Publ. Math. Debrecen 82/2 (2013), 277–292 DOI: 10.5486/PMD.2013.5199

The convergence of the sequences coding the ground model reals

By MILOŠ S. KURILIĆ (Novi Sad) and ALEKSANDAR PAVLOVIĆ (Novi Sad)

Abstract. We investigate the convergence λ_1 on a complete Boolean algebra \mathbb{B} defined in the following way: a sequence $x = \langle x_n : n \in \omega \rangle$ in \mathbb{B} converges to the point lim sup x of \mathbb{B} , if in each generic extension $V_{\mathbb{B}}[G]$ the real coded by the name $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ belongs to the ground model V; otherwise, x has no limit points. It is shown that λ_1 generates the same topology as the convergence $\bar{\lambda}_4$, generalizing the sequential convergence on the Aleksandrov cube and that for a c.B.a. \mathbb{B} the following conditions are equivalent: (1) The algebra \mathbb{B} is $(\omega, 2)$ -distributive; (2) The (L2)-closure of $\lambda_1, \bar{\lambda}_1$, is a topological convergence; (3) $\bar{\lambda}_1 = \bar{\lambda}_4$; (4) $\lambda_1 = \lambda_4$; and, for the algebras satisfying hcc(\mathbb{B}) > \mathfrak{c} , (5) $\bar{\lambda}_1$ is a weakly topological convergence. Also, it is shown that the convergence $\bar{\lambda}_1$ is not weakly topological, if forcing by \mathbb{B} produces splitting reals.

1. Preliminaries

Topologies and convergence structures on Boolean algebras as well as the interplay between the topological, algebraic and forcing-related properties of Boolean algebras are extensively investigated. The results concerning this interplay are useful because, for example, they enable us to attack algebraic problems by topological methods (see e.g. [3]) or topological problems using the techniques of forcing [7].

In this paper we investigate the convergence λ_1 on an arbitrary complete

Mathematics Subject Classification: 54A20, 03E40, 03E75, 54D55, 54A10.

Key words and phrases: convergence structure, Boolean algebra, forcing.

The research supported by the Ministry of Education and Science of the Republic of Serbia under grants 174006.

Boolean algebra \mathbb{B} defined in the following way: a sequence $x = \langle x_n : n \in \omega \rangle$ converges to $\limsup x$, if $1 \Vdash \tau_x \in V$, where $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ and, otherwise, x has no limit points. In addition, we compare this convergence with some convergences considered in [8]. One of them is the algebraic convergence [11], [1] related to the von Neumann and the Maharam problem and generalizing the convergence on the Cantor cube; another one is a generalization of the convergence on the Aleksandrov cube considered in [9].

Our notation is mainly standard. So, ω denotes the set of natural numbers, Y^X the set of all functions $f: X \to Y$ and $\omega^{\uparrow \omega}$ the set of all strictly increasing functions from ω into ω . A sequence in a set X is each function $x: \omega \to X$; instead of x(n) we usually write x_n and also $x = \langle x_n : n \in \omega \rangle$. The constant sequence $\langle a, a, a, \ldots \rangle$ is denoted by $\langle a \rangle$. If $f \in \omega^{\uparrow \omega}$, the sequence $y = x \circ f$ is said to be a subsequence of the sequence x and we write $y \prec x$.

If $\langle X, \mathcal{O} \rangle$ is a topological space, a point $a \in X$ is said to be a *limit point of a* sequence $x \in X^{\omega}$ (we will write: $x \to_{\mathcal{O}} a$) iff each neighborhood U of a contains all but finitely many members of the sequence. A space $\langle X, \mathcal{O} \rangle$ is called sequential iff a set $A \subset X$ is closed whenever it contains each limit of each sequence in A.

If X is a non-empty set, each mapping $\lambda : X^{\omega} \to P(X)$ is a convergence on X and the mapping $u_{\lambda} : P(X) \to P(X)$, defined by $u_{\lambda}(A) = \bigcup_{x \in A^{\omega}} \lambda(x)$, the operator of sequential closure determined by λ . If λ_1 is another convergence on X, then we will write $\lambda \leq \lambda_1$ iff $\lambda(x) \subset \lambda_1(x)$, for each sequence $x \in X^{\omega}$. Clearly, \leq is a partial order on the set $\text{Conv}(X) = \{\lambda : \lambda \text{ is a convergence on } X\}$.

If $\langle X, \mathcal{O} \rangle$ is a topological space, then the mapping $\lim_{\mathcal{O}} : X^{\omega} \to P(X)$ defined by $\lim_{\mathcal{O}} (x) = \{a \in X : x \to_{\mathcal{O}} a\}$ is the convergence on X determined by the topology \mathcal{O} and for the operator $\lambda = \lim_{\mathcal{O}} we$ have (see [2])

- (L1) $\forall a \in X \ a \in \lambda(\langle a \rangle);$
- (L2) $\forall x \in X^{\omega} \forall y \prec x \lambda(x) \subset \lambda(y);$
- (L3) $\forall x \in X^{\omega} \ \forall a \in X \ ((\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x)).$

A convergence $\lambda : X^{\omega} \to P(X)$ is called a *topological convergence* iff there is a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}}$. The following fact (see, for example, [8]) shows that each convergence has a minimal topological extension and connects topological and convergence structures.

Fact 1.1. Let $\lambda : X^{\omega} \to P(X)$ be a convergence on a non-empty set X. Then

- (a) There is the maximal topology \mathcal{O}_{λ} on X satisfying $\lambda \leq \lim_{\mathcal{O}}$;
- (b) $\mathcal{O}_{\lambda} = \{ O \subset X : \forall x \in X^{\omega} (O \cap \lambda(x) \neq \emptyset \Rightarrow \exists n_0 \in \omega \ \forall n \geq n_0 \ x_n \in O) \};$

- (c) $\langle X, \mathcal{O}_{\lambda} \rangle$ is a sequential space;
- (d) $\mathcal{O}_{\lambda} = \{X \setminus F : F \subset X \land u_{\lambda}(F) = F\}$, if λ satisfies (L1) and (L2);
- (e) $\lim_{\mathcal{O}_{\lambda}} = \min\{\lambda' \in \operatorname{Conv}(X) : \lambda' \text{ is topological and } \lambda \leq \lambda'\};$
- (f) $\mathcal{O}_{\lim_{\mathcal{O}_{\lambda}}} = \mathcal{O}_{\lambda};$
- (g) If $\lambda_1 : X^{\omega} \to P(X)$ and $\lambda_1 \leq \lambda$, then $\mathcal{O}_{\lambda} \subset \mathcal{O}_{\lambda_1}$;
- (h) λ is a topological convergence iff $\lambda = \lim_{\mathcal{O}_{\lambda}}$.

In our proofs we will mainly use the technique of *forcing* (see [4]). So, if \mathbb{B} is a complete Boolean algebra belonging to the ground model V of ZFC, $V^{\mathbb{B}}$ will be the class of \mathbb{B} -names. For a formula $\varphi(v_0, \ldots, v_n)$ and $\tau_0, \ldots, \tau_n \in V^{\mathbb{B}}$ the corresponding *Boolean value* will be denoted by $\|\varphi(\tau_0, \ldots, \tau_n)\|$. If G is a \mathbb{B} -generic filter over V and $\tau \in V^{\mathbb{B}}$, the *G*-evaluation of τ will be denoted by τ_G . For $A \in V$, the corresponding \mathbb{B} -name will be $\check{A} = \{\langle a, 1 \rangle : a \in A\}$.

Subsets of ω are called *reals* and can be coded by convenient names. Namely, each real belonging to a generic extension has a nice name of the form $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$, where $x_n = \|\check{n} \in \tau\|$, for each $n \in \omega$.

A real $r \in [\omega]^{\omega} \cap V_{\mathbb{B}}[G]$ will be called: new iff $r \notin V$; old iff $r \in V$; dependent iff there is $A \in [\omega]^{\omega} \cap V$ such that $A \subset r$ or $A \subset \omega \setminus r$; independent or a splitting real iff it is not dependent [6]; supported iff there is $A \in [\omega]^{\omega} \cap V$ such that $A \subset r$; unsupported iff it is not supported [5]. Using the elementary properties of forcing it is easy to prove the following two facts (see [9])

Fact 1.2. Let $x = \langle x_n : n \in \omega \rangle$ be a sequence in a complete Boolean algebra \mathbb{B} and $\tau_x = \{ \langle \check{n}, x_n \rangle : n \in \omega \}$ the corresponding \mathbb{B} -name for a subset of ω . Then

- (a) $\|\tau_x = \check{\omega}\| = \bigwedge_{n \in \omega} x_n;$
- (b) $\|\tau_x \text{ is cofinite }\| = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \ (= \liminf x);$
- (c) $\|\tau_x \text{ is old infinite }\| = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{n \in \omega} x_n^{\chi_A(n)}; \text{ where } x_n^1 = x_n, x_n^0 = x'_n.$
- (d) $\|\tau_x \text{ is supported }\| = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{n \in A} x_n;$
- (e) $\|\tau_x \text{ is dependent }\| = \bigvee_{A \in [\omega]^{\omega}} (\bigwedge_{n \in A} x_n \vee \bigwedge_{n \in A} x'_n);$
- (f) $\|\tau_x \text{ is infinite }\| = \bigwedge_{k \in \omega} \bigvee_{n > k} x_n \ (= \limsup x);$
- (g) $\|\tau_x = \check{\omega}\| \le \|\tau_x$ is cofinite $\| \le \|\tau_x$ is old infinite $\| \le \|\tau_x$ is supported $\| \le \|\tau_x$ is infinite dependent $\| \le \|\tau_x$ is infinite $\|$.

PROOF. We prove (c) and the rest of the proof is similar.

 $\|\tau_x \text{ is old infinite}\| = \|\exists A \in ([\omega]^{\omega})^{V^{\circ}} (\forall n \in A \ (n \in \tau_x) \land \forall n \in \check{\omega} \setminus A \ (n \notin \tau_x))\| = \bigvee_{A \in [\omega]^{\omega}} (\bigwedge_{n \in A} x_n \land \bigwedge_{n \in \omega \setminus A} x'_n) = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{n \in \omega} x_n^{\chi_A(n)}.$

Fact 1.3. If $x = \langle x_n : n \in \omega \rangle$ is a sequence in a c.B.a. \mathbb{B} and $f \in \omega^{\uparrow \omega}$, then $y = x \circ f$ is a subsequence of x and for the \mathbb{B} -names τ_x and τ_y we have

- (a) $1 \Vdash \tau_y = f^{-1}[\tau_x];$
- (b) $\limsup y = \||f[\omega] \cap \tau_x| = \check{\omega}\|;$
- (c) $\liminf y = ||f[\omega]] \subset \tau_x ||;$
- (d) $\liminf x \le \liminf y \le \limsup y \le \limsup x$.

2. The convergence λ_1

First, choosing a convenient notation, we present this research in the context of some previous results. Let \mathbb{B} be a complete Boolean algebra and let the convergences $\lambda_i : \mathbb{B}^{\omega} \to P(\mathbb{B})$, for $i \in \{0, 1, 2, 3, 4\}$, be defined by

$$\lambda_{i}(x) = \begin{cases} \{b_{4}(x)\} & \text{if } b_{i}(x) = b_{4}(x), \\ \emptyset & \text{if } b_{i}(x) < b_{4}(x), \end{cases}$$
(1)
$$b_{0}(x) = \|\tau_{x} \text{ is cofinite}\| = \liminf x, \\ b_{1}(x) = \|\tau_{x} \text{ is old infinite}\|, \\ b_{2}(x) = \|\tau_{x} \text{ is supported}\|, \\ b_{3}(x) = \|\tau_{x} \text{ is infinite dependent}\|, \\ b_{4}(x) = \|\tau_{x} \text{ is infinite}\| = \limsup x. \end{cases}$$

Then λ_0 is the well known algebraic convergence [11] generating the sequential topology \mathcal{O}_{λ_0} on \mathbb{B} [1] related to the von-Neumann and the Maharam problem, λ_1 will be considered in this paper and the convergences λ_2, λ_3 and λ_4 were investigated in [8] and [9] and are related in the following way (see [8]).

Fact 2.1. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) $\lambda_2 \leq \lambda_3 \leq \lambda_4;$
- (b) λ_2 , λ_3 and λ_4 satisfy condition (L1), but do not satisfy (L2);
- (c) $\lambda_2 = \lambda_3$ iff $\lambda_2 = \lambda_4$ iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive;
- (d) $\lambda_3 = \lambda_4$ iff forcing by \mathbb{B} does not produce splitting reals.

Thus $\lambda_1(x) = \{ \limsup x \}$, if $\|\tau_x \text{ is old infinite}\| = \|\tau_x \text{ is infinite}\|$ and $\lambda_1(x) = \emptyset$, otherwise. Preliminarily we have

280

where

281

Theorem 2.2. Let \mathbb{B} be a complete Boolean algebra. Then

(a) For each sequence x in \mathbb{B} we have

$$\lambda_1(x) = \begin{cases} \{\limsup x\} & \text{if } 1 \Vdash \tau_x \text{ is old,} \\ \emptyset & \text{otherwise;} \end{cases}$$

- (b) $\lambda_0 \leq \lambda_1 \leq \lambda_2$;
- (c) The convergence λ_1 satisfies condition (L1), but does not satisfy (L2);
- (d) $\lambda_1 = \lambda_2$ iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive;
- (e) $\lambda_1 = \lambda_4$ iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive.

Proof. (a)

$$\lambda_1(x) \neq \emptyset \Leftrightarrow \|\tau_x \text{ is infinite}\| \land \|\tau_x \text{ is old}\| = \|\tau_x \text{ is infinite}\|$$
$$\Leftrightarrow \|\tau_x \text{ is infinite}\| \le \|\tau_x \text{ is old}\|$$
$$\Leftrightarrow 1 \Vdash \tau_x \text{ is infinite} \Rightarrow \tau_x \text{ is old}$$
$$\Leftrightarrow 1 \Vdash \tau_x \text{ is finite} \lor \tau_x \text{ is old}$$
$$\Leftrightarrow 1 \Vdash \tau_x \text{ is finite} \lor \tau_x \text{ is old}$$
$$\Leftrightarrow 1 \Vdash \tau_x \text{ is old.}$$

(b) follows from Fact 1.2(g).

(c) For a constant sequence $x = \langle a \rangle$ we have $a \Vdash \tau_x = \check{\omega}$ and $a' \Vdash \tau_x = \emptyset$, which implies $1 \Vdash ``\tau_x$ is old". Since $\limsup x = a$, by (a) we have $a \in \lambda_1(\langle a \rangle)$ and (L1) holds. For the sequence $x = \langle 1, 0, 1, 0, \ldots \rangle$ we have $1 \Vdash \tau_x = \{0, 2, 4, \ldots\} \in V$ and, by (a), $\lambda_1(x) = \{\limsup x\} = \{1\}$. But $y = \langle 0, 0, 0, \ldots \rangle \prec x$ and $1 \Vdash \tau_y = \check{\emptyset}$, which, by (a), implies $\lambda_1(y) = \{0\} \not\supseteq \lambda_1(x)$.

(d) By Theorem 7.5 of [8] for each sequence x in \mathbb{B} we have

$$\lambda_2(x) = \begin{cases} \{\limsup x\} & \text{if } 1 \Vdash \tau_x \text{ is finite or supported,} \\ \emptyset & \text{otherwise.} \end{cases}$$
(2)

(⇐) If \mathbb{B} is (ω , 2)-distributive, it does not produce new reals and, hence, for each sequence x in \mathbb{B} we have $1 \Vdash "\tau_x$ is old" and, clearly, $1 \Vdash "\tau_x$ is finite or supported". So, by (a) and (2), $\lambda_1(x) = \{\limsup x\} = \lambda_2(x)$.

 (\Rightarrow) Suppose that the algebra \mathbb{B} is not $(\omega, 2)$ -distributive. Then there is an extension $V_{\mathbb{B}}[G]$ containing a new set $X \subset \omega$. Let σ be a \mathbb{B} -name such that $X = \sigma_G$ and $1 \Vdash \sigma \subset \check{\omega}$ and let $b \in G$, where

$$b \Vdash \sigma$$
 is new. (3)

If $y = \langle y_n : n \in \omega \rangle$, where $y_n = \|\check{n} \in \sigma\|$, $n \in \omega$, for $\tau_y = \{\langle \check{n}, y_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \sigma = \tau_y. \tag{4}$$

For $x = \langle y_0, 1, y_1, 1, y_2, 1 \dots \rangle$ we have $1 \Vdash \{1, 3, 5, \dots\} \subset \tau_x$ and, hence, $1 \Vdash \tau_x$ is supported, which, by (2) implies $\lambda_2(x) \neq \emptyset$.

On the other hand $y = x \circ f$, where $f : \omega \to \omega$ is defined by f(k) = 2k, so, by Fact 1.3(a), $1 \Vdash \tau_y = \check{f}^{-1}[\tau_x]$, which, together with (3) and (4), implies $b \Vdash ``\check{f}^{-1}[\tau_x]$ is new". Now, since $f \in V$, we have $b \Vdash ``\tau_x$ is new" and, by (a), $\lambda_1(x) = \emptyset$. So $\lambda_1 \neq \lambda_2$.

(e) follows from (d) and Fact 2.1(c). \Box

Remark 2.3. Imitating the proof of the part (a) of the previous theorem one can easily show that, if \mathbb{B} is a complete Boolean algebra, x a sequence in \mathbb{B} and τ_x the corresponding name for a real, then the real determined by τ_x is

- always old iff $\lambda_1(x) \neq \emptyset$;
- sometimes new, but always supported iff $\lambda_1(x) = \emptyset$ and $\lambda_2(x) \neq \emptyset$;
- sometimes unsupported, but always unsplitting iff $\lambda_2(x) = \emptyset$ and $\lambda_3(x) \neq \emptyset$;
- sometimes splitting iff $\lambda_3 = \emptyset$ and $\lambda_4(x) \neq \emptyset$.

(Here "always" means in each and "sometimes" in some generic extension.)

By Fact 2.1(a) and Theorem 2.2(b) we have $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$; by Fact 2.1(c), $\lambda_2 = \lambda_3 < \lambda_4$ is impossible and, by Fact 2.1(c) and Theorem 2.2(d), $\lambda_1 = \lambda_2$ iff $\lambda_2 = \lambda_3$. Now, using Fact 2.1(c), (d) and Theorem 2.2(d), we show that, up to these restrictions, everything is possible.

Example 2.4. $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4$ holds in each $(\omega, 2)$ -distributive and, in particular, each atomic complete Boolean algebra.

 $\lambda_1 < \lambda_2 < \lambda_3 = \lambda_4$ holds in each complete Boolean algebra which produces new reals, but does not produce splitting reals, for example in r.o.(\mathbb{P}), where \mathbb{P} is the Sacks or the Miller forcing.

 $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$ holds in each complete Boolean algebra which produces splitting reals, for example in r.o.(\mathbb{P}), where \mathbb{P} is the Cohen or the random forcing.

3. The closure of λ_1 under (L2)

By Theorem 2.2(c), the convergence λ_1 does not satisfy (L2) and, hence, it is never a topological convergence. The minimal closures of a convergence under (L2) and (L3) are described in the following general fact (see [8]).

283

Fact 3.1. Let $\lambda : X^{\omega} \to P(X)$ be a convergence satisfying condition (L1). Then

- (a) The mapping $\bar{\lambda} : X^{\omega} \to P(X)$ defined by $\bar{\lambda}(y) = \bigcup_{x \in X^{\omega}, f \in \omega^{\uparrow \omega}, y = x \circ f} \lambda(x)$ is the minimal convergence bigger than λ and satisfying (L1) and (L2);
- (b) $\bar{\lambda}^* : X^{\omega} \to P(X)$ defined by $\bar{\lambda}^*(y) = \bigcap_{f \in \omega^{\uparrow \omega}} \bigcup_{g \in \omega^{\uparrow \omega}} \bar{\lambda}(y \circ f \circ g)$ is the minimal convergence bigger than $\bar{\lambda}$ and satisfying (L1)–(L3);
- (c) $\lambda \leq \bar{\lambda} \leq \bar{\lambda}^* \leq \lim_{\mathcal{O}_{\lambda}};$
- (d) $\mathcal{O}_{\lambda} = \mathcal{O}_{\bar{\lambda}} = \mathcal{O}_{\bar{\lambda}^*}.$

For a subset A of a complete Boolean algebra \mathbb{B} let $A \uparrow = \{b \in \mathbb{B} : \exists a \in A a \leq b\}$. The (L2)-closures of the convergences λ_2 , λ_3 and λ_4 are described in the following fact (see [8] and [9]).

Fact 3.2. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) $\overline{\lambda}_4(y) = \{\limsup y\}\uparrow$, for each sequence y in \mathbb{B} ;
- (b) $\bar{\lambda}_2 = \bar{\lambda}_3 = \bar{\lambda}_4;$
- (c) The convergence $\bar{\lambda}_4$ generalizes the convergence on the Aleksandrov cube.

Now, concerning the convergence λ_1 we have

Theorem 3.3. Let \mathbb{B} be a complete Boolean algebra. Then (a) The closure of λ_1 under (L2) is given by

$$\bar{\lambda}_1(y) = \begin{cases} \{\limsup y\} \uparrow & \text{if } 1 \Vdash \tau_y \text{ is old,} \\ \emptyset & \text{otherwise;} \end{cases}$$
(5)

(b) $\bar{\lambda}_1 = \bar{\lambda}_4$ iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive.

Proof. (a)

Claim 1. $\overline{\lambda}_1(y) = \{\limsup y\} \uparrow \text{ if and only if } 1 \Vdash \tau_y \text{ is old.}$

Proof of Claim 1. (\Rightarrow) Let $\bar{\lambda}_1(y) = \{\limsup y\} \uparrow$. Then, by Fact 3.1(a) the set $\bar{\lambda}_1(y) = \bigcup_{x \in \mathbb{B}^{\omega}, f \in \omega^{\uparrow \omega}, y = x \circ f} \lambda_1(x)$ is nonempty and, hence there are $x \in \mathbb{B}^{\omega}$ and $f \in \omega^{\uparrow \omega}$ such that $y = x \circ f$ and $\lambda_1(x) \neq \emptyset$. By Theorem 2.2(a), $1 \Vdash `\tau_x$ is old" and by Fact 1.3(a), $1 \Vdash \tau_y = f^{-1}[\tau_x]$, which implies $1 \Vdash `\tau_y$ is old".

(⇐) Let $1 \Vdash "\tau_y$ is old". According to Fact 3.1(a) we show that

$$\bigcup_{x \in \mathbb{B}^{\omega}, f \in \omega^{\uparrow \omega}, y = x \circ f} \lambda_1(x) = \{\limsup y\} \uparrow.$$

 (\subset) Suppose that $x \in \mathbb{B}^{\omega}$, $f \in \omega^{\uparrow \omega}$, $y = x \circ f$ and $b \in \lambda_1(x)$. Then $b = \limsup x$ and, since $y \prec x$, by Fact 1.3(d) we have $\limsup y \leq \limsup x = b$.

(\supset) Let $b \ge \limsup y$. Let $x = \langle y_0, b, y_1, b, y_2, \ldots \rangle$ and $f, g \in \omega^{\uparrow \omega}$, where f(k) = 2k and g(k) = 2k + 1. Then $y = x \circ f$ and, if $z = x \circ g$, using Facts 1.2(f) and 1.3(b) we have

$$\limsup x = \||\tau_x| = \check{\omega}\| = \||\tau_x \cap \check{f}[\omega]| = \check{\omega}\| \vee \||\tau_x \cap \check{g}[\omega]| = \check{\omega}\|$$
$$= \||\tau_y| = \check{\omega}\| \vee \||\tau_z| = \check{\omega}\| = \||\tau_y| = \check{\omega}\| \vee b = b.$$

So, by Theorem 2.2(a), for a proof that $b \in \lambda_1(x)$ it remains to be shown that $1 \Vdash "\tau_x$ is old", which follows from $1 \Vdash "\tau_y$ is old" and the following subclaim. Subclaim 1. (i) $b' \Vdash \tau_x = \check{f}[\tau_y];$ (ii) $b \Vdash \tau_x = \check{f}[\tau_y] \cup \{1, 3, 5, ...\}$.

Proof of Subclaim 1. By Fact 1.3(a) we have $1 \Vdash \tau_y = \check{f}^{-1}[\tau_x]$ and, hence,

1

$$\Vdash \check{f}[\tau_y] \subset \tau_x. \tag{6}$$

Let G be a \mathbb{B} -generic filter over V.

(i) If $b' \in G$, then for $n \in (\tau_x)_G$ we have $x_n \in G$ and, since $b \notin G$, there is $k \in \omega$ such that $x_n = x_{2k} = y_k$. Hence $k \in (\tau_y)_G$ and $n = f(k) \in f[(\tau_y)_G]$. So $b' \Vdash \tau_x \subset \check{f}[\tau_y]$ and, by (6), $b' \Vdash \tau_x = \check{f}[\tau_y]$.

(ii) Clearly, $b \Vdash \{1, 3, 5, ...\} \subset \tau_x$ and, by (6), $b \Vdash \check{f}[\tau_y] \subset \tau_x$. On the other hand, let $b \in G$ and $n \in (\tau_x)_G$, that is $x_n \in G$. If n is odd, we are done. Otherwise, as in (a) we show that $n \in f[(\tau_y)_G]$. Claim 1 is proved.

Claim 2. $\bar{\lambda}_1(y) \neq \emptyset \Leftrightarrow 1 \Vdash \tau_y$ is old.

Proof of Claim 2. (\Rightarrow) Suppose that $a \in \overline{\lambda}_1(y)$. Then, by Fact 3.1(a), there are $x \in \mathbb{B}^{\omega}$ and $f \in \omega^{\uparrow \omega}$ such that $y = x \circ f$ and $a \in \lambda_1(x)$, which, by Theorem 2.2(a), implies $1 \Vdash \tau_x$ is old". By Fact 1.3(a) we have $1 \Vdash \tau_y = f^{-1}[\tau_x]$ and, consequently, $1 \Vdash \tau_y$ is old".

 (\Leftarrow) If $\bar{\lambda}_1(y) = \emptyset$, then, since $\lambda_1 \leq \bar{\lambda}_1$, we have $\lambda_1(y) = \emptyset$ and, by Theorem 2.2(a), $\neg 1 \Vdash \tau_y$ is old.

(b) It is well known [4] that \mathbb{B} is $(\omega, 2)$ -distributive iff forcing by \mathbb{B} does not produce new reals, that is $1 \Vdash \tau_y$ is old, for each sequence y in \mathbb{B} . So we apply (a) and Fact 3.2(a).

4. The topology generated by λ_1

By Theorem 3.3(b) and Fact 3.1(d), if \mathbb{B} is an $(\omega, 2)$ -distributive algebra, then $\mathcal{O}_{\lambda_1} = \mathcal{O}_{\lambda_4}$. In this section we show more, that on each complete Boolean algebra the convergences $\lambda_1, \lambda_2, \lambda_3$ and λ_4 generate the same topology, investigated in [9]. Concerning the convergences $\lambda_0, \lambda_2, \lambda_3$ and λ_4 we have (see [8] and [9])

285

Fact 4.1. Let ${\mathbb B}$ be a complete Boolean algebra. Then

- (a) $\mathcal{O}_{\lambda_2} = \mathcal{O}_{\lambda_3} = \mathcal{O}_{\lambda_4};$
- (b) \mathcal{O}_{λ_4} is a sequential T_0 connected compact topology on \mathbb{B} ;
- (c) \mathcal{O}_{λ_4} and its dual generate the sequential topology, \mathcal{O}_{λ_0} , when \mathbb{B} is a Maharam algebra.

We will use the following general fact (see [8]).

Fact 4.2. Let $\lambda : X^{\omega} \to P(X)$ be a convergence satisfying (L1) and (L2) and let the mappings $u_{\lambda}^{\alpha} : P(X) \to P(X)$, $\alpha \leq \omega_1$, be defined by recursion in the following way: for $A \subset X$

 $\begin{aligned} u_{\lambda}^{0}(A) &= A, \\ u_{\lambda}^{\alpha+1}(A) &= u_{\lambda}(u_{\lambda}^{\alpha}(A)) \text{ and} \\ u_{\lambda}^{\gamma}(A) &= \bigcup_{\alpha < \gamma} u_{\lambda}^{\alpha}(A), \text{ for a limit } \gamma \leq \omega_{1}. \end{aligned}$

Then $u_{\lambda}^{\omega_1}$ is the closure operator in the space $\langle X, \mathcal{O}_{\lambda} \rangle$.

We will say that a subset A of a c.B.a. \mathbb{B} is upward closed iff $A = A \uparrow$. A sequence x in \mathbb{B} will be called *decreasing* if $x_0 \ge x_1 \ge x_2 \ge \dots$.

Lemma 4.3. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) The set $\overline{\lambda}_1(x)$ is upward closed, for each sequence x in \mathbb{B} ;
- (b) If x is a decreasing sequence in \mathbb{B} , then $\lambda_1(x) = \{\bigwedge_{n \in \omega} x_n\};$
- (c) If $A \subset \mathbb{B}$ is an upward closed set, then $u_{\bar{\lambda}_1}(A) = u_{\bar{\lambda}_2}(A)$;
- (d) The set $u_{\bar{\lambda}_1}(A)$ is upward closed, for each $A \subset \mathbb{B}$.

PROOF. (a) follows from Theorem 3.3.

(b) If $x = \langle x_n : n \in \omega \rangle$ is decreasing, then $\limsup x = \bigwedge_{n \in \omega} \bigvee_{k \ge n} x_k = \bigwedge_{n \in \omega} x_n$ and, by Theorem 2.2(a), it remains to be shown that $1 \Vdash \tau_x$ is old. If G is a \mathbb{B} -generic filter over V, then $(\tau_x)_G = \{n : x_n \in G\}$, so if $m < n \in (\tau_x)_G$, then $x_m \ge x_n \in G$, which implies $x_m \in G$ and, hence, $m \in (\tau_x)_G$. Thus $(\tau_x)_G$ is either a finite set or equal to ω and, consequently, belongs to V.

(c) Let $A \subset \mathbb{B}$ be an upward closed set.

(C) Since $\lambda_1 \leq \lambda_2 \leq \bar{\lambda}_2$, by the minimality of $\bar{\lambda}_1$ (see Fact 3.1(a)) we have $\bar{\lambda}_1 \leq \bar{\lambda}_2$ and, hence, $u_{\bar{\lambda}_1}(A) = \bigcup_{x \in A^{\omega}} \bar{\lambda}_1(x) \subset \bigcup_{x \in A^{\omega}} \bar{\lambda}_2(x) = u_{\bar{\lambda}_2}(A)$.

 (\supset) By Fact 3.2 we have $\bar{\lambda}_2(x) = \{\limsup x\}\uparrow$. So, for $x \in A^{\omega}$ we show that $\{\limsup x\}\uparrow\subset u_{\bar{\lambda}_1}(A)$. Let $\limsup x = b$. Then the sequence $t = \langle t_n : n \in \omega \rangle$ defined by

$$t_n = b \lor \bigvee_{k \ge n} x_k$$

is decreasing and, since $t_n \ge x_n \in A$, we have $t \in A^{\omega}$. Since

$$\bigwedge_{n \in \omega} t_n = b \lor \bigwedge_{n \in \omega} \bigvee_{k \ge n} x_k = b \lor \limsup x = b$$

by (b) we have $b \in \lambda_1(t) \subset \overline{\lambda}_1(t)$ and, by (a), $\{b\} \uparrow \subset \overline{\lambda}_1(t) \uparrow = \overline{\lambda}_1(t) \subset u_{\overline{\lambda}_1}(A)$.

(d) We prove that $u_{\bar{\lambda}_1}(A) \uparrow \subset u_{\bar{\lambda}_1}(A)$. If $b \ge a \in u_{\bar{\lambda}_1}(A)$, then there is $x \in A^{\omega}$ such that $a \in \bar{\lambda}_1(x)$. By (a) we have $b \in \bar{\lambda}_1(x)$, which implies $b \in u_{\bar{\lambda}_1}(A)$.

Theorem 4.4. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) $u_{\bar{\lambda}_1}^{\omega_1}(A) = u_{\bar{\lambda}_2}^{\omega_1}(A)$, for each $A \subset \mathbb{B}$;
- (b) $\mathcal{O}_{\lambda_1} = \mathcal{O}_{\lambda_2} = \mathcal{O}_{\lambda_3} = \mathcal{O}_{\lambda_4}.$

PROOF. (a) (\subset) Since $\bar{\lambda}_1 \leq \bar{\lambda}_2$, we have $u_{\bar{\lambda}_1}^{\omega_1}(A) \subset u_{\bar{\lambda}_2}^{\omega_1}(A)$, for each $A \subset \mathbb{B}$. (\supset) First, for $A \subset \mathbb{B}$ using induction we show that for each $\alpha \leq \omega_1$

$$u_{\bar{\lambda}_2}^{\alpha}(u_{\bar{\lambda}_1}(A)) = u_{\bar{\lambda}_1}^{\alpha}(u_{\bar{\lambda}_1}(A)) \text{ and this set is upward closed.}$$
(7)

By Lemma 4.3(d), (7) is true for $\alpha = 0$.

Let $\beta \leq \omega_1$ and suppose that (7) holds for each $\alpha < \beta$.

If β is a limit ordinal, then, by the induction hypothesis, we have

$$u_{\bar{\lambda}_2}^{\beta}(u_{\bar{\lambda}_1}(A)) = \bigcup_{\alpha < \beta} u_{\bar{\lambda}_2}^{\alpha}(u_{\bar{\lambda}_1}(A)) = \bigcup_{\alpha < \beta} u_{\bar{\lambda}_1}^{\alpha}(u_{\bar{\lambda}_1}(A)) = u_{\bar{\lambda}_1}^{\beta}(u_{\bar{\lambda}_1}(A))$$

and, since the union of upward closed sets is upward closed, (7) is true for β .

If $\beta = \alpha + 1$, then, by the induction hypothesis we have

$$u_{\bar{\lambda}_{2}}^{\alpha+1}(u_{\bar{\lambda}_{1}}(A)) = u_{\bar{\lambda}_{2}}(u_{\bar{\lambda}_{2}}^{\alpha}(u_{\bar{\lambda}_{1}}(A))) = u_{\bar{\lambda}_{2}}(u_{\bar{\lambda}_{1}}^{\alpha}(u_{\bar{\lambda}_{1}}(A))).$$
(8)

By the hypothesis the set $u^{\alpha}_{\bar{\lambda}_1}(u_{\bar{\lambda}_1}(A))$ is upward closed and, by Lemma 4.3(c),

$$u_{\bar{\lambda}_{2}}(u_{\bar{\lambda}_{1}}^{\alpha}(u_{\bar{\lambda}_{1}}(A))) = u_{\bar{\lambda}_{1}}(u_{\bar{\lambda}_{1}}^{\alpha}(u_{\bar{\lambda}_{1}}(A))) = u_{\bar{\lambda}_{1}}^{\alpha+1}(u_{\bar{\lambda}_{1}}(A))$$
(9)

and $u_{\bar{\lambda}_2}^{\beta}(u_{\bar{\lambda}_1}(A)) = u_{\bar{\lambda}_1}^{\beta}(u_{\bar{\lambda}_1}(A))$ follows from (8) and (9). By Lemma 4.3(d) and (9) this set is upward closed and the proof of (7) is over.

Since $A \subset u_{\bar{\lambda}_1}(A) \subset u_{\bar{\lambda}_1}^{\omega_1}(A)$, by Fact 4.2 we have $u_{\bar{\lambda}_1}^{\omega_1}(u_{\bar{\lambda}_1}(A)) = u_{\bar{\lambda}_1}^{\omega_1}(A)$.

Using (7) we obtain $u_{\overline{\lambda}_{1}}^{\omega_{1}}(A) \subset u_{\overline{\lambda}_{1}}^{\omega_{1}}(A)$; $u_{\overline{\lambda}_{2}}^{\omega_{1}}(u_{\overline{\lambda}_{1}}(A)) = u_{\overline{\lambda}_{1}}^{\omega_{1}}(u_{\overline{\lambda}_{1}}(A)) = u_{\overline{\lambda}_{1}}^{\omega_{1}}(A)$. (b) By (a) and Fact 4.2 we have $\mathcal{O}_{\overline{\lambda}_{1}} = \mathcal{O}_{\overline{\lambda}_{2}}$ and, by Fact 3.1(d), $\mathcal{O}_{\lambda_{1}} = \mathcal{O}_{\lambda_{2}}$. By Fact 4.1(a), the other two equalities hold as well.

Thus the topology \mathcal{O}_{λ_1} , generated by the convergence λ_1 , has the properties given in Fact 4.1(b) and (c).

5. Topological and weakly topological convergences

In this section we investigate the classes of complete Boolean algebras on which the convergence $\bar{\lambda}_1$ (satisfying conditions (L1) and (L2)) is topological or weakly topological. According to [8], a convergence $\lambda : X^{\omega} \to P(X)$ will be called *weakly topological* iff it satisfies conditions (L1) and (L2) and its (L3)-closure, λ^* , is a topological convergence. The following general fact can be found in [8].

Fact 5.1. A convergence $\lambda : X^{\omega} \to P(X)$ satisfying (L1) and (L2) is weakly topological iff $\lambda^* = \lim_{\mathcal{O}_{\lambda}}$, that is for each $x \in X^{\omega}$ and $a \in X$

$$a \in \lim_{\mathcal{O}_{\lambda}}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda(z).$$

By [9], for the convergence $\bar{\lambda}_4$ we have

Fact 5.2. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) $\bar{\lambda}_4$ is a topological convergence iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive;
- (b) If the algebra \mathbb{B} satisfies (\hbar) , then $\bar{\lambda}_4$ is a weakly topological convergence.

We note that, according to [7], a complete Boolean algebra satisfies condition (\hbar) iff $\forall x \in \mathbb{B}^{\omega} \exists y \prec x \forall z \prec y \ \text{lim sup } z = \text{lim sup } y$. More about condition (\hbar) (implied by the ccc) can be found in [10].

For the convergence $\overline{\lambda}_1$ we have the following analogue of Fact 5.2(a).

Theorem 5.3. $\overline{\lambda}_1$ is a topological convergence iff the algebra \mathbb{B} is $(\omega, 2)$ -distributive.

PROOF. (\Rightarrow) Let $\bar{\lambda}_1$ be a topological convergence. Then, by Fact 1.1(h), $\bar{\lambda}_1 = \lim_{\mathcal{O}_{\bar{\lambda}_1}}$. By Fact 3.1(d) and Theorem 4.4(b) we have $\mathcal{O}_{\bar{\lambda}_1} = \mathcal{O}_{\lambda_1} = \mathcal{O}_{\lambda_2}$ thus $\bar{\lambda}_1 = \lim_{\mathcal{O}_{\lambda_2}} \geq \lambda_2$. Since $\lambda_1 \leq \lambda_2 \leq \bar{\lambda}_1$, by Fact 3.1(a) we have $\bar{\lambda}_1 = \bar{\lambda}_2$ and, by Fact 3.2(b) and Theorem 3.3(b) the algebra \mathbb{B} is $(\omega, 2)$ -distributive.

(\Leftarrow) follows from Theorem 3.3(b) and Fact 5.2(a).

Now we deal with the question on which algebras the convergence $\bar{\lambda}_1$ is weakly topological. First we describe its (L3)-closure, $\bar{\lambda}_1^*$, in terms of forcing.

Theorem 5.4. Let \mathbb{B} be a complete Boolean algebra. Then for $y \in \mathbb{B}^{\omega}$ we have

- (a) $\bar{\lambda}_1^*(y) = \bigcap_{A \in [\omega]^{\omega}} \bigcup_{B \in [A]^{\omega} \land ||\tau_y \cap \check{B}| \text{ is old}||=1} |||\tau_y \cap \check{B}| = \check{\omega}||\uparrow;$
- (b) $\bar{\lambda}_1^*(y) \neq \emptyset$ iff $\mathcal{D}_y = \{B \in [\omega]^{\omega} : ||\tau_y \cap \check{B} \text{ is old}|| = 1\}$ is a dense set in the poset $\langle [\omega]^{\omega}, \subset \rangle$.

PROOF. (a) By Fact 3.1(b), for $y \in \mathbb{B}^{\omega}$ we prove that

$$\bigcap_{f \in \omega^{\uparrow \omega}} \bigcup_{g \in \omega^{\uparrow \omega}} \bar{\lambda}_1(y \circ f \circ g) = \bigcap_{A \in [\omega]^{\omega}} \bigcup_{B \in [A]^{\omega} \land \ \|\tau_y \cap \check{B} \text{ is old}\| = 1} \||\tau_y \cap \check{B}| = \check{\omega}\| \uparrow$$

(C) Suppose that for each $f \in \omega^{\uparrow \omega}$ there is $g \in \omega^{\uparrow \omega}$ such that $a \in \overline{\lambda}_1(y \circ f \circ g)$, which, by Theorem 3.3 and Fact 1.3, means that

$$\|\tau_{y\circ f\circ g} \text{ is old}\| = 1 \text{ and } a \in \||\tau_y \cap (f \circ g)[\omega]^{\check{}}| = \check{\omega}\|\uparrow.$$
 (10)

Let $A \in [\omega]^{\omega}$ and let $f \in \omega^{\uparrow \omega}$, where $A = f[\omega]$. By the assumption, there is $g \in \omega^{\uparrow \omega}$ such that (10) holds. Then $B = f[g[\omega]] \subset A$ and, since f and g are injections, $B \in [A]^{\omega}$. By (10), $a \in |||\tau_y \cap \check{B}| = \check{\omega}||\uparrow$. By Fact 1.3, in each generic extension $V_{\mathbb{B}}[G]$ we have $(\tau_{y \circ f \circ g})_G = (f \circ g)^{-1}[(\tau_y)_G] = (f \circ g)^{-1}[(\tau_y)_G \cap B]$ and, hence, $(\tau_y)_G \cap B = f[g[(\tau_{y \circ f \circ g})_G]]$. Thus

$$\|\tau_{y \circ f \circ g} \text{ is old} \Leftrightarrow \tau_y \cap \mathring{B} \text{ is old}\| = 1,$$
(11)

which together with (10) implies $\|\tau_y \cap \check{B}$ is old $\|=1$.

 (\supset) Suppose that for each $A \in [\omega]^{\omega}$ there is $B \in [A]^{\omega}$ such that

$$\|\tau_y \cap \mathring{B} \text{ is old}\| = 1 \text{ and } a \in \||\tau_y \cap \mathring{B}| = \check{\omega}\|\uparrow.$$
 (12)

Let $f \in \omega^{\uparrow \omega}$ and $A = f[\omega]$. By the assumption, there is $B \in [A]^{\omega}$ such that (12) holds. If $g \in \omega^{\uparrow \omega}$ where $g[\omega] = f^{-1}[B]$, then $B = (f \circ g)[\omega]$ and, by (12), we have $a \in \||\tau_y \cap (f \circ g)[\omega]^{\check{}}| = \check{\omega}\|\uparrow$.By (11), $\|\tau_{y \circ f \circ g}$ is old $\| = 1$, thus $a \in \bar{\lambda}_1(y \circ f \circ g)$. (b) (\Rightarrow) Let $a \in \bar{\lambda}_1^*(y)$ and $A \in [\omega]^{\omega}$. By (a) there is $B \in [A]^{\omega}$ such that

 $\|\tau_y \cap \check{B} \text{ is old}\| = 1 \text{ and } a \ge \||\tau_y \cap \check{B}| = \check{\omega}\|.$ Thus $B \subset A$ and $B \in \mathcal{D}_y$. (\Leftarrow) Let \mathcal{D}_y be a dense set in $\langle [\omega]^{\omega}, \subset \rangle$ and $a = \||\tau_y| = \check{\omega}\|.$ Since for

each $A \in [\omega]^{\omega}$ there is $B \in [A]^{\omega}$ such that $\|\tau_y \cap \check{B}$ is old $\|=1$ and, clearly, $a \geq \||\tau_y \cap \check{B}| = \check{\omega}\|$, by (a) we have $a \in \bar{\lambda}_1^*(y)$.

Theorem 5.5. If there is a sequence y in \mathbb{B} such that $||\tau_y|$ is splitting || > 0, then $\bar{\lambda}_1^*(y) = \emptyset$ and the convergence $\bar{\lambda}_1$ is not weakly topological.

PROOF. Let $\|\tau_y$ is splitting $\| = b > 0$ and suppose that $\bar{\lambda}_1^*(y) \neq \emptyset$. Then, by (b), there is $B \in [\omega]^{\omega}$ such that $1 \Vdash \tau_y \cap \check{B}$ is old. But then $b \Vdash ``\tau_y \cap \check{B}$ is $\operatorname{old} \wedge \tau_y$ is splitting", which is impossible. Thus $\bar{\lambda}_1^*(y) = \emptyset$. By Theorem 4.4, $\lim_{\lambda_1}(y) = \lim_{\lambda_4}(y) \supset \lambda_4(y) \ni \limsup y$ and, hence, $\bar{\lambda}_1^*(y) \neq \lim_{\lambda_1}(y)$ so $\bar{\lambda}_1$ is not a weakly topological convergence.

Concerning the previous theorem we remark that it is possible that the convergence $\bar{\lambda}_1$ is not weakly topological, although forcing by \mathbb{B} does not produce splitting reals (see Example 5.8). In contrast to Fact 5.2(b) we have

Example 5.6. The ccc (and, consequently, condition (\hbar)) does not imply that the convergence $\bar{\lambda}_1$ is weakly topological. The Cohen algebra is ccc, produces splitting reals and, by Theorem 5.5, $\bar{\lambda}_1$ is not a weakly topological convergence.

Now, inside a wide class of complete Boolean algebras, we characterize the algebras on which the convergence $\bar{\lambda}_1$ is weakly topological.

Theorem 5.7. Let \mathbb{B} be a Boolean algebra such that $hcc(\mathbb{B}) > \mathfrak{c}$ (i.e. below each $b \in \mathbb{B}^+$ there is an antichain of size \mathfrak{c}). Then

 $\overline{\lambda}_1$ is a weakly topological convergence $\Leftrightarrow \mathbb{B}$ is $(\omega, 2)$ -distributive. (13)

PROOF. (\Leftarrow) This implication follows from Theorem 5.3.

 (\Rightarrow) If \mathbb{B} is not $(\omega, 2)$ -distributive, then $b = ||\exists r \subset \check{\omega} \ (r \text{ is new})|| > 0$ and, by the Maximum Principle, there is a name π such that

$$b \Vdash \pi \subset \check{\omega} \land \pi \text{ is new.}$$
 (14)

289

We choose an enumeration $[\omega]^{\omega} = \{S_{\alpha} : \alpha < \mathfrak{c}\}$, bijections $f_{\alpha} : S_{\alpha} \to \omega, \alpha < \mathfrak{c}$, and a maximal antichain under $b, \{b_{\alpha} : \alpha < \mathfrak{c}\}$. Now, for the \mathbb{B} -name σ defined by $\sigma = \{\langle \check{n}, \bigvee_{\alpha < \mathfrak{c}} (b_{\alpha} \land || f_{\alpha}(n)^{\check{}} \in \pi ||) \rangle : n \in \omega\}$ it is easy to prove that $b_{\alpha} \Vdash \sigma = f_{\alpha}^{-1}[\pi]$, for $\alpha < \mathfrak{c}$, (see [7, Th. 4, Cl. 1]) and, clearly, $1 \Vdash \sigma = \tau_x$, where $x = \langle x_n : n \in \omega \rangle$ and $x_n = \bigvee_{\alpha < \mathfrak{c}} b_{\alpha} \land || f_{\alpha}(n)^{\check{}} \in \pi ||, n \in \omega$. Thus

$$b_{\alpha} \Vdash \tau_x = f_{\alpha}^{-1}[\pi]. \tag{15}$$

Let us prove

$$\forall B \in [\omega]^{\omega} \ \|\tau_x \cap \check{B} \text{ is new}\| > 0.$$
(16)

Let $B \in [\omega]^{\omega}$ and $\alpha < \mathfrak{c}$, where $B = S_{\alpha}$. Let G be a \mathbb{B} -generic filter over V containing b_{α} . Since $b_{\alpha} < b$ we have $b \in G$ and, by (14), $\pi_G \notin V$. By (15), $(\tau_x)_G = f_{\alpha}^{-1}[\pi_G] \subset B$. Now, $f_{\alpha}^{-1}[\pi_G] \in V$ would imply $f_{\alpha}[f_{\alpha}^{-1}[\pi_G]] = \pi_G \in V$, which is false. Thus $f_{\alpha}^{-1}[\pi_G] = (\tau_x)_G \cap B \notin V$ and (16) is proved.

By (16) we have $\mathcal{D}_x = \{B \in [\omega]^{\omega} : 1 \Vdash \tau_x \cap \check{B} \text{ is old}\} = \emptyset$ so, by Theorem 5.4(b), $\bar{\lambda}_1^*(x) = \emptyset$. But, by Theorem 4.4, $\limsup x \in \lim_{\mathcal{O}_{\lambda_1}} (x) = \lim_{\mathcal{O}_{\lambda_1}} (x)$ and, by Fact 5.1, $\bar{\lambda}_1$ is not a weakly topological convergence.

Example 5.8. $\bar{\lambda}_1$ is not a weakly topological convergence on the Sacks algebra. Namely, if \mathbb{B} is the Boolean completion of the Sacks forcing, \mathbb{B} is homogeneous, has antichains of size \mathfrak{c} , adds new reals and we apply Theorem 5.7.

Is the equivalence (13) a theorem of ZFC? In the following theorem, using a result of VELIČKOVIĆ [12], we show that under the CH, a possible counterexample can not be nicely definable.

Theorem 5.9. (CH) If $\mathbb{B} = r.o.(\mathbb{P})$, where \mathbb{P} is a Suslin forcing notion, then

 $\overline{\lambda}_1$ is a weakly topological convergence $\Leftrightarrow \mathbb{B}$ is $(\omega, 2)$ -distributive.

PROOF. (\Leftarrow) This implication follows from Theorem 5.3.

(⇒) If the algebra \mathbb{B} is not (ω , 2)-distributive, then $b = ||\exists r \subset \check{\omega} \ (r \text{ is new})|| > 0$. If there exists an uncountable antichain below b, then, as in the proof of Theorem 5.7, we show that $\bar{\lambda}_1$ is not a weakly topological convergence. Otherwise, $\mathbb{B}|b$ is a non-atomic ccc forcing, clearly, $\mathbb{P} \cap b \downarrow$ is a non-atomic ccc Suslin forcing and, by a result of VELIČKOVIĆ [12], produces splitting reals. Now, by Theorem 5.5, $\bar{\lambda}_1$ is not a weakly topological convergence again.

6. A diagram

Here we describe the relations between the convergence structures considered in this paper.

Theorem 6.1. Let \mathbb{B} be a complete Boolean algebra. Then

- (a) If $\mathcal{A} \subset [\omega]^{\omega}$ is a mad family, y a sequence in \mathbb{B} and $1 \Vdash \tau_y$ kills $\check{\mathcal{A}}$, then $\bar{\lambda}_1^*(y) = \mathbb{B}$ and $\bar{\lambda}_4(y) = \{1\}$;
- (b) If forcing by \mathbb{B} produces a splitting real in each extension, then the convergences $\bar{\lambda}_1^*$ and $\bar{\lambda}_4$ are not comparable;

PROOF. (a) Suppose that $1 \Vdash |\tau_y| = \check{\omega} \land \forall A \in \check{\mathcal{A}} |\tau_y \cap A| < \check{\omega}$. Then $||\tau_y|$ is infinite || = 1 and, by Facts 1.2 and 3.2(a), we have $\bar{\lambda}_4(y) = \{1\} \uparrow = \{1\}$.

Using Theorem 5.4(a) we prove that $0 \in \bar{\lambda}_1^*(y)$ (which implies $\bar{\lambda}_1^*(y) = \mathbb{B}$). For $A \in [\omega]^{\omega}$, by the maximality of \mathcal{A} , there is $A_1 \in \mathcal{A}$ such that $B = A \cap A_1 \in [A]^{\omega}$. Since $1 \Vdash |\tau_y \cap A_1| < \check{\omega}$, we have $|||\tau_y \cap \check{B}| < \check{\omega}|| = 1$ which implies $||\tau_y \cap \check{B}|$ is old || = 1 and $|||\tau_y \cap \check{B}| = \check{\omega}|| = 0$.

(b) $(\bar{\lambda}_4 \leq \bar{\lambda}_1^*)$. By the assumption, there is $y \in \mathbb{B}^{\omega}$ such that $\|\tau_y$ is splitting $\| > 0$ so, by Theorem 5.5, $\bar{\lambda}_1^*(y) = \emptyset$ and $\bar{\lambda}_4(y) \neq \emptyset$.

 $(\bar{\lambda}_1^* \leq \bar{\lambda}_4)$. It is known (see [7, Lemma 1]) that there is a mad family $\mathcal{A} \subset [\omega]^{\omega}$ which is killed in each generic extension of the ground model containing new reals. By the assumption, forcing by \mathbb{B} produces new reals in each extension and, hence,

291

we have $1 \Vdash \exists x \subset \check{\omega}$ (x kills $\check{\mathcal{A}}$) and, by the Maximum Principle, there is a \mathbb{B} name σ such that $1 \Vdash \sigma \subset \check{\omega}$ and $1 \Vdash \sigma$ kills $\check{\mathcal{A}}$. If $y_n = \|\check{n} \in \sigma\|$, $n \in \omega$, then $1 \Vdash \tau_y = \sigma$ and $1 \Vdash \tau_y$ kills $\check{\mathcal{A}}$. By (a) we have $\bar{\lambda}_1^*(y) = \mathbb{B}$ and $\bar{\lambda}_4(y) = \{1\}$. \Box

In the following diagram $\lambda' \leq \lambda''$ denotes that for each c.B.a. \mathbb{B} and each sequence x in \mathbb{B} , $\lambda'(x) \subset \lambda''(x)$.

In the sequel we show that the diagram is correct. By Fact 2.1(a) and Theorem 2.2(b) we have $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$ and, by Example 2.4, all the inequalities can be strict. By Fact 3.2(b) we have $\bar{\lambda}_2 = \bar{\lambda}_3 = \bar{\lambda}_4$, which implies $\bar{\lambda}_2^* = \bar{\lambda}_3^* = \bar{\lambda}_4^*$ and $\lim_{\mathcal{O}_{\lambda_2}} = \lim_{\mathcal{O}_{\lambda_3}} = \lim_{\mathcal{O}_{\lambda_4}}$. By Theorem 4.4(b) we have $\lim_{\mathcal{O}_{\lambda_1}} = \lim_{\mathcal{O}_{\lambda_2}}$. By Fact 3.1, $\lambda_1 \leq \lambda_4$ implies $\bar{\lambda}_1 \leq \bar{\lambda}_4$ and $\bar{\lambda}_1^* \leq \bar{\lambda}_4^*$.

The convergence $\bar{\lambda}_1^*$ is not comparable with $\lambda_2, \lambda_3, \lambda_4$ and $\bar{\lambda}_4$. The relation $\bar{\lambda}_1^* \nleq \bar{\lambda}_4$ is proved in (b) of Theorem 6.1. For a proof that $\bar{\lambda}_1^* \nsucceq \lambda_2$ we follow Theorem 5.5. If $y \in \mathbb{B}^{\omega}$, where $\|\tau_y$ is splitting $\| > 0$, then $\bar{\lambda}_1^*(y) = \emptyset$. For the sequence $z = \langle y_0, 1, y_1, 1, \ldots \rangle$ we have $y \prec z$ and, since $\bar{\lambda}_1^*$ fulfills (L2), we have $\bar{\lambda}_1^*(z) = \emptyset$. But $1 \Vdash \{1, 3, 5, \ldots\} \subset \tau_z$, thus $1 \Vdash ``\tau_z$ is supported" which, by (2), implies $\lambda_2(z) \neq \emptyset$.

The convergence $\bar{\lambda}_1$ is not comparable with λ_2, λ_3 , and λ_4 . Namely, $\bar{\lambda}_1(\langle 0 \rangle) = \{0\} \uparrow$ and $\lambda_4(\langle 0 \rangle) = \{0\}$ implies $\bar{\lambda}_1 \nleq \lambda_4$. The relation $\bar{\lambda}_1 \ngeq \lambda_2$ follows from $\bar{\lambda}_1^* \nsucceq \lambda_2$, proved above.

292 M. S. Kurilić and A. Pavlović : The convergence of the sequences...

Remark 6.2. For the $(\omega, 2)$ -distributive algebras the diagram collapses to the diagram containing two elements, e.g. λ_1 and $\bar{\lambda}_1$ (see Example 2.4 and Fact 5.2(a)).

References

- B. BALCAR, W. GLÓWCZYŃSKI and T. JECH, The sequential topology on complete Boolean algebras, *Fund. Math.* 155 (1998), 59–78.
- [2] R. ENGELKING, General Topology, P.W.N., Warszawa, 1985.
- [3] I. FARAH and S. SOLECKI, Two $F_{\sigma\delta}$ ideals, *Proc. Amer. Math. Soc.* **131**, no. 6 (2003), 1971–1975.
- [4] T. JECH, Set Theory, 2. corr. ed., Springer, Berlin, 1997.
- [5] M. S. KURILIĆ, Unsupported Boolean algebras and forcing, Math. Logic Quart. 50, no. 6 (2004), 594–602.
- [6] M. S. KURILIĆ, Independence of Boolean algebras and forcing, Ann. Pure Appl. Logic 124 (2003), 179–191.
- [7] M. S. KURILIĆ and A. PAVLOVIĆ, A posteriori convergence in complete Boolean algebras with the sequential topology, Ann. Pure Appl. Logic 148, no. 1–3 (2007), 49–62.
- [8] M. S. KURILIĆ and A. PAVLOVIĆ, Some forcing related convergence structures on complete Boolean algebras, Novi Sad J. Math. 40, no. 2 (2010), 77–94.
- [9] M. S. KURILIĆ and A. PAVLOVIĆ, A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube, submitted.
- [10] M. S. KURILIĆ and S. TODORČEVIĆ, Property (ħ) and cellularity of complete Boolean algebras, Arch. Math. Logic 48, no. 8 (2009), 705-718.
- [11] D. MAHARAM, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154–167.
- [12] B. VELIČKOVIĆ, ccc forcing and splitting reals, Israel J. Math. 147 (2005), 209-220.

MILOŠ S. KURILIĆ DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY OF NOVI SAD TRG DOSITEJA OBRADOVIĆA 4 21000 NOVI SAD SERBIA

E-mail: milos@dmi.uns.ac.rs

ALEKSANDAR PAVLOVIĆ DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY OF NOVI SAD TRG DOSITEJA OBRADOVIĆA 4 21000 NOVI SAD SERBIA

E-mail: apavlovic@dmi.uns.ac.rs

(Received April 4, 2011)