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The convergence of the sequences coding
the ground model reals

By MILOŠ S. KURILIĆ (Novi Sad) and ALEKSANDAR PAVLOVIĆ (Novi Sad)

Abstract. We investigate the convergence λ1 on a complete Boolean algebra B
defined in the following way: a sequence x = 〈xn : n ∈ ω〉 in B converges to the

point lim sup x of B, if in each generic extension VB[G] the real coded by the name

τx = {〈ň, xn〉 : n ∈ ω} belongs to the ground model V ; otherwise, x has no limit points.

It is shown that λ1 generates the same topology as the convergence λ̄4, generalizing the

sequential convergence on the Aleksandrov cube and that for a c.B.a. B the following

conditions are equivalent: (1) The algebra B is (ω, 2)-distributive; (2) The (L2)-closure

of λ1, λ̄1, is a topological convergence; (3) λ̄1 = λ̄4; (4) λ1 = λ4; and, for the algebras

satisfying hcc(B) > c, (5) λ̄1 is a weakly topological convergence. Also, it is shown that

the convergence λ̄1 is not weakly topological, if forcing by B produces splitting reals.

1. Preliminaries

Topologies and convergence structures on Boolean algebras as well as the in-

terplay between the topological, algebraic and forcing-related properties of Boole-

an algebras are extensively investigated. The results concerning this interplay are

useful because, for example, they enable us to attack algebraic problems by to-

pological methods (see e.g. [3]) or topological problems using the techniques of

forcing [7].

In this paper we investigate the convergence λ1 on an arbitrary complete
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Boolean algebra B defined in the following way: a sequence x = 〈xn : n ∈ ω〉 con-
verges to lim supx, if 1 ° τx ∈ V , where τx = {〈ň, xn〉 :n∈ω} and, otherwise, x

has no limit points. In addition, we compare this convergence with some conver-

gences considered in [8]. One of them is the algebraic convergence [11], [1] related

to the von Neumann and the Maharam problem and generalizing the convergence

on the Cantor cube; another one is a generalization of the convergence on the

Aleksandrov cube considered in [9].

Our notation is mainly standard. So, ω denotes the set of natural numbers,

Y X the set of all functions f : X → Y and ω↑ω the set of all strictly increasing

functions from ω into ω. A sequence in a set X is each function x : ω → X;

instead of x(n) we usually write xn and also x = 〈xn : n ∈ ω〉. The constant

sequence 〈a, a, a, . . . 〉 is denoted by 〈a〉. If f ∈ ω↑ω, the sequence y = x ◦ f is said

to be a subsequence of the sequence x and we write y ≺ x.

If 〈X,O〉 is a topological space, a point a ∈ X is said to be a limit point of a

sequence x ∈ Xω (we will write: x →O a) iff each neighborhood U of a contains

all but finitely many members of the sequence. A space 〈X,O〉 is called sequential

iff a set A ⊂ X is closed whenever it contains each limit of each sequence in A.

If X is a non-empty set, each mapping λ : Xω → P (X) is a convergence

on X and the mapping uλ : P (X) → P (X), defined by uλ(A) =
⋃

x∈Aω λ(x), the

operator of sequential closure determined by λ. If λ1 is another convergence on

X, then we will write λ ≤ λ1 iff λ(x) ⊂ λ1(x), for each sequence x ∈ Xω. Clearly,

≤ is a partial order on the set Conv(X) = {λ : λ is a convergence on X}.
If 〈X,O〉 is a topological space, then the mapping limO : Xω → P (X) defi-

ned by limO(x) = {a ∈ X : x →O a} is the convergence on X determined by the

topology O and for the operator λ = limO we have (see [2])

(L1) ∀a ∈ X a ∈ λ(〈a〉);
(L2) ∀x ∈ Xω ∀y ≺ x λ(x) ⊂ λ(y);

(L3) ∀x ∈ Xω ∀a ∈ X ((∀y ≺ x ∃z ≺ y a ∈ λ(z)) ⇒ a ∈ λ(x)).

A convergence λ : Xω → P (X) is called a topological convergence iff there is a

topology O on X such that λ = limO. The following fact (see, for example, [8])

shows that each convergence has a minimal topological extension and connects

topological and convergence structures.

Fact 1.1. Let λ : Xω → P (X) be a convergence on a non-empty set X.

Then

(a) There is the maximal topology Oλ on X satisfying λ ≤ limO;

(b) Oλ = {O ⊂ X : ∀x ∈ Xω (O ∩ λ(x) 6= ∅ ⇒ ∃n0 ∈ ω ∀n ≥ n0 xn ∈ O)};
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(c) 〈X,Oλ〉 is a sequential space;

(d) Oλ = {X \ F : F ⊂ X ∧ uλ(F ) = F}, if λ satisfies (L1) and (L2);

(e) limOλ
= min{λ′ ∈ Conv(X) : λ′ is topological and λ ≤ λ′};

(f) OlimOλ
= Oλ;

(g) If λ1 : Xω → P (X) and λ1 ≤ λ, then Oλ ⊂ Oλ1
;

(h) λ is a topological convergence iff λ = limOλ
.

In our proofs we will mainly use the technique of forcing (see [4]). So, if B
is a complete Boolean algebra belonging to the ground model V of ZFC, V B

will be the class of B-names. For a formula ϕ(v0, . . . , vn) and τ0, . . . , τn ∈ V B

the corresponding Boolean value will be denoted by ‖ϕ(τ0, . . . , τn)‖. If G is a

B-generic filter over V and τ ∈ V B, the G-evaluation of τ will be denoted by τG.

For A ∈ V , the corresponding B-name will be Ǎ = {〈a, 1〉 : a ∈ A}.
Subsets of ω are called reals and can be coded by convenient names. Namely,

each real belonging to a generic extension has a nice name of the form τx =

{〈ň, xn〉 : n ∈ ω}, where xn = ‖ň ∈ τ‖, for each n ∈ ω.

A real r ∈ [ω]ω ∩VB[G] will be called: new iff r 6∈ V ; old iff r ∈ V ; dependent

iff there is A ∈ [ω]ω ∩ V such that A ⊂ r or A ⊂ ω \ r; independent or a splitting

real iff it is not dependent [6]; supported iff there is A ∈ [ω]ω ∩V such that A ⊂ r;

unsupported iff it is not supported [5]. Using the elementary properties of forcing

it is easy to prove the following two facts (see [9])

Fact 1.2. Let x = 〈xn : n ∈ ω〉 be a sequence in a complete Boolean alge-

bra B and τx = {〈ň, xn〉 : n ∈ ω} the corresponding B-name for a subset of ω.

Then

(a) ‖τx = ω̌‖ =
∧

n∈ω xn;

(b) ‖τx is cofinite ‖ =
∨

k∈ω

∧
n≥k xn (= lim inf x);

(c) ‖τx is old infinite ‖ =
∨

A∈[ω]ω
∧

n∈ω xn
χA(n); where x1

n = xn, x
0
n = x′

n.

(d) ‖τx is supported ‖ =
∨

A∈[ω]ω
∧

n∈A xn;

(e) ‖τx is dependent ‖ =
∨

A∈[ω]ω (
∧

n∈A xn ∨∧
n∈A x′

n);

(f) ‖τx is infinite ‖ =
∧

k∈ω

∨
n≥k xn (= lim supx);

(g) ‖τx = ω̌‖ ≤ ‖τx is cofinite ‖ ≤ ‖τx is old infinite ‖ ≤ ‖τx is supported ‖ ≤
‖τx is infinite dependent ‖ ≤ ‖τx is infinite ‖.
Proof. We prove (c) and the rest of the proof is similar.

‖τx is old infinite‖ = ‖∃A ∈ ([ω]ω)V ˇ(∀n ∈ A (n ∈ τx) ∧ ∀n ∈ ω̌ \ A (n 6∈ τx))‖ =∨
A∈[ω]ω (

∧
n∈A xn ∧∧

n∈ω\A x′
n) =

∨
A∈[ω]ω

∧
n∈ω x

χA(n)
n . ¤
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Fact 1.3. If x = 〈xn : n ∈ ω〉 is a sequence in a c.B.a. B and f ∈ ω↑ω, then
y = x ◦ f is a subsequence of x and for the B-names τx and τy we have

(a) 1 ° τy = f−1[τx];

(b) lim sup y = ‖|f [ω]̌ ∩ τx| = ω̌‖;
(c) lim inf y = ‖f [ω]̌ ⊂∗ τx‖;
(d) lim inf x ≤ lim inf y ≤ lim sup y ≤ lim supx.

2. The convergence λ1

First, choosing a convenient notation, we present this research in the con-

text of some previous results. Let B be a complete Boolean algebra and let the

convergences λi : Bω → P (B), for i ∈ {0, 1, 2, 3, 4}, be defined by

λi(x) =

{
{b4(x)} if bi(x) = b4(x),

∅ if bi(x) < b4(x),
(1)

where
b0(x) = ‖τx is cofinite‖ = lim inf x,

b1(x) = ‖τx is old infinite‖,
b2(x) = ‖τx is supported‖,
b3(x) = ‖τx is infinite dependent‖,
b4(x) = ‖τx is infinite‖ = lim supx.

Then λ0 is the well known algebraic convergence [11] generating the sequential

topology Oλ0 on B [1] related to the von-Neumann and the Maharam problem,

λ1 will be considered in this paper and the convergences λ2, λ3 and λ4 were

investigated in [8] and [9] and are related in the following way (see [8]).

Fact 2.1. Let B be a complete Boolean algebra. Then

(a) λ2 ≤ λ3 ≤ λ4;

(b) λ2, λ3 and λ4 satisfy condition (L1), but do not satisfy (L2);

(c) λ2 = λ3 iff λ2 = λ4 iff the algebra B is (ω, 2)-distributive;

(d) λ3 = λ4 iff forcing by B does not produce splitting reals.

Thus λ1(x) = {lim supx}, if ‖τx is old infinite‖ = ‖τx is infinite‖ and

λ1(x) = ∅, otherwise. Preliminarily we have
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Theorem 2.2. Let B be a complete Boolean algebra. Then

(a) For each sequence x in B we have

λ1(x) =

{
{lim supx} if 1 ° τx is old,

∅ otherwise;

(b) λ0 ≤ λ1 ≤ λ2;

(c) The convergence λ1 satisfies condition (L1), but does not satisfy (L2);

(d) λ1 = λ2 iff the algebra B is (ω, 2)-distributive;

(e) λ1 = λ4 iff the algebra B is (ω, 2)-distributive.

Proof. (a)

λ1(x) 6= ∅ ⇔ ‖τx is infinite‖ ∧ ‖τx is old‖ = ‖τx is infinite‖
⇔ ‖τx is infinite‖ ≤ ‖τx is old‖
⇔ 1 ° τx is infinite ⇒ τx is old

⇔ 1 ° τx is finite ∨ τx is old

⇔ 1 ° τx is old.

(b) follows from Fact 1.2(g).

(c) For a constant sequence x = 〈a〉 we have a ° τx = ω̌ and a′ ° τx = ∅̌,
which implies 1 ° “τx is old”. Since lim supx = a, by (a) we have a ∈ λ1(〈a〉) and
(L1) holds. For the sequence x = 〈1, 0, 1, 0, . . . 〉 we have 1 ° τx = {0, 2, 4, . . . }̌ ∈
V and, by (a), λ1(x) = {lim supx} = {1}. But y=〈0, 0, 0, . . . 〉≺x and 1 ° τy = ∅̌,
which, by (a), implies λ1(y) = {0} 6⊃ λ1(x).

(d) By Theorem 7.5 of [8] for each sequence x in B we have

λ2(x) =




{lim supx} if 1 ° τx is finite or supported,

∅ otherwise.
(2)

(⇐) If B is (ω, 2)-distributive, it does not produce new reals and, hence, for

each sequence x in B we have 1 ° “τx is old” and, clearly, 1 ° “τx is finite or

supported”. So, by (a) and (2), λ1(x) = {lim supx} = λ2(x).

(⇒) Suppose that the algebra B is not (ω, 2)-distributive. Then there is an

extension VB[G] containing a new set X ⊂ ω. Let σ be a B-name such that

X = σG and 1 ° σ ⊂ ω̌ and let b ∈ G, where

b ° σ is new. (3)
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If y = 〈yn : n ∈ ω〉, where yn = ‖ň ∈ σ‖, n ∈ ω, for τy = {〈ň, yn〉 : n ∈ ω} we

have

1 ° σ = τy. (4)

For x = 〈y0, 1, y1, 1, y2, 1 . . . 〉 we have 1 ° {1, 3, 5, . . . }ˇ⊂ τx and, hence, 1 ° τx is

supported, which, by (2) implies λ2(x) 6= ∅.
On the other hand y = x ◦ f , where f : ω → ω is defined by f(k) = 2k,

so, by Fact 1.3(a), 1 ° τy = f̌−1[τx], which, together with (3) and (4), implies

b ° “f̌−1[τx] is new”. Now, since f ∈ V , we have b ° “τx is new” and, by (a),

λ1(x) = ∅. So λ1 6= λ2.

(e) follows from (d) and Fact 2.1(c). ¤

Remark 2.3. Imitating the proof of the part (a) of the previous theorem one

can easily show that, if B is a complete Boolean algebra, x a sequence in B and

τx the corresponding name for a real, then the real determined by τx is

- always old iff λ1(x) 6= ∅;
- sometimes new, but always supported iff λ1(x) = ∅ and λ2(x) 6= ∅;
- sometimes unsupported, but always unsplitting iff λ2(x) = ∅ and λ3(x) 6= ∅;
- sometimes splitting iff λ3 = ∅ and λ4(x) 6= ∅.

(Here “always” means in each and “sometimes” in some generic extension.)

By Fact 2.1(a) and Theorem 2.2(b) we have λ1 ≤ λ2 ≤ λ3 ≤ λ4; by

Fact 2.1(c), λ2 = λ3 < λ4 is impossible and, by Fact 2.1(c) and Theorem 2.2(d),

λ1 = λ2 iff λ2 = λ3. Now, using Fact 2.1(c), (d) and Theorem 2.2(d), we show

that, up to these restrictions, everything is possible.

Example 2.4. λ1 = λ2 = λ3 = λ4 holds in each (ω, 2)-distributive and, in

particular, each atomic complete Boolean algebra.

λ1 < λ2 < λ3 = λ4 holds in each complete Boolean algebra which produces

new reals, but does not produce splitting reals, for example in r.o.(P), where P is

the Sacks or the Miller forcing.

λ1 < λ2 < λ3 < λ4 holds in each complete Boolean algebra which produces

splitting reals, for example in r.o.(P), where P is the Cohen or the random forcing.

3. The closure of λ1 under (L2)

By Theorem 2.2(c), the convergence λ1 does not satisfy (L2) and, hence, it

is never a topological convergence. The minimal closures of a convergence under

(L2) and (L3) are described in the following general fact (see [8]).
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Fact 3.1. Let λ : Xω → P (X) be a convergence satisfying condition (L1).

Then

(a) The mapping λ̄ : Xω → P (X) defined by λ̄(y) =
⋃

x∈Xω,f∈ω↑ω,y=x◦f λ(x) is
the minimal convergence bigger than λ and satisfying (L1) and (L2);

(b) λ̄∗ : Xω → P (X) defined by λ̄∗(y) =
⋂

f∈ω↑ω
⋃

g∈ω↑ω λ̄(y ◦ f ◦ g) is the

minimal convergence bigger than λ̄ and satisfying (L1)–(L3);

(c) λ ≤ λ̄ ≤ λ̄∗ ≤ limOλ
;

(d) Oλ = Oλ̄ = Oλ̄∗ .

For a subset A of a complete Boolean algebra B let A ↑= {b ∈ B : ∃a ∈
Aa ≤ b}. The (L2)-closures of the convergences λ2, λ3 and λ4 are described in

the following fact (see [8] and [9]).

Fact 3.2. Let B be a complete Boolean algebra. Then

(a) λ̄4(y) = {lim sup y}↑, for each sequence y in B;
(b) λ̄2 = λ̄3 = λ̄4;

(c) The convergence λ̄4 generalizes the convergence on the Aleksandrov cube.

Now, concerning the convergence λ1 we have

Theorem 3.3. Let B be a complete Boolean algebra. Then

(a) The closure of λ1 under (L2) is given by

λ̄1(y) =




{lim sup y}↑ if 1 ° τy is old,

∅ otherwise;
(5)

(b) λ̄1 = λ̄4 iff the algebra B is (ω, 2)-distributive.

Proof. (a)

Claim 1. λ̄1(y) = {lim sup y}↑ if and only if 1 ° τy is old.

Proof of Claim 1. (⇒) Let λ̄1(y) = {lim sup y} ↑. Then, by Fact 3.1(a) the set

λ̄1(y) =
⋃

x∈Bω,f∈ω↑ω,y=x◦f λ1(x) is nonempty and, hence there are x ∈ Bω and

f ∈ ω↑ω such that y = x ◦ f and λ1(x) 6= ∅. By Theorem 2.2(a), 1 ° “τx is old”

and by Fact 1.3(a), 1 ° τy = f−1[τx], which implies 1 ° “τy is old”.

(⇐) Let 1 ° “τy is old”. According to Fact 3.1(a) we show that

⋃
x∈Bω,f∈ω↑ω,y=x◦f

λ1(x) = {lim sup y}↑ .

(⊂) Suppose that x ∈ Bω, f ∈ ω↑ω, y = x ◦ f and b ∈ λ1(x). Then b =

lim supx and, since y ≺ x, by Fact 1.3(d) we have lim sup y ≤ lim supx = b.
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(⊃) Let b ≥ lim sup y. Let x = 〈y0, b, y1, b, y2, . . . 〉 and f, g ∈ ω↑ω, where
f(k) = 2k and g(k) = 2k+ 1. Then y = x ◦ f and, if z = x ◦ g, using Facts 1.2(f)

and 1.3(b) we have

lim supx = ‖|τx| = ω̌‖ = ‖|τx ∩ fˇ[ω]| = ω̌‖ ∨ ‖|τx ∩ gˇ[ω]| = ω̌‖
= ‖|τy| = ω̌‖ ∨ ‖|τz| = ω̌‖ = ‖|τy| = ω̌‖ ∨ b = b.

So, by Theorem 2.2(a), for a proof that b ∈ λ1(x) it remains to be shown that

1 ° “τx is old”, which follows from 1 ° “τy is old” and the following subclaim.

Subclaim 1. (i) b′ ° τx = f̌ [τy]; (ii) b ° τx = f̌ [τy] ∪ {1, 3, 5, . . . }̌.
Proof of Subclaim 1. By Fact 1.3(a) we have 1 ° τy = f̌−1[τx] and, hence,

1 ° f̌ [τy] ⊂ τx. (6)

Let G be a B-generic filter over V .

(i) If b′ ∈ G, then for n ∈ (τx)G we have xn ∈ G and, since b 6∈ G, there is

k ∈ ω such that xn = x2k = yk. Hence k ∈ (τy)G and n = f(k) ∈ f [(τy)G]. So

b′ ° τx ⊂ f̌ [τy] and, by (6), b′ ° τx = f̌ [τy].

(ii) Clearly, b ° {1, 3, 5, . . . }̌ ⊂ τx and, by (6), b ° f̌ [τy] ⊂ τx. On the

other hand, let b ∈ G and n ∈ (τx)G, that is xn ∈ G. If n is odd, we are done.

Otherwise, as in (a) we show that n ∈ f [(τy)G]. Claim 1 is proved.

Claim 2. λ̄1(y) 6= ∅ ⇔ 1 ° τy is old.

Proof of Claim 2. (⇒) Suppose that a ∈ λ̄1(y). Then, by Fact 3.1(a), there

are x ∈ Bω and f ∈ ω↑ω such that y = x ◦ f and a ∈ λ1(x), which, by The-

orem 2.2(a), implies 1 ° “τx is old”. By Fact 1.3(a) we have 1 ° τy = f−1[τx]

and, consequently, 1 ° “τy is old”.

(⇐) If λ̄1(y) = ∅, then, since λ1 ≤ λ̄1, we have λ1(y) = ∅ and, by The-

orem 2.2(a), ¬1 ° τy is old.

(b) It is well known [4] that B is (ω, 2)-distributive iff forcing by B does not

produce new reals, that is 1 ° τy is old, for each sequence y in B. So we apply

(a) and Fact 3.2(a). ¤

4. The topology generated by λ1

By Theorem 3.3(b) and Fact 3.1(d), if B is an (ω, 2)-distributive algebra, then

Oλ1 = Oλ4 . In this section we show more, that on each complete Boolean algebra

the convergences λ1, λ2, λ3 and λ4 generate the same topology, investigated in [9].

Concerning the convergences λ0, λ2, λ3 and λ4 we have (see [8] and [9])
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Fact 4.1. Let B be a complete Boolean algebra. Then

(a) Oλ2
= Oλ3

= Oλ4
;

(b) Oλ4 is a sequential T0 connected compact topology on B;
(c) Oλ4

and its dual generate the sequential topology, Oλ0
, when B is a Maharam

algebra.

We will use the following general fact (see [8]).

Fact 4.2. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2)

and let the mappings uα
λ : P (X) → P (X), α ≤ ω1, be defined by recursion in the

following way: for A ⊂ X

u0
λ(A) = A,

uα+1
λ (A) = uλ(u

α
λ(A)) and

uγ
λ(A) =

⋃
α<γ u

α
λ(A), for a limit γ ≤ ω1.

Then uω1

λ is the closure operator in the space 〈X,Oλ〉.
We will say that a subset A of a c.B.a. B is upward closed iff A = A ↑. A

sequence x in B will be called decreasing if x0 ≥ x1 ≥ x2 ≥ . . . .

Lemma 4.3. Let B be a complete Boolean algebra. Then

(a) The set λ̄1(x) is upward closed, for each sequence x in B;
(b) If x is a decreasing sequence in B, then λ1(x) = {∧n∈ω xn};
(c) If A ⊂ B is an upward closed set, then uλ̄1

(A) = uλ̄2
(A);

(d) The set uλ̄1
(A) is upward closed, for each A ⊂ B.

Proof. (a) follows from Theorem 3.3.

(b) If x = 〈xn : n ∈ ω〉 is decreasing, then lim supx =
∧

n∈ω

∨
k≥n xk =∧

n∈ω xn and, by Theorem 2.2(a), it remains to be shown that 1 ° τx is old. If

G is a B-generic filter over V , then (τx)G = {n : xn ∈ G}, so if m < n ∈ (τx)G,

then xm ≥ xn ∈ G, which implies xm ∈ G and, hence, m ∈ (τx)G. Thus (τx)G is

either a finite set or equal to ω and, consequently, belongs to V .

(c) Let A ⊂ B be an upward closed set.

(⊂) Since λ1 ≤ λ2 ≤ λ̄2, by the minimality of λ̄1 (see Fact 3.1(a)) we have

λ̄1 ≤ λ̄2 and, hence, uλ̄1
(A) =

⋃
x∈Aω λ̄1(x) ⊂

⋃
x∈Aω λ̄2(x) = uλ̄2

(A).

(⊃) By Fact 3.2 we have λ̄2(x) = {lim supx}↑. So, for x ∈ Aω we show that

{lim supx} ↑⊂ uλ̄1
(A). Let lim supx = b. Then the sequence t = 〈tn : n ∈ ω〉

defined by

tn = b ∨
∨

k≥n

xk
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is decreasing and, since tn ≥ xn ∈ A, we have t ∈ Aω. Since

∧
n∈ω

tn = b ∨
∧
n∈ω

∨

k≥n

xk = b ∨ lim supx = b

by (b) we have b ∈ λ1(t) ⊂ λ̄1(t) and, by (a), {b}↑⊂ λ̄1(t)↑= λ̄1(t) ⊂ uλ̄1
(A).

(d) We prove that uλ̄1
(A)↑⊂ uλ̄1

(A). If b ≥ a ∈ uλ̄1
(A), then there is x ∈ Aω

such that a ∈ λ̄1(x). By (a) we have b ∈ λ̄1(x), which implies b ∈ uλ̄1
(A). ¤

Theorem 4.4. Let B be a complete Boolean algebra. Then

(a) uω1

λ̄1
(A) = uω1

λ̄2
(A), for each A ⊂ B;

(b) Oλ1
= Oλ2

= Oλ3
= Oλ4

.

Proof. (a) (⊂) Since λ̄1 ≤ λ̄2, we have uω1

λ̄1
(A) ⊂ uω1

λ̄2
(A), for each A ⊂ B.

(⊃) First, for A ⊂ B using induction we show that for each α ≤ ω1

uα
λ̄2
(uλ̄1

(A)) = uα
λ̄1
(uλ̄1

(A)) and this set is upward closed. (7)

By Lemma 4.3(d), (7) is true for α = 0.

Let β ≤ ω1 and suppose that (7) holds for each α < β.

If β is a limit ordinal, then, by the induction hypothesis, we have

uβ

λ̄2
(uλ̄1

(A)) =
⋃

α<β

uα
λ̄2
(uλ̄1

(A)) =
⋃

α<β

uα
λ̄1
(uλ̄1

(A)) = uβ

λ̄1
(uλ̄1

(A))

and, since the union of upward closed sets is upward closed, (7) is true for β.

If β = α+ 1, then, by the induction hypothesis we have

uα+1
λ̄2

(uλ̄1
(A)) = uλ̄2

(uα
λ̄2
(uλ̄1

(A))) = uλ̄2
(uα

λ̄1
(uλ̄1

(A))). (8)

By the hypothesis the set uα
λ̄1
(uλ̄1

(A)) is upward closed and, by Lemma 4.3(c),

uλ̄2
(uα

λ̄1
(uλ̄1

(A))) = uλ̄1
(uα

λ̄1
(uλ̄1

(A))) = uα+1
λ̄1

(uλ̄1
(A)) (9)

and uβ

λ̄2
(uλ̄1

(A)) = uβ

λ̄1
(uλ̄1

(A)) follows from (8) and (9). By Lemma 4.3(d) and

(9) this set is upward closed and the proof of (7) is over.

Since A ⊂ uλ̄1
(A) ⊂ uω1

λ̄1
(A), by Fact 4.2 we have uω1

λ̄1
(uλ̄1

(A)) = uω1

λ̄1
(A).

Using (7) we obtain uω1

λ̄2
(A) ⊂ uω1

λ̄2
(uλ̄1

(A)) = uω1

λ̄1
(uλ̄1

(A)) = uω1

λ̄1
(A).

(b) By (a) and Fact 4.2 we have Oλ̄1
= Oλ̄2

and, by Fact 3.1(d), Oλ1 = Oλ2 .

By Fact 4.1(a), the other two equalities hold as well. ¤

Thus the topology Oλ1 , generated by the convergence λ1, has the properties

given in Fact 4.1(b) and (c).
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5. Topological and weakly topological convergences

In this section we investigate the classes of complete Boolean algebras on

which the convergence λ̄1 (satisfying conditions (L1) and (L2)) is topological or

weakly topological. According to [8], a convergence λ : Xω → P (X) will be called

weakly topological iff it satisfies conditions (L1) and (L2) and its (L3)-closure, λ∗,
is a topological convergence. The following general fact can be found in [8].

Fact 5.1. A convergence λ : Xω → P (X) satisfying (L1) and (L2) is weakly

topological iff λ∗ = limOλ
, that is for each x ∈ Xω and a ∈ X

a ∈ limOλ
(x) ⇔ ∀y ≺ x ∃z ≺ y a ∈ λ(z).

By [9], for the convergence λ̄4 we have

Fact 5.2. Let B be a complete Boolean algebra. Then

(a) λ̄4 is a topological convergence iff the algebra B is (ω, 2)-distributive;

(b) If the algebra B satisfies (~), then λ̄4 is a weakly topological convergence.

We note that, according to [7], a complete Boolean algebra satisfies condition

(~) iff ∀x ∈ Bω ∃y ≺ x ∀z ≺ y lim sup z = lim sup y. More about condition (~)
(implied by the ccc) can be found in [10].

For the convergence λ̄1 we have the following analogue of Fact 5.2(a).

Theorem 5.3. λ̄1 is a topological convergence iff the algebra B is (ω, 2)-

distributive.

Proof. (⇒) Let λ̄1 be a topological convergence. Then, by Fact 1.1(h),

λ̄1 = limOλ̄1
. By Fact 3.1(d) and Theorem 4.4(b) we have Oλ̄1

= Oλ1 = Oλ2 thus

λ̄1 = limOλ2
≥ λ2. Since λ1 ≤ λ2 ≤ λ̄1, by Fact 3.1(a) we have λ̄1 = λ̄2 and, by

Fact 3.2(b) and Theorem 3.3(b) the algebra B is (ω, 2)-distributive.

(⇐) follows from Theorem 3.3(b) and Fact 5.2(a). ¤

Now we deal with the question on which algebras the convergence λ̄1 is weakly

topological. First we describe its (L3)-closure, λ̄∗
1, in terms of forcing.

Theorem 5.4. Let B be a complete Boolean algebra. Then for y ∈ Bω we

have

(a) λ̄∗
1(y) =

⋂
A∈[ω]ω

⋃
B∈[A]ω∧‖τy∩B̌ is old‖=1 ‖|τy ∩ B̌| = ω̌‖↑;

(b) λ̄∗
1(y) 6= ∅ iff Dy = {B ∈ [ω]ω : ‖τy ∩ B̌ is old‖ = 1} is a dense set in the

poset 〈[ω]ω,⊂〉.
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Proof. (a) By Fact 3.1(b), for y ∈ Bω we prove that

⋂

f∈ω↑ω

⋃

g∈ω↑ω

λ̄1(y ◦ f ◦ g) =
⋂

A∈[ω]ω

⋃

B∈[A]ω∧ ‖τy∩B̌ is old‖=1

‖|τy ∩ B̌| = ω̌‖↑

(⊂) Suppose that for each f ∈ ω↑ω there is g ∈ ω↑ω such that a ∈ λ̄1(y◦f ◦g),
which, by Theorem 3.3 and Fact 1.3, means that

‖τy◦f◦g is old‖ = 1 and a ∈ ‖|τy ∩ (f ◦ g)[ω]̌ | = ω̌‖↑ . (10)

Let A ∈ [ω]ω and let f ∈ ω↑ω, where A = f [ω]. By the assumption, there is

g ∈ ω↑ω such that (10) holds. Then B = f [g[ω]] ⊂ A and, since f and g are

injections, B ∈ [A]ω. By (10), a ∈ ‖|τy ∩ B̌| = ω̌‖↑. By Fact 1.3, in each generic

extension VB[G] we have (τy◦f◦g)G = (f ◦ g)−1[(τy)G] = (f ◦ g)−1[(τy)G ∩B] and,

hence, (τy)G ∩B = f [g[(τy◦f◦g)G]]. Thus

‖τy◦f◦g is old ⇔ τy ∩ B̌ is old‖ = 1, (11)

which together with (10) implies ‖τy ∩ B̌ is old‖ = 1.

(⊃) Suppose that for each A ∈ [ω]ω there is B ∈ [A]ω such that

‖τy ∩ B̌ is old‖ = 1 and a ∈ ‖|τy ∩ B̌| = ω̌‖↑ . (12)

Let f ∈ ω↑ω and A = f [ω]. By the assumption, there is B ∈ [A]ω such that (12)

holds. If g ∈ ω↑ω where g[ω] = f−1[B], then B = (f ◦ g)[ω] and, by (12), we have

a ∈ ‖|τy ∩ (f ◦ g)[ω]̌ | = ω̌‖↑.By (11), ‖τy◦f◦g is old‖ = 1, thus a ∈ λ̄1(y ◦ f ◦ g).
(b) (⇒) Let a ∈ λ̄∗

1(y) and A ∈ [ω]ω. By (a) there is B ∈ [A]ω such that

‖τy ∩ B̌ is old‖ = 1 and a ≥ ‖|τy ∩ B̌| = ω̌‖. Thus B ⊂ A and B ∈ Dy.

(⇐) Let Dy be a dense set in 〈[ω]ω,⊂〉 and a = ‖|τy| = ω̌‖. Since for

each A ∈ [ω]ω there is B ∈ [A]ω such that ‖τy ∩ B̌ is old‖ = 1 and, clearly,

a ≥ ‖|τy ∩ B̌| = ω̌‖, by (a) we have a ∈ λ̄∗
1(y). ¤

Theorem 5.5. If there is a sequence y in B such that ‖τy is splitting‖ > 0,

then λ̄∗
1(y) = ∅ and the convergence λ̄1 is not weakly topological.

Proof. Let ‖τy is splitting ‖ = b > 0 and suppose that λ̄∗
1(y) 6= ∅. Then, by

(b), there is B ∈ [ω]ω such that 1 ° τy ∩ B̌ is old. But then b ° “τy ∩ B̌ is old∧ τy
is splitting”, which is impossible. Thus λ̄∗

1(y) = ∅. By Theorem 4.4, limλ1(y) =

limλ4(y) ⊃ λ4(y) 3 lim sup y and, hence, λ̄∗
1(y) 6= limλ1(y) so λ̄1 is not a weakly

topological convergence. ¤
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Concerning the previous theorem we remark that it is possible that the con-

vergence λ̄1 is not weakly topological, although forcing by B does not produce

splitting reals (see Example 5.8). In contrast to Fact 5.2(b) we have

Example 5.6. The ccc (and, consequently, condition (~)) does not imply that

the convergence λ̄1 is weakly topological. The Cohen algebra is ccc, produces

splitting reals and, by Theorem 5.5, λ̄1 is not a weakly topological convergence.

Now, inside a wide class of complete Boolean algebras, we characterize the

algebras on which the convergence λ̄1 is weakly topological.

Theorem 5.7. Let B be a Boolean algebra such that hcc(B) > c (i.e. below

each b ∈ B+ there is an antichain of size c). Then

λ̄1 is a weakly topological convergence ⇔ B is (ω, 2)-distributive. (13)

Proof. (⇐) This implication follows from Theorem 5.3.

(⇒) If B is not (ω, 2)-distributive, then b = ‖∃r ⊂ ω̌ (r is new)‖ > 0 and, by

the Maximum Principle, there is a name π such that

b ° π ⊂ ω̌ ∧ π is new. (14)

We choose an enumeration [ω]ω = {Sα : α < c}, bijections fα : Sα → ω, α < c,

and a maximal antichain under b, {bα : α < c}. Now, for the B-name σ defined

by σ = {〈ň,∨α<c(bα ∧ ‖fα(n)̌ ∈ π‖)〉 : n ∈ ω} it is easy to prove that bα °
σ = f−1

α [π], for α < c, (see [7, Th. 4, Cl. 1]) and, clearly, 1 ° σ = τx, where

x = 〈xn : n ∈ ω〉 and xn =
∨

α<c bα ∧ ‖fα(n)̌ ∈ π‖, n ∈ ω. Thus

bα ° τx = f−1
α [π]. (15)

Let us prove

∀B ∈ [ω]ω ‖τx ∩ B̌ is new‖ > 0. (16)

Let B ∈ [ω]ω and α < c, where B = Sα. Let G be a B-generic filter over V

containing bα. Since bα < b we have b ∈ G and, by (14), πG 6∈ V . By (15),

(τx)G = f−1
α [πG] ⊂ B. Now, f−1

α [πG] ∈ V would imply fα[f
−1
α [πG]] = πG ∈ V ,

which is false. Thus f−1
α [πG] = (τx)G = (τx)G ∩B 6∈ V and (16) is proved.

By (16) we have Dx = {B ∈ [ω]ω : 1 ° τx ∩ B̌ is old} = ∅ so, by Theorem

5.4(b), λ̄∗
1(x) = ∅. But, by Theorem 4.4, lim supx ∈ limOλ1

(x) = limOλ̄1
(x) and,

by Fact 5.1, λ̄1 is not a weakly topological convergence. ¤

Example 5.8. λ̄1 is not a weakly topological convergence on the Sacks algebra.

Namely, if B is the Boolean completion of the Sacks forcing, B is homogeneous,

has antichains of size c, adds new reals and we apply Theorem 5.7.
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Is the equivalence (13) a theorem of ZFC? In the following theorem, using a

result of Veličković [12], we show that under the CH, a possible counterexample

can not be nicely definable.

Theorem 5.9. (CH) If B = r.o.(P), where P is a Suslin forcing notion, then

λ̄1 is a weakly topological convergence ⇔ B is (ω, 2)-distributive.

Proof. (⇐) This implication follows from Theorem 5.3.

(⇒) If the algebra B is not (ω, 2)-distributive, then b = ‖∃r⊂ ω̌ (r is new)‖> 0.

If there exists an uncountable antichain below b, then, as in the proof of The-

orem 5.7, we show that λ̄1 is not a weakly topological convergence. Otherwise,

B|b is a non-atomic ccc forcing, clearly, P ∩ b ↓ is a non-atomic ccc Suslin forcing

and, by a result of Veličković [12], produces splitting reals. Now, by Theorem

5.5, λ̄1 is not a weakly topological convergence again. ¤

6. A diagram

Here we describe the relations between the convergence structures considered

in this paper.

Theorem 6.1. Let B be a complete Boolean algebra. Then

(a) If A ⊂ [ω]ω is a mad family, y a sequence in B and 1 ° τy kills Ǎ, then

λ̄∗
1(y) = B and λ̄4(y) = {1};

(b) If forcing by B produces a splitting real in each extension, then the conver-

gences λ̄∗
1 and λ̄4 are not comparable;

Proof. (a) Suppose that 1 ° |τy| = ω̌ ∧ ∀A ∈ Ǎ |τy ∩ A| < ω̌. Then

‖τy is infinite‖ = 1 and, by Facts 1.2 and 3.2(a), we have λ̄4(y) = {1}↑= {1}.
Using Theorem 5.4(a) we prove that 0 ∈ λ̄∗

1(y) (which implies λ̄∗
1(y) = B).

For A ∈ [ω]ω, by the maximality of A, there is A1 ∈ A such that B = A ∩ A1 ∈
[A]ω. Since 1 ° |τy ∩ A1| < ω̌, we have ‖|τy ∩ B̌| < ω̌‖ = 1 which implies

‖τy ∩ B̌ is old‖ = 1 and ‖|τy ∩ B̌| = ω̌‖ = 0.

(b) (λ̄4� λ̄∗
1). By the assumption, there is y ∈Bω such that ‖τy is splitting‖> 0

so, by Theorem 5.5, λ̄∗
1(y) = ∅ and λ̄4(y) 6= ∅.

(λ̄∗
1 � λ̄4). It is known (see [7, Lemma 1]) that there is a mad family A ⊂ [ω]ω

which is killed in each generic extension of the ground model containing new reals.

By the assumption, forcing by B produces new reals in each extension and, hence,
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we have 1 ° ∃x ⊂ ω̌ (x kills Ǎ) and, by the Maximum Principle, there is a B-
name σ such that 1 ° σ ⊂ ω̌ and 1 ° σ kills Ǎ. If yn = ‖ň ∈ σ‖, n ∈ ω, then

1 ° τy = σ and 1 ° τy kills Ǎ. By (a) we have λ̄∗
1(y) = B and λ̄4(y) = {1}. ¤

In the following diagram λ′ ≤ λ′′ denotes that for each c.B.a. B and each

sequence x in B, λ′(x) ⊂ λ′′(x).

@
@
@
@
@
@¡

¡
¡
¡
¡
¡

¡
¡
¡
¡
¡
¡@

@
@
@
@
@

@
@
@
@
@
@

r

r

r r

rr

r

r

r

λ1

λ2

λ3 λ̄1

λ̄1
∗λ4

λ̄2 = λ̄3 = λ̄4

λ̄2
∗
= λ̄3

∗
= λ̄4

∗

limOλi
, i ≤ 4

In the sequel we show that the diagram is correct. By Fact 2.1(a) and

Theorem 2.2(b) we have λ1 ≤ λ2 ≤ λ3 ≤ λ4 and, by Example 2.4, all the

inequalities can be strict. By Fact 3.2(b) we have λ̄2 = λ̄3 = λ̄4, which implies

λ̄∗
2 = λ̄∗

3 = λ̄∗
4 and limOλ2

= limOλ3
= limOλ4

. By Theorem 4.4(b) we have

limOλ1
= limOλ2

. By Fact 3.1, λ1 ≤ λ4 implies λ̄1 ≤ λ̄4 and λ̄∗
1 ≤ λ̄∗

4.

The convergence λ̄∗
1 is not comparable with λ2, λ3, λ4 and λ̄4. The relation

λ̄∗
1 � λ̄4 is proved in (b) of Theorem 6.1. For a proof that λ̄∗

1 6≥ λ2 we follow

Theorem 5.5. If y ∈ Bω, where ‖τy is splitting‖ > 0, then λ̄∗
1(y) = ∅. For the

sequence z = 〈y0, 1, y1, 1, . . .〉 we have y ≺ z and, since λ̄∗
1 fulfills (L2), we have

λ̄∗
1(z) = ∅. But 1 ° {1, 3, 5, . . .}ˇ⊂ τz, thus 1 ° “τz is supported” which, by (2),

implies λ2(z) 6= ∅.
The convergence λ̄1 is not comparable with λ2, λ3, and λ4. Namely, λ̄1(〈0〉) =

{0} ↑ and λ4(〈0〉) = {0} implies λ̄1 � λ4. The relation λ̄1 6≥ λ2 follows from

λ̄∗
1 6≥ λ2, proved above. ¤
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Remark 6.2. For the (ω, 2)-distributive algebras the diagram collapses to the

diagram containing two elements, e.g. λ1 and λ̄1 (see Example 2.4 and Fact 5.2(a)).
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[1] B. Balcar, W. Glówczyński and T. Jech, The sequential topology on complete Boolean
algebras, Fund. Math. 155 (1998), 59–78.

[2] R. Engelking, General Topology, P.W.N., Warszawa, 1985.

[3] I. Farah and S. Solecki, Two Fσδ ideals, Proc. Amer. Math. Soc. 131, no. 6 (2003),
1971–1975.

[4] T. Jech, Set Theory, 2. corr. ed., Springer, Berlin, 1997.
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[9] M. S. Kurilić and A. Pavlović, A convergence on Boolean algebras generalizing the
convergence on the Aleksandrov cube, submitted.
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