Title: The number of Diophantine quintuples II
Author(s): Alan Filipin and Yasutsugu Fujita
A set of m distinct positive integers is called a Diophantine m-tuple if the product of any two of its distinct elements increased by 1 is a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. In this paper, we prove that there are at most 10^{96} Diophantine quintuples, which improves the known bounds.

Address:

Alan Filipin
Faculty of Civil Engineering
University of Zagreb
Fra Andrije Kačića-Miošića 26
10000 Zagreb
Croatia

Address:

Yasutsugu Fujita
Department of Mathematics
College of Industrial Technology
Nihon University
2-11-1 Shin-ei, Narashino, Chiba
Japan

