 7u+ 8)2.

From these inequalities, we deduce easily that all the solutions of the equation

Sxx−2 =
(
y
2

)
satisfy x < 8. Testing this small range reveals that the only solution

is (x, y) = (3, 2). In a forthcoming paper, we solve some further special cases of

the above equations.

2. Separate variables equations with infinitely many solutions

In [8], the first author and Tichy proved Theorem (BT) below which ba-

sically says that if an equation of the type f(x) = g(y) has infinitely many po-

sitive integer solutions x, y, then, up to certain transformations on the space of

polynomials, the pair of polynomials (f(X), g(X)) must belong to one of five well-

understood families of pairs of polynomials which they called standard. Therefore

in concrete applications, as for example to treat the equations from Theorem 2,

all one needs to do is to show that the polynomials under consideration are not

related in the way the Theorem (BT) asserts to the pairs of polynomials belonging

to the standard families.

Let α ∈ C and β be nonzero, q, s and t be positive integers, r be a nonnegative

integer, and v(X) ∈ Q[X] be a nonzero polynomial which may be constant. Define

the nth Dickson polynomial Dn(X,α) of parameter α as

Dn(X,α) :=

[n/2]∑
i=0

n

n− i

(
n− i
i

)
(−α)iXn−2i.
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It follows that Dn(z + α/z) = zn + (α/z)n. Hence, the coefficients of Dn(X,α)

are elements of the field Q(α). Two polynomials f(X) and g(X) are said to form

a standard pair if one of the ordered pairs (f(X), g(X)) or (g(X), f(X)) belongs

to the list below. If this is the case, then the polynomials f(X) and g(X) are said

to form a standard pair of the first kind, or second kind, etc., according to their

location in the table below.

kind explicit form of {f(X), g(X)} parameter restrictions

first (Xq, αXrv(X)q) r < q, (r, q) = 1, r + deg v > 0

second (X2, (αX2 + β)v(X)2)

third (Ds(X,α
t), Dt(X,α

s)) (s, t) = 1

fourth (α−s/2Ds(X,α),−β−t/2Dt(X,β)) (s, t) = 2

fifth ((αX2 − 1)3, 3X4 − 4X3) –

Theorem (BT). Let f(X), g(X) ∈ Q[X] be non-constant polynomials such

that the equation f(x)=g(y) has infinitely many solutions x, y∈Q with a bounded

denominator. Then f = ϕ ◦ f1 ◦ λ and g = ϕ◦g1◦µ where λ(X), µ(X)∈Q[X] are

linear polynomials, ϕ(X)∈Q[X] and (f1(X), g1(X)) is a standard pair over Q
such that the equation f1(x) = g1(y) has infinitely many rational solutions with

a bounded denominator.

In concrete applications of Theorem (BT), it is useful to have a more precise

structure of the set of solutions of f(x) = g(y). In particular, one may wonder

whether all but finitely many solutions of f(x) = g(y) “originate” from the so-

lutions of the simpler equation f1(x) = g1(y). More precisely, one may ask the

following question:

Given a non-zero integer ∆, is it true that all but finitely many rational

solutions of f(x) = g(y) with denominator ∆ also satisfy the equation

f1 ◦ λ(x) = g1 ◦ µ(y)?

Unfortunately, this is not true in general. More precisely, one may find

a standard pair (f1(X), g1(X)) and a polynomial ϕ(X) such that the equa-

tion ϕ ◦ f1(x) = ϕ ◦ g1(y) has infinitely many solutions with a bounded deno-

minator not satisfying the equation f1(x) = g1(y). The simplest example is

f1(X) = g1(X) = X and ϕ(X) = X2. After some reflection, one discovers th-

ree types of examples where the answer to the above question is negative:

1. Let (f1(X), g1(X)) be a standard pair of the first or of the third kind. Then

each of the equations f1(x) = g1(y) and f1(x) = −g1(y) has infinitely many
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solutions with a bounded denominator. Hence, if ϕ(X) is a polynomial satis-

fying ϕ(X) = ϕ(−X), then the equation ϕ ◦ f1(x) = ϕ ◦ g1(y) has infinitely

many solutions for which f1(x) 6= g1(y).

2. Put f1(X) = X. Then for any choice of the polynomial g1(X), the polyno-

mials f1(X) and g1(X) form a standard pair of the first or of the third kind.

Now if ϕ(X) satisfies ϕ(X) = ϕ(a−X) for some a ∈ Q, then the equation

ϕ ◦ f1(x) = ϕ ◦ g1(y) has infinitely many solutions satisfying f1(x)+g1(y)=a.

3. Denote by ∆n(X,α) the polynomial defined in (7) below. Then, for odd n,

we have Dn(X, 1)± 2 = (X ± 2) ∆n(X,±1)2. Hence, each of the equations

x2 = Dn(y, 1)± 2 has infinitely many solutions in Z. Now put f1(X) = X2

and g1(X) = Dn(X − 2, 1) + 2. Then (f1(X), g1(X)) is a standard pair of

the first kind, and for any polynomial ϕ(X) satisfying ϕ(4−X) = ϕ(X),

the equation ϕ ◦ f1(x) = ϕ ◦ g1(y) has infinitely many solutions satisfying

f1(x) + g1(y) = 4.

It turns out that these three examples exhaust all possible negative answers

to the question raised above.

Theorem 4. Let ∆ be a non-zero integer and let f(X), g(X) ∈ Q[X] be

non-constant polynomials such that the equation f(x) = g(y) has infinitely many

solutions x, y ∈ Q with denominator ∆; we denote the set of these solutions as S:

S = {(x, y) ∈ Q2 : f(x) = g(y), ∆x,∆y ∈ Z}.

Then f = ϕ ◦ f1 ◦ λ, and g = ϕ ◦ g1 ◦ µ, where λ(X), µ(X) ∈ Q[X] are linear poly-

nomials, ϕ(X) ∈ Q[X] and (f1(X), g1(X)) is a standard pair over Q such that one

of the following alternatives takes place:

1. All but finitely many solutions from S satisfy the equation f1◦λ(x)=g1◦µ(y)

as well.

2. The standard pair (f1(X), g1(X)) is of the first or of the third kind, we have

ϕ(X) = ϕ(−X), and all but finitely many solutions from S satisfy one of the

equations f1 ◦ λ(x) = ±g1 ◦ µ(y).

3. The standard pair (f1(X), g1(X)) is of the first kind, there exists a ∈ Q× such

that ϕ(X) = ϕ(a−X), and all but finitely many solutions from S satisfy one

of the equations

f1 ◦ λ(x) = g1 ◦ µ(y), or f1 ◦ λ(x) + g1 ◦ µ(y) = a. (6)

Moreover, one of f1(X), g1(X) is X2 and the other is (a/4)Dn(X−2, 1)+a/2,

where n is odd.
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The proof of this theorem is organized in four subsections. In the first subsec-

tion, we give some properties of Dickson polynomials. In the second subsection,

we study the equation f(x) = f(y). In the third subsection, we prove a technical

property of standard pairs. Finally, in the fourth and last subsection, we give the

proof of Theorem 4.

2.1. Some properties of Dickson polynomials. In this subsection, we recall

some properties of the Dickson polynomials. A comprehensive account of the

theory of Dickson polynomials can be found in [32, Section 1].

The simplest properties of Dickson polynomials that we need are collected

in the following proposition (for the proofs, see, for instance, [6, Section 3]).

Proposition 1. Put

∆n(X,α) :=
∏

1≤k≤(n−1)/2

(
X − α · 2 cos(2πk/n)

)
. (7)

Then for odd n

Dn(X,α)± 2αn/2 =
(
X ± 2α1/2

)
∆n(X,±α1/2)2,

while for even n

Dn(X,α)− 2αn/2 =
(
X2 − 4α

)
∆n

(
X,α1/2

)2
,

Dn(X,α) + 2αn/2 = Dn/2(X,α)2.

For γ 6= ±αn/2, the polynomial Dn(X,α)− γ has only simple roots. �

It is well-known that the Dickson polynomials are characterized by the orders

of the roots of their translates. We shall need the following statement of this kind.

Proposition 2. Let K be a field of characteristic 0 and let f(X) ∈ K[X]

be a polynomial with the following property: there exist distinct a, b ∈ K such

that both polynomials f(X)− a and f(X)− b have at most one root (in a fixed

algebraic closure K̄) of odd order, and all the other roots are of even order. Then

n = deg f is odd, and there exist η ∈ K× and β ∈ K such that

f(X) =
a− b

4
Dn(ηX + β, 1) +

a+ b

2
.

Proof. Put

Θ(f) = deg gcd(f, f ′);
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in other words, Θ(f) is equal to deg f minus the number of distinct roots of f

(in K̄). Clearly, ∑
c∈K̄

Θ(f − c) = deg f ′ = deg f − 1. (8)

The assumption implies that Θ(f − a), Θ(f − b) ≥ (deg f − 1)/2. Together with

identity (8), this implies that Θ(f − a) = Θ(f − b) = (deg f − 1)/2, and that

Θ(f − c) = 0 for all c ∈ K̄, c 6= a, b. It follows that each of the polynomials f − a
and f − b has exactly one simple root, the other roots being of order exactly 2, and

all the polynomials f − c for c ∈ K̄, c 6= a, b have only simple roots. Then clearly

n = deg f is odd, and [32, Lemma 1.11] implies that f(X) = αDn(X + β, γ) + δ

with some α, β, γ, δ ∈ K, αγ 6= 0.

Further, we have {a, b} = {±2αγn/2 + δ}, which implies that γ is a square

in K. Using the identity Dn(X, γ) = γn/2Dn(γ−1/2X, 1), and redefining α and β,

we obtain f(X) = αDn(ηX + β, 1) + δ with some η ∈ K×. Further, since {a, b} =

{±2α+ δ}, we have δ = (a+ b)/2, and either α = (a− b)/4, or α = (b− a)/4. In

the first case we are done, and in the second case one has to replace η and β

by −η and −β, respectively. �

2.2. The equation f(x) = f(y). Our principal tool is the following result about

the equation f(x) = f(y). It is very probable that this is well-known, but we did

not find a suitable reference.

Proposition 3. Let ∆ be a non-zero integer and f(X) ∈ Q[X] be a non-

constant polynomial such that the equation f(x) = f(y) has infinitely many solu-

tions x, y ∈ Q with denominator ∆. Then all but finitely many of these solutions

satisfy either x = y or x+ y = a for some fixed a ∈ Q. The latter case is possible

only if f(X) = f(a−X).

The proof relies on Siegel’s theorem. Let us fix some terminology. Let K be

a field of characteristic 0. By a curve X over K we mean an absolutely irreducible

projective algebraic curve defined over K. By the genus of the curve we mean

the geometric genus, that is, the genus of the function field K̄(X ). Similarly, by

a point on a curve X we mean a geometric K̄-point, that is, a place of the field

K̄(X ). The field of definition of a point is the residue field of the place it defines

on K(X ). A point P is defined over a field L (containing K), or, shortly, is an

L-point, if the field of definition of P is contained in L; as usual, we denote by

X (L) the set of points defined over L.

By an affine embedding of X over K we mean an n-tuple of rational function

x1, . . . , xn ∈ K(X ) (called coordinate functions, or simply coordinates) such that
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K(X ) = K(x1, . . . , xn). An affine curve is a curve with a fixed affine embedding.

A point at infinity of an affine curve is a point which is a pole of at least one of

the coordinate functions. There are only finitely many points at infinity; all the

other points are called finite points. Let R be a subring of K̄; an R-point is a finite

point P defined over the quotient field of R such that x1(P ), . . . , xn(P ) ∈ R. The

set of R-points on an affine curve X will be denoted by X (R).

We now state the Theorem of Siegel in the form it is given in [1, Theorem 1.2].

Theorem (S). Let X be an affine curve over Q such that the set X (Z) of

Z-points is infinite. Then the curve X is of genus 0 and has at most 2 points at

infinity. If there are exactly 2, then they are not defined over Q, but are defined

over R.

To continue, we need some lemmas. Let K be a field of characteristic 0 and

F (X,Y ) ∈ K[X,Y ]. We call the principal part of F the homogeneous polynomial

F̃ (X,Y ) such that deg(F − F̃ ) < degF .

The following properties of the principal part are obvious.

Lemma 1.

1. We have F̃1F2 = F̃1F̃2. In particular, if F divides G, then F̃ divides G̃.

2. Assume that F̃ (x, y) is separable, that is, decomposes into pairwise non-

proportional linear factors over K̄. Then the plane curve F (x, y) = 0 has

exactly degF non-singular points at infinity (defined over K̄). These points

stay in one-to-one correspondence with the linear factors of F̃ (X,Y ), so that

the field of definition of the point corresponding to the factor αX + βY with

(say) α 6= 0 is K(β/α). �

Combining part 1 of this lemma with Theorem (S), we obtain the following.

Lemma 2. Let F (X,Y ) ∈ Q[X,Y ] be an absolutely irreducible polynomial

with the following properties:

• Its principal part F̃ (X,Y ) is separable.

• The equation F (x, y) = 0 has infinitely many solutions with bounded deno-

minator.

Then degF ≤ 2 and, if degF = 2, then F̃ is irreducible over Q but reducible

over R. �

Proof of Proposition 3. Let F (X,Y ) be a Q-irreducible factor of f(X)−
f(Y ) such that the equation F (x, y) = 0 has infinitely many rational solutions

with denominator ∆. Then F is absolutely irreducible. Lemma 1.1 implies that F̃
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divides Xn − Y n. In particular, F̃ is separable. Lemma 2 implies that degF ≤ 2.

Moreover, if degF = 2, then F̃ is irreducible over Q but reducible over R. Howe-

ver, Xn − Y n does not have factors with this property.

Thus, degF = 1 and, up to a constant multiple, F (X,Y ) = X ± Y − a with

a ∈ Q. If F (X,Y ) = X − Y − a, then, together with every root α, the poly-

nomial f has the roots α± a, α± 2a, etc., which is impossible when a 6= 0. If

F (X,Y ) = X + Y − a, then the polynomial f(X)− f(a−X) has infinitely many

roots, and we have f(X) = f(a−X). This proves the proposition. �

2.3. On standard pairs. We need the following technical property of standard

pairs.

Proposition 4. Let (f(X), g(X)) be a standard pair over Q such that the

equation f(x) = g(y) has infinitely many rational solutions with bounded deno-

minator, and let a be a rational number. When (f(X), g(X)) is of the first or of

the third kind, we assume in addition that a 6= 0 and that deg f, deg g ≥ 3. Then

the equation f(x) + g(y) = a has at most finitely many rational solutions with

bounded denominator.

For the proof, we need a genus formula due to Fried. Let f(X), g(X) ∈ K[X]

be polynomials over a field K of characteristic 0. We let λ1, . . . , λr be the orders

of the distinct roots of f in the algebraic closure K̄ of K:

f(X) = a(X − α1)λ1 · · · (X − αr)λr ,

where a ∈ K× and α1, . . . , αr ∈ K̄ are pairwise distinct. Similarly, let µ1, . . . , µs
be the orders of the distinct roots of g. We define

ω(f, g) := deg f deg g −
∑

1≤i≤r
1≤j≤s

gcd(λi, µj).

Clearly, ω(f, g) ≥ 0 and ω(f − c, g − c) = 0 for all but finitely many c ∈ K̄.

Fried [18, Proposition 2 on page 240] proved the following genus formula

for the curve f(x) = g(y).

Proposition 5. Let K be a field of characteristic 0 and f(X), g(X) ∈ K[X]

be such that f(x) = g(y) is an absolutely irreducible plane curve. Then the ge-

nus g of this curve satisfies

2g − 2 =
∑
c∈K̄

ω(f − c, g − c)− deg f deg g − gcd(deg f, deg g).
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Proof of Proposition 4. Assume that (f(X), g(X)) is a standard pair

of the second, fourth or fifth kind. Then both polynomials f(X) and g(X) are

of even degree, and, since the equation f(x) = g(y) has infinitely many rational

solutions with a bounded denominator, their leading coefficients are of the same

sign. It follows that |f(x) + g(y)| → ∞ as max{|x|, |y|} → ∞, and the equation

f(x) + g(y) = a cannot have more than finitely many rational solutions with bo-

unded denominator.

Now let (f(X), g(X)) be a standard pair of the first or of the third kind

with deg f, deg g ≥ 3, and a 6= 0. We shall prove that in this case the plane curve

f(x) + g(y) = a is absolutely irreducible and of genus at least 1, and complete

the proof by Theorem (S).

Absolute irreducibility is immediate from the fact the degrees of f and g are

coprime. The genus is given by

2g − 2 =
∑
c∈Q̄

ω(f − c, g − a+ c)− deg f deg g − 1. (9)

Now assume that (f(X), g(X)) is of the first kind, and write f(X) = Xm and

g(X) = αXrv(X)m, with gcd(r,m) = 1, and a non-zero polynomial v(X) ∈ Q[X].

Leaving in the sum from (9) only the terms corresponding to c = 0 and c = a (here,

we use that a 6= 0), we obtain

2g ≥ ω(Xm, g(X)− a) + ω(Xm − a, g(X))−m deg g + 1

≥ (m deg g − deg g) +
(
mdeg g −m(1 + deg v)

)
−mdeg g + 1

= mr − (m+ r) + (m2 − 2m) deg v + 1.

(10)

Now recall that, by the assumption, m ≥ 3 and deg g = r +m deg v ≥ 3. In par-

ticular, either r ≥ 2, or r = 1 and deg v ≥ 1. A simple inspection shows that in

each case the right-hand side of (10) is strictly positive, proving that g > 0.

Similarly, assume that (f(X), g(X)) is of the third kind, and write f(X) =

Dm(X,αn) and g(X) = Dn(X,αm), with α ∈ Q×, gcd(m,n) = 1, and m,n ≥ 3

by the assumption. We have three cases: a = ±4αmn/2 and a 6= ±4αmn/2.

Case 1. a = 4αmn/2. Leaving in the sum from (9) only the terms with

c = ±2αmn/2 and c = 6αmn/2, we obtain

2g ≥ω
(
Dm(X,αn) + 2αmn/2, Dn(X,αm)− 6αmn/2

)
+ ω

(
Dm(X,αn)− 6αmn/2, Dn(X,αm) + 2αmn/2

)
+ ω

(
Dm(X,αn)− 2αmn/2, Dn(X,αm)− 2αmn/2

)
−mn+ 1.
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If both m and n are odd, then, using Proposition 1, we find

ω
(
Dm(X,αn) + 2αmn/2, Dn(X,αm)− 6αmn/2

)
=

(m− 1)n

2
, (11)

ω
(
Dm(X,αn)− 6αmn/2, Dn(X,αm) + 2αmn/2

)
=
m(n− 1)

2
,

ω
(
Dm(X,αn)− 2αmn/2, Dn(X,αm)− 2αmn/2

)
=
mn− 1

2
, (12)

and we obtain

2g ≥ (m− 1)(n− 1)

2
> 0 (13)

because m,n ≥ 3.

If, say, m is even, then n is odd, and the right-hand sides of (11) and (12)

become mn/2 and (mn− 2)/2, respectively. We obtain 2g ≥ m(n− 1)/2 > 0.

Case 2. a = −4αmn/2. Now we leave in the sum the terms with c = ±2αmn/2

and c = −6αmn/2. Arguing as in the previous case, we obtain (13) when m and n

are odd, and 2g ≥ (m− 2)(n− 1)/2 > 0 when m is even.

Case 3. a 6= ±4αmn/2. In this case, we leave in the sum the terms with

c = ±2αmn/2 and c = a± 2αmn/2. Arguing as above, we obtain the inequality

2g ≥ (m− 1)(n− 1) > 0 independently of the parity of m and n.

The proposition is proved. �

2.4. Proof of Theorem 4. Let f(X), g(X) and ∆ satisfy the assumption of

the theorem. Write f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ as in Theorem (BT). Now

we have three cases.

Case 1. There does not exist a ∈ Q such that ϕ(X) = ϕ(a−X). In this case,

Proposition 3 implies that we have option 1 of Theorem 4.

Case 2. We have ϕ(X) = ϕ(−X). In this case, Propositions 3 and 4 imply

that we have option 2 of Theorem 4.

Case 3. There exists a non-zero a ∈ Q such that ϕ(X) = ϕ(a−X). In this

case, Propositions 3 and 4 imply that (f1(X), g1(X)) is a standard pair of the

first or of the third kind such that all but finitely many solutions of the original

equation f(x) = g(y) with any fixed denominator satisfy one of the equations (6),

and one of the polynomials f1(X), g1(X) is of degree at most 2. We may as-

sume that both equations in (6) have infinitely many solutions with a bounded

denominator, otherwise we have option 1.
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Assume first that one of the polynomials f1(X) and g1(X), say f1(X), is

of degree 1. Replacing ϕ(X) by ϕ(X + a/2) and suitably modifying λ(X), we

obtain that ϕ(X) = ϕ(−X) and f1(X) = X, so that we again have option 2 of

Theorem 4 with (f1(X), g1(X)) being a standard pair of the first kind.

We are left with the case when, say, deg f1 = 2. In this case, n = deg g1

is odd. Suitably modifying ϕ(X) and λ(X), we may assume that f1(X) = X2.

Thus, each of the equations x2 = g1(x) and x2 = a− g1(x) has infinitely many

solutions with a bounded denominator. It follows that each of the polynomials

g1(X) and g1(X)− a has at most 2 roots of odd order in Q̄. Since deg g is odd,

both have exactly one root of odd order.

Proposition 2 implies now that g1(X) = (a/4)Dn(ηX + β, 1) + a/2 with some

η ∈ Q× and β ∈ Q. Suitably modifying the linear polynomial µ(X), we complete

the proof.

3. Proof of Theorem 1

For fixed b ≥ 2 and d ≥ 1, the polynomials appearing on the right-hand sides

of equation (5) have degree at least two. For a ≥ 3, the conclusion of Theorem 1

follows from the slightly more general result.

Theorem 5. If a ≥ 3 is fixed and P (X) ∈ Q[X] has degree D ≥ 2, then the

Diophantine equation Sna = P (x) has only finitely many integer solutions (n, x).

Proof. Let E denote the ring of all exponential polynomials with positive

integer roots. That is, E is the set of all functions f : N→ Q such that

f(n) = c1a
n
1 + · · ·+ cka

n
k

holds for all n ≥ 0 with some fixed nonzero rational numbers c1, . . . , ck and

integers a1 > a2 > · · · > ak ≥ 1. The numbers c1, . . . , ck are called coefficients

and the numbers a1, . . . , ak are called roots. We refer to a1 as the leading root, to

a2 as the second leading root, etc. It is easy to see that E is a ring. The following

important result is due to Corvaja and Zannier (see [13]). For extensions and

generalizations of this result, see [14], [19] and [20].

Theorem (CZ). Assume that f ∈ E and P (X) ∈ Q[X] is such that the

Diophantine equation f(n) = P (x) has infinitely many solutions (n, x) in integers

n ≥ 0 and x. Then there exist integers A > 0 and B ≥ 0, and g ∈ E such that

the identity

f(An+B) = P (g(n)) holds for all n. (14)
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More is known about the quantities appearing in formula (14). For example,

one can choose A := D to be the degree of P (X) and B ∈ {0, 1, . . . , A − 1}.
Furthermore, the roots of g are integers lying in the multiplicative group generated

inside Q× by the roots of f . We shall not need such additional information.

We are now ready to prove Theorem 1. Assume that a ≥ 3 and Sna = P (x)

has infinitely many integer solutions with n positive. By Theorem (CZ) above,

we have an identity of the form

SAn+B
a = P (g(n)), which holds for all n ≥ 0, (15)

with some integers A > 0, B ≥ 0, and some g ∈ E . The first two leading roots of

the exponential polynomial on the left are aA and (a− 1)A (see formula (1)). Let

b1 > 1 be the leading root of g(n). If g(n) = c1b
n
1 , or g(n) = c1b

n
1 + c2 for some

nonzero coefficient(s) c1 (and c2 if it applies), then all roots of P (g(n)) are powers

of b1. In particular, any two of them are multiplicatively dependent, meaning that

their logarithms are linearly dependent over Q. However, since a > 2, the two

leading roots aA and (a− 1)A of SAn+B
a are not multiplicatively independent; in

fact, they are both > 1 and coprime. Thus, g(n) must have a second leading root

b2 > 1. Write

g(n) = c1b
n
1 + c2b

n
2 + linear combination of powers of smaller roots.

Assume that

P (X) = C0X
D + C1X

D−1 + · · ·+ CD

for some positive integer D and rational coefficients C0, . . . , CD with C0 6= 0. It

is easy to see that the two leading roots of C0g(n)D are bD1 and bD−1
1 b2 with

coefficients C0c
D
1 and C0Dc

D−1
1 c2, respectively. Since the roots of Cig(n)D−i are

at most bD−i1 < bD−1
1 b2 for all i ≥ 1, it follows that bD1 and bD−1

1 b2 are in fact the

two leading roots of P (g(n)). Equating the two leading roots from identity (15),

we get

aA = bD1 , and (a− 1)A = bD−1
1 b2,

leading to b2/b1 = ((a − 1)/a))A. Since a and a − 1 are coprime, it follows that

there exists some positive integer λ such that b1 = λaA and b2 = λ(a − 1)A.

Hence,

aA = bD1 = λDaAD,

which is impossible because a ≥ 3, D ≥ 2 and λ ≥ 1.
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This shows that it is not possible for the equation Sna = P (x) to have infinitely

many integer solutions (n, x) with n positive. Note that this part of the argument

was ineffective.

Assume on the other hand that it has infinitely many solutions (n, x) with n

negative. This part of the argument is effective. Observe that Sna converges to a

finite limit equal to L := (−1)a−1/(a−1)! when n tends to −∞. Unless x is a root

of the equation P (x) = L, it follows, since x is an integer, that |P (x)−L| ≥ 1/M ,

where we can take M to be the least common multiple of the denominators of L

and of all the coefficients of P (X). Thus, if n0 < 0 is sufficiently large in absolute

value such that the inequality |Sna − L| < 1/M holds for all n ≤ n0, we conclude

that Sna = P (x) can happen for such n with some integer x only when x is a root

of P (X) − L. Since we have infinitely many possibilities and only finitely many

roots for this last nonzero polynomial, it follows that we may assume that x = x0

is fixed and that the relation Sna = L holds for infinitely many negative integers

n. However, this last claim is known to be false. In fact, the equation Sxa = K

has, for any fixed constant K, at most a− 1 real solutions x.

This completes the proof of Theorem 5. �

To finish the proof of Theorem 1, we still need to address the case when a = 2.

Then Sna = 2n−1−1. Then the equation Sna = P (x) becomes 2n−1 = P (x)+1. It is

well-known that if Q(X) ∈ Q[X] is a polynomial with at least two distinct roots,

then the largest prime factor of Q(x) tends to infinity with x in an effectively

computable way when x is an integer with |x| tending to infinity (see Notes to

Chapter 7 in [29]). We apply this fact with the polynomials P (X) appearing in

the right-hand sides of equations (5). Observe that when P (X) = cXb and b ≥ 2,

then Q(X) = P (X) + 1 = cXb + 1 has b ≥ 2 distinct roots. For the remaining

three polynomials, observe that when P (X) =
(
X
b

)
, then P (X) has b real roots,

namely the numbers 0, 1, . . . , b − 1, while when P (X) = SXX−d, or sXX−d, then

P (X) has at least d + 1 real roots, namely the numbers 0, 1, . . . , d. By Rolle’s

theorem, dP/dX has at least b − 1, or d, distinct real roots, respectively. But if

Q(X) = P (X) + 1 has only one distinct root, that is, if it is a polynomial of the

form C0(X − z0)D, then its derivative dQ/dX will have only one repeated root

also, and its derivative coincides with the derivative dP/dX of P (X). Hence, we

deduce that indeed Q(X)+1 must have at least two distinct roots whenever b ≥ 3

and whenever d ≥ 2. It remains to study the cases b = 2 and d = 1, for which

P (X) =
(
X
2

)
= SXX−1 = sXX−1 and for which P (X)+1 =

(
X
2

)
+1 = (X2−X+2)/2

has two distinct roots anyway. Note that this part of the proof is effective.

This completes the proof of Theorem 1.
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4. Proof of Theorem 2

All equations appearing in Theorem 2 are of the form p(x) = q(y), where

p(X), q(X) are certain polynomials in Q[X], and thus we shall apply Theorem 4.

A quick look at the table on standard pairs in Section 2 reveals that the pairs

of third and fourth kind consisting of Dickson polynomials have the property that

all their monomials are concentrated either in even degrees, or in odd degrees.

Namely, if D is the degree of such a polynomial, then monomials of degree i 6≡ D
(mod 2) do not appear in such polynomials. Thus, we consider it useful to start

with the following lemma.

Lemma 3. When a ≥ 2 is an integer, then there is no linear polynomial

κ(X) ∈ Q[X] such that

f ◦ κ(X) = C0X
2a + C2X

2a−2 +
∑

0≤i≤2a−4

C2a−iX
i,

whenever f(X) ∈ {SXX−a, sXX−a}.

Proof. Let us write down the first few coefficients of SXX−a and sXX−a,

respectively. We have

SXX−a =
1

2aa!
X2a − 4a2 − a

2a(3)a!
X2a−1 +

a(a− 1)(16a2 − 2a+ 3)

2a(18)a!
X2a−2

− a(a− 1)(320a4 − 520a3 + 202a2 − 185a− 48)

2a(810)a!
X2a−3 + · · ·

(16)

and

sXX−a =
1

2aa!
X2a − 2a2 + a

2a(3)a!
X2a−1 +

a(a− 1)(4a2 + 4a+ 3)

2a(18)a!
X2a−2

− a(a− 1)(2a− 1)(20a3 − 11a− 48)

2a(810)a!
X2a−3 + · · · ,

(17)

respectively. For simplicity of notation, put Fa(X) := SXX−a and fa(X) := sXX−a.

Assume that κ(X) := γX + δ for some rational numbers γ 6= 0 and δ. Then the

coefficients of X2a−1 and X2a−3 in Fa ◦ κ(X) are

γ2a−1

2aa!
U and

γ2a−3

2aa!
V, (18)

with U and V being

U := 2aδ − 4a2 − a
3

;
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V := δ3

(
2a

3

)
− δ2

(
2a− 1

2

)
4a2 − a

3
+ δ

(
2a− 2

1

)
a(a− 1)(16a2 − 2a+ 3)

18

−a(a− 1)(320a4 − 520a3 + 202a2 − 185a− 48)

810
,

respectively. Setting U = 0, we get δ = (4a − 1)/6, which substituted into the

formula for V yields

V =
4γ2a−3a(a− 1)(a2 + 11)

2a(105)a!
. (19)

The above expression is nonzero for a > 1. Similarly, the coefficients of X2a−1

and X2a−3 in fa ◦ κ(X) are given by the expression (18) with the values for U

and V being

U := 2aδ − 2a2 + a

3
;

V := δ3

(
2a

3

)
− δ2

(
2a− 1

2

)
2a2 + a

3
+ δ

(
2a− 2

1

)
a(a− 1)(4a2 + 4a+ 3)

18

−a(a− 1)(2a− 1)(20a3 − 11a− 48)

810
,

respectively. Setting U = 0, we get δ = (2a + 1)/6, which substituted into the

formula for V yields the same nonzero expression for V as in (19). This completes

the proof of the lemma. �

We are now ready to prove Theorem 2. Assume that

pa(x) = qb(y)

has infinitely many integer solutions (x, y) for some pair of polynomials (pa(X),

qb(X)) as in the statement of Theorem 2. Here, pa(X) depends on a and qb(X)

depends on b. First we ran a computation for all a ≤ 12 and b ≤ 12 subject to the

inequalities from the statement of the theorem which confirmed that in all cases

except for one of them, the polynomial pa(X)−qb(Y ) ∈ C[X,Y ] is irreducible and

has genus ≥ 1. By Theorem (S), this implies that such Diophantine equations

have only at most finitely many integer solutions (x, y) in this small range for

the parameters a and b. The exceptional case was obtained when a = b = 2,

which corresponds to the equation Sxx−2 = syy−2, which is equivalent to the genus

0 equation

x(x− 1)(x− 2)(3x− 4) = y(y − 1)(y − 2)(3y − 1).

Both polynomials appearing above have even degree equal to 4 and equal leading

terms. With Runge’s method, we showed that the only integer solutions (x, y)
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have both x and y in {0, 1, 2}. Thus, even in the exceptional case, we only got

finitely many integer solutions (x, y).

From now on, assume that max{a, b} ≥ 13.

An application of Theorem 4 shows that pa◦κ1(X) = φ◦f(X) and qb◦κ2(X) =

φ◦g(X) for some linear polynomials κ1(X) and κ2(X) in Q[X], some polynomial

φ(X) ∈ Q[X], and some standard pair (f(X), g(X)). Write D := deg φ(X).

Observe that in all cases D | 2a and D | 2b, therefore D | 2 gcd(a, b).

Assume first that D > 2. Then there exists some divisor r > 1 of both a and

b such that r | D. The ratios of the leading terms of pa(X) and qb(X) must then

be an rth perfect power. Since this ratio is ∆b!/a!, where ∆ ∈ {2b−a, 2−a}, and

both b − a and a are multiples of r, we get that b!/a! is an rth power. This is

impossible by a famous result of Erdős and Selfridge [16] unless |b − a| ≤ 1.

But if b− a = ±1, then a and b are coprime, so r = 1.

Case 1. D > 2.

From the above discussion, we deduce that the case D > 2 is possible only if

a = b and qb(X) =
(
X
b

)
. In this case, deg pa(X) = 2a and deg qb(X) = b = a. We

conclude that deg f(X) = 2 deg g(X). Analyzing Table 2, it follows that the pair

(f(X), g(X)) is one of the following:

(i) First kind with v(X) constant, q = 2, r = 1. In this case, pa ◦ κ1(X) =

φ(X2), so the coefficients of X2a−1 and X2a−3 in pa ◦ κ1(X) are zero. This

is impossible by Lemma 3.

(ii) Second kind with v(X) linear. In this case, g(X) = X2 and qb ◦ κ2(X) =

φ(X2) for some polynomial φ(X) ∈ Q[X]. Theorem 4.3 in [7] shows that

b = a is even and

φ(Z) =
1

b!

(
Z − 1

4

)(
Z − 9

4

)
· · ·
(
Z − (b− 1)2

4

)
. (20)

Furthermore, in this case we have f(X) = (αX2 +β)v(X)2 for some nonzero

rational numbers α and β, where v(X) is linear and

pa ◦ κ1(X) = φ(f(X)) =
1

a!

a/2∏
i=1

(
f(X)− (2i− 1)2

4

)
. (21)

Observe that the above polynomial φ(X) is not of the form ψ(X2) for any

ψ(X) ∈ Q[X]. Thus, by the description of the integer solutions (x, y) from

Theorem 4, we get that all but finitely many of them are of the form x = κ1(u)

and y = κ2(w) for some rational numbers u and w such that f(u) = g(w).
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Observe that u and w are rational numbers with bounded denominators. In

fact, letting Γ be the product of the numerators and denominators of all the

nonzero coefficients of κ1(X) and κ2(X), we have that both Γu and Γw are

integers. Now let us take a closer look at the relation f(u) = g(w). It is

u2 = (αw2 + β)v(w)2. (22)

If v(w) = 0, then u = 0, and w takes only finitely many values. Hence, at

most finitely many integer solutions (x, y) can be obtained in this way.

Assume now that v(w) 6= 0. Let α := α1/α2 and β := β1/β2, where

α1, α2, β1, β2 are integers, with α2 > 0 and β2 > 0, and gcd(α1, α2) =

gcd(β1, β2) = 1. Dividing both sides of equation (22) by v(w), and then

multiplying both sides of the resulting equation by α2
2β

2
2Γ2, we get(

α2β2Γu

v(w)

)2

= α1α2(β2Γu)2 + (α2
2β1β2Γ2).

Put u1 := β2Γu, w1 := α2β2Γu/v(w), β3 := α2
2β1β2Γ2. We then have u1 ∈ Z,

β3 ∈ Z, and

w2
1 = α1α2u

2
1 + β3 ∈ Z.

Hence, w1 ∈ Z. We have obtained the equation

w2
1 − (α1α2)u2

1 = β3

in integers (u1, w1). If α1α2 < 0, then max{|u1|, |w1|} ≤ β3, therefore

there are only finitely many possibilities for the pair (u1, w1); hence, for

the pair (x, y). Furthermore, if α1α2 is a square, then both w1 −
√
α1α2u1

and w1 +
√
α1α2u1 are integer divisors of β3. This leads again to only finitely

many possibilities for the pair (u1, w1); hence, for the pair (x, y). Both these

scenarios are impossible. The conclusion therefore is that the parameter

α = α1/α2 must be positive and not a square of a rational number.

Now let us take a closer look at this parameter for our situation. Putting

κ1(X) := γX + δ and v(X) := λX + η, and identifying leading coefficients

in formula (21), we get

γ2a

2aa!
=

(αλ2)a/2

a!
,

therefore

α = ± γ4

4λ2
= ±

(
γ2

2λ

)2

.

Hence, either α < 0, or α is a perfect square of a rational number, and we

saw that none of these situations can happen in our instance.
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(iii) Third kind with s = 2 and t = 1. In this case, D2(X,α) = X2−α, therefore

pa◦κ1(X) = φ(D2(X,α)) is a polynomial having no monomials of odd degree.

In particular, the coefficients of X2a−1 and X2a−3 in pa ◦ κ1(X) are both 0,

contradicting again Lemma 3.

(iv) Fourth kind with s = 4, t = 2. In this case, a is even, D = a/2, D4(X,α) =

X4 − 4X2α+ 2α2, and

pa ◦ κ1(X) = φ(D4(X,α))

= C0(X4 − 4X2α+ 2α2)D +
∑

1≤i≤D

Ci(X
4 − 4X2α+ 2α2)D−i.

We see from the above representation, that the coefficients of X2a−1 and of

X2a−3 in pa ◦ κ1(X) are both zero, contradicting again Lemma 3.

(v) Fifth kind: this is impossible since for pairs (f(X), g(X)) of this kind we

have deg f/deg g = 3/2.

Hence, we need only to deal with the case when D ≤ 2. Observe that since

max{a, b} > 12, it follows that f(X) and g(X) cannot form a standard pair of

the fifth kind.

Case 2. D = 1.

In this case, φ(X) ∈ Q[X] is linear. If (pa(X), qb(X)) is related to a standard

pair (f(X), g(X)) such that f(X) is a Dickson polynomial, then pa◦κ1(X) has the

property that the coefficients of X2a−1 and X2a−3 are zero, and this is impossible

by Lemma 3. Thus, (pa(X), qb(X)) must be related to a standard pair of the

first or second kind. In both such pairs, the polynomial Xq shows up for some

q ≥ 2. Suppose first that pa ◦ κ1(X) = φ(Xq) = C0X
q + Cq. The number

of real roots of such a polynomial is 1 or 2. However, since pa(X) is one of

Fa(X) or fa(X), it follows that it has at least a + 1 > 2 real roots, namely all

the numbers of the form 0, 1, . . . , a. This is a contradiction. Assume now that

qb ◦ κ2(X) = φ(Xq) = C0X
q + Cq and (for qb(X) of the form Fb(X) or fb(X)

we get a contradiction as before) qb(X) =
(
X
b

)
. However, again as above, the

polynomial C0X
q + Cq can have at most 2 real roots, while since b ≥ 3, we get

that qb(X) has b ≥ 3 real roots, namely all numbers 0, 1, . . . , b− 1.

Case 3. D = 2.

Finally, let us suppose that D = 2. Writing γ and λ for the leading terms

of κ1(X) and κ2(X), we get, by setting the leading coefficients of pa ◦ κ1(X) and

qb ◦ κ2(X) to equal each other, that

γ2a

2aa!
=

∆λδb

b!
,



Combinatorial Diophantine equations with separated variables. . . 241

where (∆, δ) := (1, 1) if qb(X) =
(
X
b

)
, and (∆, δ) := (2−b, 2) if qb(X) is one of

Fb(X) and fb(X). In the first case, since D divides the degree of qb(X), it follows

that b is even, while in the second case δb is even. Thus, in all instances we get

that a!/b! is a square or twice times a square. Hence, |b−a| ≤ 2, by a result from

[16] (see also [4]).

Assume now that (pa(X), qb(X)) is related to a standard pair involving Di-

ckson polynomials. Then

pa ◦ κ1(X) = C0Da(X,α)2 + C1Da(X,α) + C2.

Observe that Da(X,α)2 has no monomials of odd order in it. Thus, if a > 3,

then 2a − 3 > a = deg(Da(X,α)), so that X2a−1 and X2a−3 do not appear in

pa ◦ κ1(X), which is in contradiction with Lemma 3. But if a ≤ 3, then b ≤ 5,

and this is impossible since max{a, b} ≥ 13.

Assume now that (pa(X), qb(X)) is related to one of the standard pairs of

first or second kind. Say pa(X) = C0x
2q + C1X

q + C2. The derivative of such a

polynomial, which is qXq−1(2C0X
q + C1), has at most three distinct real roots.

But pa(X) has a + 1 distinct real roots, so the derivative of pa ◦ κ1(X) has at

least a distinct real roots by Rolle’s theorem. We get a contradiction for a ≥ 4.

But if a ≤ 3, then b ≤ 5, which is not allowed. A similar argument applies when

qb(X) = C0X
2q +C1X

q +C2 and qb(X) is one of Fb(X) or fb(X) (with b ≥ 4), or

qb(X) =
(
X
b

)
(with b ≥ 5). But if b ≤ 4, then a ≤ 6, which again is not allowed.

This completes the proof of Theorem 2.

5. Proof of Theorem 3

Our equation can be rewritten as 8Sxx−a + 1 = (2y − 1)2. In order to prove

that it has only finitely many integer solutions (x, y), it suffices, via Baker’s

theorem on integral solutions of hyperelliptic equations (cf. [2]), to prove that the

polynomial 8Fa(X)+1 = 8SXX−a+1 has at least three roots of odd multiplicities.

We shall assume that this is not so and arrive at a contradiction. We start with

a lemma concerning the size of the roots of 8SXX−a + 1.

Lemma 4. If a ≥ 2 and z ∈ C is a zero of 8SXX−a+1, then we have |z| < 10a2.

Proof. We know that the sequence {S̃a+k
k }k=1,...,a is log-concave (see page

81 in [9]). In particular, the sequence

S̃a+k
k

S̃a+k+1
k+1

for k = 1, 2, . . . , a− 1
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is increasing with the maximal value being

S̃2a−1
a−1

S̃2a
a

=
a− 1

3
.

Suppose now that |z| ≥ 10a2 is a root of this polynomial. In particular, |z| > 2a,

so that (z)2a = z(z− 1) · · · (z− (2a− 1)) 6= 0. Rewrite the fact that Szz−a = −1/8

as
a−1∑
k=1

(2a)!

(a+ k)!

(z)a+k

(z)2a

S̃a+k
k

S̃2a
a

= −1

8
− (2a)!

S̃2a
a (z)2a

. (23)

We take absolute values in equation (23) above and apply the absolute value

inequality. Since S̃2a
a is an integer, |(z)2a| > (10a2 − 2a)2a > (8a)2a and (2a)! <

(2a)2a, it follows that ∣∣∣∣ (2a)!

S̃2a
a (z)2a

∣∣∣∣ ≤ (2a)2a

(8a)2a
=

1

42a
,

therefore the absolute value of the right-hand side of relation (23) above is

≥ 1

8
− 1

42a
>

1

9

for a ≥ 2. In the left-hand side of relation (23), we apply the absolute value

inequality getting

a−1∑
k=1

(a+ k + 1) · · · (2a)

(|z| − (a+ k)) · · · (|z| − (2a− 1))

S̃a+k
k

S̃2a
a

>
1

9
. (24)

Clearly,

(a+ k + 1) · · · (2a) < (2a)a−k;

1

(|z| − (a+ k)) · · · (|z| − (2a− 1))
<

(
1

10a2 − 2a

)a−k
≤ 1

5

(
1

2a(a− 1)

)a−k
;

S̃a+k
k

S̃2a
a

=
S̃a+k
k

S̃a+k+1
k+1

· · ·
S̃2a−1
a−1

S̃2a
a

≤
(
a− 1

3

)a−k
for all k = 1, 2, . . . , a − 1. Multiplying the above inequalities, we get that the

general term in the sum appearing in the left-hand side of (24) is

(a+ k + 1) · · · (2a)

(|z| − (a+ k)) · · · (|z| − (2a− 1))

S̃a+k
k

S̃2a
a

<
1

5

(
1

3

)a−k
.
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Hence, inequality (24) leads to

1

9
<

1

5

a−1∑
k=1

(
1

3

)a−k
<

1

5

∑
m≥1

(
1

3

)m
=

1

10
,

which is a contradiction. �

A quick computation of some of the values of its coefficients (see equations

(16), for example) gives us that

8SXX−a + 1 =
X2a

2a−3a!
− (4a2 − a)X2a−1

2a−3 · 3 · a!
+
a(a− 1)(16a2 − 2a+ 3)X2a−2

2a−3 · 18 · a!

− a(a− 1)(320a4 − 520a3 + 202a2 − 185a− 48)x2a−3

2a−3 · 810 · a!
+ · · ·+ 1

for a ≥ 2. Since it has even degree 2a, it follows that it has an even number of

roots of odd multiplicity. If this even number is 0, we then get that the relation

8SXX−a + 1 = a0f(X)2

holds with some monic polynomial f(X) with rational coefficients, where a0 :=

1/(2a−3a!) is the leading coefficient of 8SXX−a + 1. Putting x := 0, we get

f(0)2 =
1

a0
= 2a−3a!,

but this is impossible for any a ≥ 3, since by Bertrand’s postulate, the interval

(a/2, a] always contains a prime p ≥ 3 for a ≥ 3. Such a prime p has the property

that p‖2a−3a!, so 2a−3a! cannot be the square of a rational number when a ≥ 3.

It remains to deal with the case when 8SXX−a + 1 has two roots of odd

multiplicity. In this case, we write

8SXX−a + 1 = a0f(X)g(X)2, (25)

where f(X) := (X − x1)(X − x2). Clearly, f(X) ∈ Q[X], so either x1 and x2 are

both rational, or the quadratic polynomial f(X) is irreducible over Q and then

x1 and x2 are quadratic and conjugate. Now let us make some remarks about the

polynomial

a−1
0 (8SXX−a + 1).

It is a monic polynomial. Using formula (2), we get that this polynomial is

(X)2a +

a−1∑
k=1

(X)a+k
2aa!

(a+ k)!
S̃a+k
k + 2a−3a!. (26)
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We write the above polynomial (26) as

X2a − (4a2 − n)

3
X2a−1 +

a(a− 1)(16a2 − 2a+ 3)X2a−2

18

− a(a− 1)(320a4 − 520a3 + 202a2 − 185a− 48)X2a−3

810
+ · · ·+ 2a−3a!

=:

2a∑
k=0

ckX
2a−k.

Let us get a handle on the denominators of the coefficients ck for k = 0, . . . , 2a.

Write
2aa!

(a+ k)!
S̃a+k
k =:

aa,k
ba,k

,

where aa,k and ba,k are coprime integers. We need to understand the numbers

ba,k and their least common multiple, which we denote by D, as k varies in

{1, . . . , a− 1}.
Now a formula from page 222 in [12], tells us that S̃a+k

k is a multiple of

1 · 3 · · · (2k − 1). Thus, aa,k/ba,k is an integer multiple of the rational number

2aa! · 1 · 3 · · · (2k − 1)

(a+ k)!
=

2aa!(2k)!

2kk!(a+ k)!
=

2a−ka!(2k)!

k!(a+ k)!
.

Let p be an arbitrary prime with 2 ≤ p < 2a. Let us find an upper bound for its

exponent in ba,k. Writing νp(r) for the exponent of p in the factorization of r and

using the fact that the formula

νp(m!) =
∑
s≥1

⌊
m

ps

⌋

holds for all positive integers m, it follows that the exponent of p in ba,k satisfies

νp(ba,k) ≤
∑
s≥1

(⌊
a+ k

ps

⌋
−
⌊
a

ps

⌋)
+

(⌊
k

ps

⌋
−
⌊

2k

ps

⌋)
. (27)

Clearly, ⌊
a+ k

ps

⌋
−
⌊
a

ps

⌋
∈
{⌊

k

ps

⌋
,

⌊
k

ps

⌋
+ 1

}
,

and ⌊
k

ps

⌋
−
⌊

2k

ps

⌋
∈
{
−
⌊
k

ps

⌋
, −

⌊
k

ps

⌋
− 1

}
,
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together implying that for a fixed s ≥ 1, we have(⌊
a+ k

ps

⌋
−
⌊
a

ps

⌋)
+

(⌊
k

ps

⌋
−
⌊

2k

ps

⌋)
∈ {0,±1}.

Suppose now that a ≥ 1000. Suppose also that p ≥ a/22. Then p2 ≥ a2/222 > 2a.

Thus, in formula (27) we have that

νp(ba,k) ≤ 1 for p ≥ a/22 assuming that a ≥ 1000.

For the remaining primes p < a/22, we have that

νp(ba,k) ≤
∑
s≥1
ps≤2a

1 ≤ log(2a)

log p
.

Hence, we have that

B :=
∏

pap‖lcm[ba,k:1≤k≤a−1]
p<a/22

pap ≤
∏

p<a/22

plog(2a)/ log p ≤ (2a)π(a/22).

We conclude that

D := lcm[ba,k : 1 ≤ k ≤ a− 1] = BC,

where

B =
∏
pap

p<a/22

pap < exp
(
π
( a

22

)
log(2a)

)
, and C :=

∏
a/22≤p≤2a
bp∈{0,1}

pbp . (28)

Now let z ∈ {x1, x2} be some root of f(x). We first deal with the case when z is

rational. It is clear that the denominator of z divides D but we can do better.

Namely, we show that the denominator of z divides B. Indeed, to see why, assume

that p ≥ a/22 divides the denominator of z. Since C is squarefree, it follows that

pz is a rational number having both numerator and denominator coprime to p.

Multiplying relation

z2a − (4a2 − a)z2a−1

3
+ · · ·+ 2a−3a! = 0

with p2a and regrouping, we get

(pz)2a =
p(4a2 − a)

3
(pz)2a−1 −

2a∑
k=2

pkck(pz)2a−k. (29)
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Since p > 3 (because a/22 > 3 for a ≥ 1000), and the denominator of ck is not a

multiple of p2 for any k = 2, . . . , 2a, it follows easily that the right-hand side of the

above formula is a rational number whose numerator in reduced form is a multiple

of p, while the left-hand side is a rational number which in reduced form has

numerator coprime to p. This contradiction shows that the denominator of z is a

divisor of B. We now write x1 := u1/v1, x2 := u2/v2 with u1, u2, v1 > 0, v2 > 0

integers such that gcd(u1, v1) = gcd(u2, v2) = 1, and evaluate relation (25) in

x := 0 getting

2a−3n! = x1x2g(0)2,

In particular, it follows that u1u2 is a multiple of all primes p ∈ (a/2, a]. Hence,

|u1u2| ≥
∏

a/2<p≤a

p >
(a

2

)π(a)−π(a/2)

. (30)

Thus,

|u1u2| ≥
(a

2

)π(a)−π(a/2)

. (31)

Assuming say that |u1| ≥ |u2|, we conclude that

|u1| ≥ (|u1u2|)1/2 ≥ exp

(
1

2

(
π(a)− π

(a
2

))
log
(a

2

))
.

Hence, using the fact that v1 | B and estimate (28), we get that

|x1| = |u1|v−1
1 ≥ |u1|B−1

≥ exp

(
1

2

(
π(a)− π

(a
2

))
log
(a

2

)
− π

( a
22

)
log(2a)

)
.

However, Lemma 4 implies that |x1| ≤ 10a2. We thus get the inequality

log(10a2) ≥ 1

2

(
π(a)− π

(a
2

))
log
(a

2

)
− π

( a
22

)
log(2a). (32)

Using the inequalities

x

log x− 0.5
< π(x) <

x

log x− 1.5
for all x ≥ 67,

(see Theorem 2 in [27]) with x = a, a/2, and a/22 respectively, we get that

log(10a2)≥ 1

2

(
a

log a− 0.5
− a

2(log(a/2)− 1.5)

)
log
(a

2

)
− a log(2a)

22(log(a/22)− 1.5)
(33)
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for a ≥ 1474. The condition a ≥ 1474 arises from the condition a/22 ≥ 67, which

is necessary for Theorem 2 in [27] to apply. On the other hand, the inequality

(33) above yields a < 1200. This shows that in fact the inequality a < 1474 must

hold. Then we also checked that the inequality (32) holds for no a ∈ [1000, 1474].

Thus, we must in fact have a < 1000, assuming that one of (hence, both) x1 or

x2 is rational.

From now on, we treat the slightly more complicated case of the quadratic

roots x1 and x2. As in the previous case, we assume that a ≥ 1000 for this case

also.

Let us write

x1,2 =
u± v

√
d

c
,

where u, v, w > 0 and d 6= 1 are integers, with d squarefree. We may also assume

that there is no common prime factor number dividing all three of u, v and c.

Since Dx1,2 are algebraic integers, it follows easily that c/ gcd(c,D) = 1, 2. The

plan is to show that c and C are coprime. This will show that c ≤ 2B. Well,

let’s do it. Assume that there is some prime p ≥ a/22 dividing c. We distinguish

three possibilities:

(i) p - u2 − dv2;

(ii) p | u2 − dv2, and p | u;

(iii) p | u2 − dv2, but p - u.

The first instance is similar to the case in which one of (hence, both) x1

or x2 are rational whose denominator is a multiple of p. Indeed, assuming that

we are in Case (i) above, relation (29) with z = x1 has the property that the

number appearing in its left-hand side is a quadratic algebraic number whose

norm is a rational number having both numerator and denominator coprime to

p. The right-hand side of the same relation however, is the product between p

and a linear combination (with rational coefficients, the denominators of which

are not multiples of p) of quadratic algebraic numbers the denominators of which

are also coprime to p. Hence, upon taking norms in (29) relative to the quadratic

field K := Q[x1], the left-hand side evaluates to a rational number having both

numerator and denominator coprime to p, while the right-hand side evaluates to

a rational number which in reduced form has its numerator a multiple of p. This

is a contradiction.

A somewhat similar argument works for Case (ii). Here, one notices that
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with z := x1 we have

(pz)k =

(
u+ v

√
d

c/p

)k
= pk/2

(
u/
√
p+ v

√
d/p

c/p

)k
=: pk/2λk,

where λ := (u/
√
p + v

√
d/p)/(c/p) is a quadratic or bi-quadratic (depending on

whether d = p, or not) algebraic number, which is the ratio of two algebraic

integers u/
√
p+v

√
d/p and c/p, having norms powers of (u2−dv2)/p and (c/p)2,

which are both integers coprime to p. Thus, relation (29) becomes

pnλ2a = pa
(

(4a2 − a)

3
p1/2λ2a−1 − a(a− 1)(16a2 − 2a+ 3)2a−2p

18
λ2a−2

−
2a∑
k=3

pk/2ckλ
2a−k

)
=: paγ.

(34)

Observe that if k ≥ 3, then pk/2ckλ
2a−k is the product between p1/2 and some

algebraic number the norm of which has denominator coprime to p. The same

is true for k = 2 since p ≥ a/22 > 3 (because a ≥ 1000). Thus, simplifying

both sides of relation (34) by pa, putting β := γ/p1/2, and then taking norms in

L := Q[p1/2, λ] of both sides of the resulting identity, we end up with an equality

between NL(λ2a), which is a rational number having numerator and denominator

coprime to p, and NL(p1/2β) = p`NL(β), with ` = 1 or 2, according to whether the

degree of L over Q is 2 or 4, where NL(β) is a rational number whose denominator

is coprime to p. This is a contradiction.

Finally, let us look at the possible primes occurring in Case (iii). In this case,

x1 + x2 = u/c = d1/p, where d1 is some rational number having both numerator

and denominator coprime to p. Observe also that x1x2 = (u2 − dv2)/c2. We

distinguish two cases.

Case (iii.1) p‖u2 − dv2.

In this case,

f(x) = x2 +
d1x

p
+
d2

p
,

where d2 is a rational number having numerator and denominator coprime to p.

We write

g(x)2 = x2a−2 + e1x
2a−3 + e2x

2a−4 + · · ·+ e2a−2, (35)

and prove by induction on m ≥ 1 that em = fm/p
m, where fm is a rational

number having numerator and denominator coprime to p. Indeed, multiplying
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f(x) with g(x)2 and identifying coefficients, we get

f(x)g(x)2 = x2a − (4a2 − a)

3
x2a−1 +

a(a− 1)(16a2 − 2a+ 3)

18
x2a−2 + · · ·

= x2a +

(
d1

p
+ e1

)
x2a−1 +

(
d2

p
+
d1e1

p
+ e2

)
x2a−2 + · · · .

Since the denominator of (4a2−a)/3 is not a multiple of p, we get that e1 = f1/p

with f1 a rational number whose numerator and denominator is coprime to p.

Thus, indeed e1 has the desired shape. Now

c2 =
d2

p
+
d1e1

p
+ e2 =

d2

p
+
d1f1

p2
+ e2,

and the denominator of c2 is not a multiple of p, showing that e2 = f2/p
2, where

the numerator and denominator of f2 are coprime to p. Assuming that ei has the

desired shape fi/p for i = 1, . . . ,m and some 1 < m < 2a− 2, and computing the

coefficient of x2a−(m−1), we get

cm+1 =
d2em−1

p
+
d1em
p

+ em+1 =
d2fm−1

pm
+
d1fm
pm+1

+ em+1.

Since the denominator of cm+1 is not divisible by p2, we get that indeed em+1 =

fm+1/p
m+1 for some rational number fm+1 having numerator and denomina-

tor both coprime to p. Thus, the last coefficient of f(x)g(x)2 is d2e2a−2/p =

d2f2a−2/p
2a−1, which is impossible since this coefficient must be the integer

2a−3a!. Hence, this case is impossible.

Case (iii.2) p2 | u2 − dv2.

Part of this case is similar to the previous one. Here, we have

f(x) = x2 +
d1x

p
+ d2,

where d2 is a rational number whose denominator is coprime to p. In the notation

(35), one gets that

f(x)g(x)2 = x2a +

(
d1

p
+ e1

)
x2a−1 +

(
d2 +

d1e1

p
+ e2

)
x2a−2 + · · · .

From the above, we see right away that e1 = f1/p, where f1 is a rational number

whose numerator and denominator are coprime to p, and then that

c2 = d2 +
d1e1

p
+ e2 = d2 +

d1f1

p2
+ e2.
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Since the denominator of c2 is not a multiple of p, we get that e2 = f2/p
2, where

f2 is a rational number whose numerator and denominator are coprime to p. By

induction over m ≥ 1, we get as in the previous case that em = fm/p
m, where

fm is a rational number whose numerator and denominator are coprime to p. For

the induction step, we use the formula

cm+1 = d2em−1 +
d1em
p

+ em+1 =
d2fm−1

pm−1
+
d1fm
pm+1

+ em+1.

By looking at the last coefficients, we have d2e2a−2 = d2f2a−2/p
2a−2. Since this

last coefficient is in fact an integer, it follows that νp(d2) ≥ 2a− 2, which in turn

implies that νp(u
2 − dv2) ≥ 2a.

Hence, so far, we conclude that if c has prime factors p in [a/22, 2a], then

νp(u
2 − dv2) ≥ 2a. Now write

c = c1C1,

where C1 = gcd(c, C) and c1 | 2B. It then follows that

|u2 − dv2| ≥ C2a
1 ,

so that

|x1x2| =
∣∣∣∣u2 − dv2

c2

∣∣∣∣ =

∣∣∣∣u2 − dv2

c21C
2
1

∣∣∣∣ ≥ C2a−2
1 (2B)−2.

Using Lemma 4 and inequality (28) we arrive at

400a4(2a)2π(a/22) > C2a−2
1 .

Assuming that C1 > 1, and using the trivial fact that π(x) < x, we are led to the

inequality

400a4(2a)a/11 >
( a

22

)2a−2

,

which is false for any a ≥ 40. So, this case cannot occur either.

Hence, we have just shown that c divides 2B. Thus, 4B2|x1x2| is an integer

which, by Lemma 4, is at most as large as

(10a2)2(4B2).

However, since 4B2x1x2 = 4B2f(0) = 4B22a−3a!g(0)−2, it follows easily, that

this integer is a multiple of ∏
a/2<p≤a

p >
(a

2

)π(a)−π(a/2)

.
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So, we get that

400a4B2 >
(a

2

)π(a)−π(a/2)

,

which via inequality (28) leads to

400a4 > exp
((
π(a)− π

(a
2

))
log
(a

2

)
− 2π

( a
22

)
log(2a)

)
.

Taking square-roots and then logarithms, we get

log(20a2) >
1

2

(
π(a)− π

(a
2

))
log
(a

2

)
− π

( a
22

)
log(2a).

This last inequality is only slightly worse than (33) and in fact, assuming again

that a ≥ 1474 so that the inequalities from [27] hold, it yields to the contradiction

a < 1200. Again we checked with Mathematica that in fact the inequality does

not hold for any a ∈ [1000, 1474] either.

This argument shows that indeed 8SXX−a + 1 has at least four simple roots

for all a ≥ 1000. It remains to check it when a < 1000.

Here is how we checked it. We first used the Principle of Inclusion and

Exclusion to get that

S̃a+k
k =

k−1∑
i=0

(−1)i
(
a+ k

i

)
Sa+k−i
k−i .

Thus,

SXX−a =

a∑
k=1

(
X

a+ k

) k−1∑
i=0

(−1)i
(
a+ k

i

)
Sa+k−i
k−i

=

a∑
`=1

Sa+`
`

a∑
k=`

(−1)k−`
(
a+ k

k − `

)(
X

a+ k

)
.

MAPLE simplified the inner sum to(
X

2a+ 1

)
(−1)a−`+1 a− `+ 1

a+ `−X

(
2a+ 1

a+ `

)
.

Hence,

1 + 8SXX−a = 1 + 8

(
X

2a+ 1

) a∑
k=1

(−1)a−k+1 a− k + 1

a+ k −X

(
2a+ 1

a+ k

)
Sa+k
k .
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Using this representation, we checked with Mathematica that the values of the

above polynomials assume signs

x −∞ 1/2 1 5/2 +∞
sign(1 + 8Sxx−a) + − + − +

for all a ∈ [10, 1000]. But a polynomial having such sign changes cannot be of

the form a0f(X)g(X)2 with a0 > 0, f(X) and g(X) both monic, and f(X) of

degree 2. Thus, it remains to study the values of a ≤ 9. A quick check with

Mathematica shows that except for the case a = 1 when

8SXX−1 + 1 = (2X − 1)2,

for all other values a ∈ [2, 9] the polynomial 8SXX−a + 1 has only simple roots.

We conjecture that 8SXX−a + 1 is irreducible for all a ≥ 2, and we leave this

as an another open problem for the reader.
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